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Finite-dimensional and infinite-dimensional quantum systems

for many quantum systems, the state-space is
finite-dimensional

e.g. controlling n-spins such as in NMR-based quantum
computing

in other systems, the state-space is infinite-dimensional

for instance, where there is interaction between energy levels
and/or spatial variation

standard approach is to use several lowest energy levels

avoid transition to higher levels



Subspace Invariance

∂ψ

∂t
=
∂2ψ

∂x2
,

ψ(0) = 0, ψ(1) = 0.

D(A) = {ψ ∈ H2(0, 1), ψ(0) = ψ(1) = 0.}.
A generates semigroup S(t) on L2(0, 1).

Consider V = {ψ ∈ L2(0, 1); ψ(r) = 0, 1/2 ≤ x ≤ 1]}.

A :
(
D(A) ∩ V

)
⇒ V

BUT
ψ0 ∈ V does NOT imply S(t)ψ0 ∈ V

spin-half particle coupled to 2 harmonic oscillators has the
eigenstates invariant but not the trajectory (with respect to
piecewise constant controls) (Bloch, Brockett and Rangan,
2010)



Generator and Semigroup Invariance

Generator Invariance

A subspace V ⊂ H is A-invariant if A(D(A) ∩ V ) ⊂ V .

⇑

Semigroup Invariance

A subspace V of H is semigroup invariant if S(t)ψ0 ⊂ V for all
ψ0 ∈ V .

Equivalent for finite-dimensional systems but not for
infinite-dimensional systems.



Disturbance Decoupling

dψ

dt
= Aψ(t) + B u(t)︸︷︷︸

control

+D v(t)︸︷︷︸
disturbance

,

y(t) = Cx(t)

Calculate feedback u = Kψ so that y(t) ≡ 0.

Problem is solvable ⇔ there is a feedback K so that A + BK
generates a semigroup that is invariant on a closed subspace
V ⊂ kerC where d ⊂ V .



Example of Disturbance Decoupling

∂ψ

∂t
(x , t) =

∂ψ2

∂x2
(x , t) + χ[0, 2

π
](x)u(t) + χ[1/2,1](x)v(t)

ψ(0, t) = 0, ψ(1, t) = 0

y(t) =

∫ 1
π

0
ψ(x , t)dr .



Example of Disturbance Decoupling. Full (-) and reduced-order (...) control

Linear Simulation Results
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Approximation of Schrödinger equation

ı
∂ψ(x , t)

∂t
=
∂2ψ(x , t)

∂x2
+ V (x)ψ(x , t)u(t) (1)

ψ(0, t) = ψ(1, t) = 0.

Let φn(x) be the orthonormal eigenfunctions of ∂2

∂x2 and λn the
associated eigenvalues.

If u(t) ≡ 0, approximate ψ by: ψ̃(x , t) =
∑N

k=1 ckeıλk tφk(x).

More generally:

ψ̃(x , t) =
N∑

k=1

ck(t)φk(x). (2)



Finite-dimensional approximation - heat equation

Suppose instead of (1) we have

∂ψ(x , t)

∂t
=
∂2ψ(x , t)

∂x2
+ V (x)u(t). (3)

Substituting the approximation (2) into (3) and projecting the
error onto the span of each φn, we obtain the system of o.d.e’s

ċn(t) = λncn(t) + 〈V , φn〉u(t), n = 1..N

Each mode is decoupled, so neglecting k > N does not affect the
lower modes.



Finite-dimensional approximation - Schrödinger equation

ı
∂ψ(x , t)

∂t
=
∂2ψ(x , t)

∂x2
+ V (x)ψ(x , t)u(t)

Substituting the approximation (2) into (3) and projecting the
error onto the span of each φn, we obtain the system of o.d.e’s

ıċn(t) = λncn(t) + u(t)
N∑

k=1

ck(t)〈Vφk , φn〉.

Even if the system is prepared so that the higher energy levels
are zero, in general they will be activated and furthermore,
will affect the lower modes.

loss of probability



Example: Reduced-order Feedback Controller Design

PDE

∂2w

∂t2
+
∂4w

∂x4
= b(x)u(t), t ≥ 0, 0 < x < 1,

b(x) =

{
1/δ, |x − .5| < δ

2

0, |x − .5| ≥ δ
2

.

w(0, t) = 0, wxx(0, t) = 0, w(1, t) = 0,wxx(1, t) = 0.

Use eigenfunctions as basis for approximating subspace

Linear quadratic regulator, state weight I , control weight 1

Feedback controller is u(t) = −B∗Π[w(t) ẇ(t)].



Design of Reduced-order Controller

Use first 3 modes to design controller

Initial condition is first eigenfunction.
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Design of Reduced-order Controller

Use first 3 modes to design controller

Initial condition is first eigenfunction.
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Summary

infinite-dimensional system behaviour can be fundamentally
different from finite-dimensional

in control, neglected modes can drastically affect the solution

interaction stronger for bilinear systems than linear systems
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