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A unitary quantum gate is the basic functioning element of a quantum 
circuit. Some basic notation:

number of qubits in the quantum gate system

dimension of the system’s Hilbert space

the target unitary transformation

the actual evolution operator of the system 
at the final time T

Basic definitions: Unitary quantum gates

The same unitary transformation is applied to any input state:



  

Controlled quantum gate

An external classical control c(t) is necessary to operate the quantum gate. 
The Hamiltonian and evolution operator are functionals of the control:

Gate fidelity is a measure of how well the target transformation was 
performed:

It is convenient to use a normalized fidelity:

or

Gate fidelity is also a functional of 
the control:



  

Quantum control landscape and optimality

The functional dependence F = F[c(t)] is called the control landscape.  

The critical points of the 
control landscape satisfy: 

A sufficient condition for 
optimality of a critical point 
is negative semidefiniteness 
of the Hessian matrix:

F

For a  recent review, see
C. Brif, R. Chakrabarti, and H. Rabitz,

New J. Phys. 12, 075008 (2010)



  

Optimally controlled quantum gate

The analysis of regular critical points on the control landscape reveals that:

● There is one maximum manifold: F = 1
● There is one minimum manifold: F = 0
● All other critical manifolds are saddles (can be avoided by a smart 

optimization algorithm) 

An optimal control solution c
0
(t) is perfect in ideal conditions 

(no environment, no noise, no uncertainties): 

The Hessian at any optimal control solution has only non-positive 
eigenvalues. The “flatness” of the control landscape in the vicinity of 
an optimal control solution depends on the number of zero Hessian 
eigenvalues and magnitude of negative Hessian eigenvalues.



  

Optimal quantum gate with noisy control

All real controls are noisy! Consider a unitary quantum gate operating in the 
vicinity of an optimal control:

In the case of random noise, the control error z(t) is a stochastic variable, with 
an auto-correlation function:

Expanding for small noise:

Statistical expectation value of the quantum gate fidelity:



  

Robustness to white control noise

For white noise with any zero-mean distribution:

The statistical expectation value of the quantum gate fidelity:

This is a good model for thermal noise, which is the dominant source of control 
errors for solid-state qubits controlled by time-dependent voltages. 

The expected fidelity decrease is determined by the trace of the Hessian:



  

Robustness to white control noise

For control through a dipole coupling:

the Hessian (at the maximum) for unitary gate control is given by

The trace of the Hessian is then independent of the details of the applied 
control and depends only on the norm of the dipole operator and the total 
control time: 



  

Strategies for enhancing robustness

● For white noise, the expected fidelity decrease is determined by the trace 
of the Hessian. For unitary gate control, this yields:

 Explore minimum control time that preserves controllability, given the system  
 Hamiltonian (including the free Hamiltonian and the dipole operator)

 Explore scaling of the fidelity decrease with the number of gate qubits.

● For non-white noise, the expected fidelity decrease is determined by the 
overlap of the Hessian and the noise autocorrelation function:

 Minimize the gate error by searching for optimal controls with the Hessian   
 “orthogonal” to the control noise (use the null space of the Hessian).



  

Multiple objectives: High fidelity and robustness 

We would like to maintain a high value of the nominal fidelity while at the same 
time decreasing sensitivity to the control noise (i.e., enhancing the robustness). 
This a multiobjective optimization problem.

An important feature of multiobjective optimization is the Pareto front – the set 
of all controls such that no further improvement in one objective can be 
achieved without a detrimental effect on another.

● Exploring the Pareto front: interesting, but computationally expensive.

● Staying on the top of the landscape (the maximum of the nominal fidelity) 
and searching for optimal controls which minimize the absolute value of the 
overlap between the Hessian and the noise autocorrelation function.

 A local (gradient-based) search, e.g., a second-order D-MORPH 
algorithm using the functional derivative of the Hessian with respect to 
the field (the third derivative of the objective with respect to the field).

 A global (stochastic) serach, e.g., a genetic algorithm: for each new 
individual in the population, climb to the top of the landscape to evaluate 
the robustness there.



  

Adaptive optimization of quantum gate fidelity

We seek improved robustness – i.e., want to minimize the decrease in 
fidelity for a given control noise.

A laboratory-oriented approach – closed-loop optimization using adaptive 
feedback control (AFC) in the laboratory (or numerical simulation)
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Advantages of laboratory AFC:
● Optimization is for actual system with actual noise, not a simplified model;
● Each trial is very fast (~ps for system evolution, ~ms for control generation).

Drawback of laboratory AFC: Fidelity estimation requires process tomography
(very expensive in number of experiments for multi-qubit systems)

AFC concept:
Judson & Rabitz '92


