Projection bodies in complex vector spaces

Judit Abardia
(joint with A. Bernig)
Goethe-Universität Frankfurt

Projection body

V : real vector space of dimension n.
$\mathcal{K}(V)$: space of compact convex bodies in V.

Definition

Let $\Pi: \mathcal{K}(V) \rightarrow \mathcal{K}(V)$ be the operator defined from

$$
\begin{aligned}
h(\Pi K, u) & =\operatorname{vol}_{n-1}\left(K \mid u^{\perp}\right), \quad u \in S^{n-1} \\
& =\frac{n}{2} V(K, \ldots, K,[-u, u]) \\
& =\int_{S^{n-1}} h([-u, u], v) d S(K, v)=\int_{S^{n-1}}|\langle u, v\rangle| d S(K, v) .
\end{aligned}
$$

where $h(L, \cdot): S^{n-1} \rightarrow \mathbb{R}, L \in \mathcal{K}(V)$ is the support function of L.
ΠK is the projection body of $K \in \mathcal{K}(V)$.

Properties of the projection body

a) Invariant under translations, i.e.

$$
\Pi(K+x)=\Pi(K), \quad x \in V, K \in \mathcal{K}(V) .
$$

b) $G L(V, \mathbb{R})$-contravariant, i.e.

$$
\Pi(\phi K)=|\operatorname{det} \phi| \phi^{-t}(\Pi K), \quad \phi \in G L(V, \mathbb{R}), K \in \mathcal{K}(V)
$$

c) It is a continuous Minkowski valuation, i.e.

$$
\Pi(K \cup L)+\Pi(K \cap L)=\Pi(K)+\Pi(L), K, L \in \mathcal{K}(V), K \cup L \in \mathcal{K}(V)
$$ where + denotes de Minkowski sum on V.

Characterization of the projection body (Ludwig)

V : real vector space of dimension n.
If the operator $Z: \mathcal{K}(V) \rightarrow \mathcal{K}(V)$ is

- translation invariant,
- $S L(V, \mathbb{R})$-contravariant,
- continuous Minkowski valuation, then $Z=c \Pi, c \in \mathbb{R}^{+}$.

The converse also holds.

Complex projection bodies (A.-Bernig)

W : complex vector space of complex dimension $m, m \geq 3$.
If the operator $Z: \mathcal{K}(W) \rightarrow \mathcal{K}(W)$ is

- translation invariant,
- $S L(W, \mathbb{C})$-contravariant,
- continuous Minkowski valuation, then $Z=\Pi_{C}$ where $C \subset \mathbb{C}$ is a convex body and

$$
h\left(\Pi_{C} K, u\right)=V(K, \ldots, K, C u), \quad u \in S^{2 m-1}
$$

$C u=\{c u: c \in C \subset \mathbb{C}\}$.
The converse also holds for every $C \in \mathcal{K}(\mathbb{C})$.

Complex projection bodies (A.-Bernig)

For $m=2$,

$$
Z: \mathcal{K}(W) \rightarrow \mathcal{K}(W)
$$

given by

$$
h(Z K, u)=\mu(\operatorname{det}(K, u))
$$

with μ a continuous, translation invariant, monotone valuation of degree 1 and

$$
\operatorname{det}(K, u)=\{\operatorname{det}(k, u): k \in K\} \subset \mathbb{C}
$$

satisfies all the required properties.

Idea of the proof

$\Leftarrow)$ Direct from the properties of mixed volumes and the support function.
\Rightarrow)
i) McMullen decomposition.
ii) Z cannot be of degree $k, k \neq 2 m-1$.
iii) If the degree of Z is $2 m-1$, then $Z=\Pi_{C}$:

- McMullen description of real-valued valuations of degree $n-1$.
- The involved function is a function of one complex variable.
- It is also subbadditive. Thus, the support function of a convex body in \mathbb{C}.

Idea of the proof: i)

McMullen decomposition (1977): Let Val be the space of real-valued, translation invariant, continuous valuations on V and $\mathrm{Val}_{k} \subset \mathrm{Val}$ the subspace of valuations of degree k. Then,

$$
\mathrm{Val}=\bigoplus_{k=0, \ldots, n} \mathrm{Val}_{k}
$$

In our case:

$$
h(Z K, \cdot)=\sum_{k=0}^{2 m} f_{k}(K, \cdot)
$$

with $f_{k}(K, \cdot)$ 1-homogeneous and subadditive for k_{0}, k_{1}, the minimal and maximal indices with $f_{k} \neq 0$.

