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mation & Decoherence

'z_: are (noisy) open systems
the surrounding environment.
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el Open System:

H(t) — Hs(t) et - [1
Schrodinger equation: U(t) = —iH (1)U (t)

Objective: Generate target system time evolutions




Dpen System:
‘Quantum Spins

¢
Control pulse area: 6(t) = / dr
0



Qubit Dynamics & the Bloch Sphere

|31> - “Pure” spin states have the form:
AFE ‘¢> - CO‘SO> s C1 81>,
So) = where |co|* + |c1|* = 1.

[¥) = cos(0/2)|So0) + exp(i¢) sin(0/2)|51).




Qubit Dynamics & the Bloch Sphere:
Memory Channels

Consider a decoherence process
for states in the xy-plane, I.e.,

_ |S0) +exp(i¢)|S1)

Bloch vector dephasing
— uncertainty in ¢.
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Qubit Dynamics & the Bloch Sphere:
Memory Channels

With the “right” set of physical rotations,
this error can be corrected — “Hahn-echo”

Hahn-echo pulse sequence:
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Free evolution

m-rotation about
the y-axis

m-pulses = O(ts) ==




Quantum Memory Channels:
Dynamical-Decoupling Pulse Sequences

N
|| U= Z, where U; represent = and 7 /2

rotations and free evolutions.

This is an approximation to Z because
e {U;} and N are finite

e Non-unitary evolution is corrected with
unitary “time-reversal” operations



atisfying geometric
'ea constraints, e.g.,
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What other control-field conditions
can improve gate fidelity?



'I-Decoupling Pulses

nd 2nd-order errors in 7 and
ons whenI' =T";, = 77 = 0:

= = /0 cos|6(t)|dt,
—/ftsm[é’( )|dt, n4—/0ftcos[9(t)]dt,
== //Sll’l tz)]Slgl’l(tl —tz)dtldtg,

S. Pasini, et al., Phys. Rev. A, 80 (2009)



Double Quantum Dot:
Effective One-Qubit Model

J. Petta, et al., Science, 309 (2005)



Dynamical-Decoupling Pulses
S. Pasini, et al., Phys. Rev. A, 80 (2009)

Feasible controls
satisfying 0
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Control field, Cp(t)
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Gate distance:
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Distance, A[Z,, U(t; Cp)]




Dynamical Decoupling
+ Optimal Control Pulses

By searching the space of controls satisfying
1. =0

Tr (Z;;Utf) ~ 0,

LN Uy, ) — \/1—%

and incorporating parameter estimates for ¢,
we improve control fidelities for 7.

Systematic searching — Optimal control theory



o Control Theory

hrédinger's equation
© Experimental limitations of the control field

12
J = AoUy a/
0

2
|| dt

2

* Optimize iteratively
O Evolutionary algorithms
© Gradient-based methods V ./ = (O



Itimization Procedure
Jlating V 7 all gradient

V 1; are removed:

— __ .

so (VJ,Vn;) =0,
where p'1s constructed from
Gij — <V’I’]@,V’I’]j> and <Vj,VnZ>



-4

0

£
----DD+OC, &, = 5

1

DD+OC

—DD+QOC, €y = 2
— DD+0OC, €y = 3

DD+OC, g, = 0
._....DD+0OC, €, = 1

Gate Distances

DD+OC Pulses
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Gate Distances from
OC and DD+0OC
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DD+OC Pulses:
Improved Robustness 2
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DD+OC Pulses
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Conclusions and Current Work

* Demonstrated dynamical decoupling + optimal
control for improved gate fidelity and robustness

» Extend formalism to arbitrary rotation axes and
perturbative expansions about arbitrary e.

» Explore robustness to control field variations



Distance Measure with
oert-Schmidt Norm

Nice analytical result; solved numerically in practice.

M. Grace, et al., New J. Phys., 12 (2010)



Quantum Control Results:
One-Qubit Operations

Multiparticle environment: Hadamard gate
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Gate Robustness to System Variations

Optimal Hadamard gate with a four-particle environment:
=002, v = 0.0175, and F ~ 0.9934.

This control is applied to an ensemble of systems with
random variations in v and ~" given by A~ /~ = 1/8.

0992 0993 0994 0995
Fidelity, F

M. Grace, et al., J. Mod. Opt., 54 (2007)
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