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Projection body

V : real vector space of dimension n.
K(V ): space of compact convex bodies in V .

Definition

Let Π : K(V ) → K(V ) be the operator defined from

h(ΠK , u) = voln−1(K |u⊥), u ∈ Sn−1

=
n

2
V (K , . . . ,K , [−u, u]),

=

∫
Sn−1

h([−u, u], v)dS(K , v) =

∫
Sn−1

|〈u, v〉|dS(K , v).

where h(L, ·) : Sn−1 → R, L ∈ K(V ) is the support function of L.

ΠK is the projection body of K ∈ K(V ).
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Properties of the projection body

a) Invariant under translations, i.e.

Π(K + x) = Π(K ), x ∈ V ,K ∈ K(V ).

b) GL(V , R)-contravariant, i.e.

Π(φK ) = | det φ|φ−t(ΠK ), φ ∈ GL(V , R),K ∈ K(V ).

c) It is a continuous Minkowski valuation, i.e.

Π(K∪L)+Π(K∩L) = Π(K )+Π(L), K , L ∈ K(V ),K∪L ∈ K(V ),

where + denotes de Minkowski sum on V .
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Characterization of the projection body (Ludwig)

V : real vector space of dimension n.

If the operator Z : K(V ) → K(V ) is

translation invariant,

SL(V , R)-contravariant,

continuous Minkowski valuation,

then Z = cΠ, c ∈ R+.

The converse also holds.
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Complex projection bodies (A.-Bernig)

W : complex vector space of complex dimension m, m ≥ 3.

If the operator Z : K(W ) → K(W ) is

translation invariant,

SL(W , C)-contravariant,

continuous Minkowski valuation,

then Z = ΠC where C ⊂ C is a convex body and

h(ΠCK , u) = V (K , . . . ,K ,Cu), u ∈ S2m−1,

Cu = {cu : c ∈ C ⊂ C}.

The converse also holds for every C ∈ K(C).
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Complex projection bodies (A.-Bernig)

For m = 2,
Z : K(W ) → K(W )

given by
h(ZK , u) = µ(det(K , u))

with µ a continuous, translation invariant, monotone valuation of
degree 1 and

det(K , u) = {det(k, u) : k ∈ K} ⊂ C

satisfies all the required properties.

Judit Abardia Projection bodies in complex vector spaces



Idea of the proof

⇐) Direct from the properties of mixed volumes and the support
function.

⇒)

i) McMullen decomposition.

ii) Z cannot be of degree k, k 6= 2m − 1.

iii) If the degree of Z is 2m − 1, then Z = ΠC :

McMullen description of real-valued valuations of degree n − 1.
The involved function is a function of one complex variable.
It is also subbadditive. Thus, the support function of a convex
body in C.
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Idea of the proof: i)

McMullen decomposition (1977): Let Val be the space of
real-valued, translation invariant, continuous valuations on V and
Valk ⊂ Val the subspace of valuations of degree k. Then,

Val =
⊕

k=0,...,n

Valk .

In our case:

h(ZK , ·) =
2m∑
k=0

fk(K , ·),

with fk(K , ·) 1-homogeneous and subadditive for k0, k1, the
minimal and maximal indices with fk 6= 0.
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Idea of the proof: ii)

k = 0: the Euler characteristic is the only 0-degree valuation.
k = 2m: the volume is the only 2m-degree valuation.
1 ≤ k < 2m− 1: define

Z̃ (K ) =

∫
S1

∫
S1

q1Z (q2K )dq1dq2

and use the Klain’s injectivity theorem.

Injectivity theorem (Klain 2000): Let µ ∈ Valk(V ) even and
E ⊂ V a k-dimensional subspace. Then, there exists a function
Klµ : Grk(V ) → R which uniquely determines µ and

µ(K ) = Klµ(E ) vol(K ),K ∈ K(E ).

Judit Abardia Projection bodies in complex vector spaces



Idea of the proof: iii)

k = 2m− 1 :
Theorem (McMullen 1980): If µ ∈ Valn−1(V ), there exists a
continuous, 1-homogeneous function f : V ∗ → R with

µ(K ) =

∫
Sn−1

f (v)dS(K , v) = V (K , . . . ,K , f ).

Moreover, f is unique up to a linear function.
In our case:

h(ZK , u) = V (K , . . . ,K , fu).

Using the SL(W , C)-contravariance, we get fu ≡ f ◦ h∗, for all
h ∈ SL(W , C) with h(u) = u.

Moreover, fu(ξ1 + ξ2) = fu(ξ1) if (ξ2, u) = 0.
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Idea of the proof: iii)

Thus, fu(ξ) = G ((ξ, u)) = G (〈ξ, u〉+ i〈ξ, Ju〉) with G : C → R
continuous, 1-homogenous function.

Using that h(ZK , u) is a support function and the Minkowski’s
existence theorem, we get that G is a convex function.
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Classical Brunn-Minkowski inequalities

Let K , L ∈ K(V ) and 0 ≤ λ ≤ 1. Then,

vol((1− λ)K + λL)1/n ≥ (1− λ) vol(K )1/n + λ vol(L)1/n,
with equality for λ ∈ (0, 1) iff K and L lie in parallel
hyperplanes or are homothetics.

Wi (K + L)1/(n−i) ≥ Wi (K )1/(n−i) + Wi (L)1/(n−i),
with equality iff K and L are homothetics.

V ((K + L)[n − i ],C)1/(n−i) ≥
V (K [n − i ],C)1/(n−i) + V (L[n − i ],C)1/(n−i),
where C = (K1, . . . ,Ki ).
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Brunn-Minkowski inequality for ΠC

Let K , L ∈ K(W ) with non-empty interior. Then

vol(ΠC (K+L))1/2m(2m−1) ≥ vol(ΠCK )1/2m(2m−1)+vol(ΠCL)1/2m(2m−1),

with equality iff K and L are homothetic.
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Symmetry property

Let K := (K1, . . . ,K2m−1),L := (L1, . . . , L2m−1) ∈ K(W )2m−1 and
C ⊂ K(C). Then,

V (ΠCK,L) = V (ΠCL,K),

with h(ΠCK, u) = V (K1, . . . ,K2m−1,Cu), u ∈ S2m−1.
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