Idea of the proof: ii)

$\mathbf{k}=\mathbf{0}$: the Euler characteristic is the only 0 -degree valuation.
$\mathbf{k}=\mathbf{2 m}$: the volume is the only $2 m$-degree valuation.
$\mathbf{1} \leq \mathbf{k}<\mathbf{2 m}-\mathbf{1}$: define

$$
\tilde{Z}(K)=\int_{S^{1}} \int_{S^{1}} q_{1} Z\left(q_{2} K\right) d q_{1} d q_{2}
$$

and use the Klain's injectivity theorem.
Injectivity theorem (Klain 2000): Let $\mu \in \operatorname{Val}_{k}(V)$ even and $E \subset V$ a k-dimensional subspace. Then, there exists a function $K I_{\mu}: \operatorname{Gr}_{k}(V) \rightarrow \mathbb{R}$ which uniquely determines μ and

$$
\mu(K)=\mathrm{Kl}_{\mu}(E) \operatorname{vol}(K), K \in \mathcal{K}(E)
$$

Idea of the proof: iii)

$\mathbf{k}=\mathbf{2 m}-\mathbf{1}$:
Theorem (McMullen 1980): If $\mu \in \operatorname{Val}_{n-1}(V)$, there exists a continuous, 1-homogeneous function $f: V^{*} \rightarrow \mathbb{R}$ with

$$
\mu(K)=\int_{S^{n-1}} f(v) d S(K, v)=V(K, \ldots, K, f)
$$

Moreover, f is unique up to a linear function.
In our case:

$$
h(Z K, u)=V\left(K, \ldots, K, f_{u}\right) .
$$

Using the $S L(W, \mathbb{C})$-contravariance, we get $f_{u} \equiv f \circ h^{*}$, for all $h \in S L(W, \mathbb{C})$ with $h(u)=u$.

Moreover, $f_{u}\left(\xi_{1}+\xi_{2}\right)=f_{u}\left(\xi_{1}\right)$ if $\left(\xi_{2}, u\right)=0$.

Idea of the proof: iii)

Thus, $f_{u}(\xi)=G((\xi, u))=G(\langle\xi, u\rangle+i\langle\xi, J u\rangle)$ with $G: \mathbb{C} \rightarrow \mathbb{R}$ continuous, 1-homogenous function.

Using that $h(Z K, u)$ is a support function and the Minkowski's existence theorem, we get that G is a convex function.

Classical Brunn-Minkowski inequalities

Let $K, L \in \mathcal{K}(V)$ and $0 \leq \lambda \leq 1$. Then,

- $\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n}$, with equality for $\lambda \in(0,1)$ iff K and L lie in parallel hyperplanes or are homothetics.
- $W_{i}(K+L)^{1 /(n-i)} \geq W_{i}(K)^{1 /(n-i)}+W_{i}(L)^{1 /(n-i)}$, with equality iff K and L are homothetics.
- $V((K+L)[n-i], C)^{1 /(n-i)} \geq$
$V(K[n-i], \mathbf{C})^{1 /(n-i)}+V(L[n-i], \mathbf{C})^{1 /(n-i)}$,
where $\mathbf{C}=\left(K_{1}, \ldots, K_{i}\right)$.

Brunn-Minkowski inequality for Π_{C}

Let $K, L \in \mathcal{K}(W)$ with non-empty interior. Then
$\operatorname{vol}\left(\Pi_{C}(K+L)\right)^{1 / 2 m(2 m-1)} \geq \operatorname{vol}\left(\Pi_{C} K\right)^{1 / 2 m(2 m-1)}+\operatorname{vol}\left(\Pi_{C} L\right)^{1 / 2 m(2 m-1)}$,
with equality iff K and L are homothetic.

Symmetry property

Let $\mathbf{K}:=\left(K_{1}, \ldots, K_{2 m-1}\right), \mathbf{L}:=\left(L_{1}, \ldots, L_{2 m-1}\right) \in \mathcal{K}(W)^{2 m-1}$ and $C \subset \mathcal{K}(\mathbb{C})$. Then,

$$
V\left(\Pi_{C} \mathbf{K}, \mathbf{L}\right)=V\left(\Pi_{\bar{C}} \mathbf{L}, \mathbf{K}\right)
$$

with $h\left(\Pi_{C} \mathbf{K}, u\right)=V\left(K_{1}, \ldots, K_{2 m-1}, C u\right), u \in S^{2 m-1}$.

