On the maximal measure of sections of the n-cube

Hermann König, Alexander Koldobsky

CAU Kiel; University of Missouri, Columbia

Banff, May 2011

Problem: Find analogues of Ball's cube slicing theorem for the Gaussian measure and more general measures.

Problem: Find analogues of Ball's cube slicing theorem for the Gaussian measure and more general measures.

Let $h:[-1,1] \rightarrow \mathbb{R}_{>0}$ be even and in C^{1}. Then

$$
d \mu_{h}(s):=\prod_{j=1}^{n} h\left(s_{j}\right) d s_{j} /\left(\int_{-1}^{1} h(r) d r\right)^{n}, \quad s=\left(s_{j}\right)_{j=1}^{n} \in B_{\infty}^{n}
$$

defines a probability measure on the n-cube B_{∞}^{n}. For $a \in S^{n-1}$ let

$$
A(a, h):=\mu_{h}\left\{x \in B_{\infty}^{n} \mid\langle x, a\rangle=0\right\}
$$

be the $(n-1)$-dimensional measure of the central section orthogonal to a.

Problem: Find analogues of Ball's cube slicing theorem for the Gaussian measure and more general measures.

Let $h:[-1,1] \rightarrow \mathbb{R}_{>0}$ be even and in C^{1}. Then

$$
d \mu_{h}(s):=\prod_{j=1}^{n} h\left(s_{j}\right) d s_{j} /\left(\int_{-1}^{1} h(r) d r\right)^{n}, \quad s=\left(s_{j}\right)_{j=1}^{n} \in B_{\infty}^{n}
$$

defines a probability measure on the n-cube B_{∞}^{n}. For $a \in S^{n-1}$ let

$$
A(a, h):=\mu_{h}\left\{x \in B_{\infty}^{n} \mid\langle x, a\rangle=0\right\}
$$

be the $(n-1)$-dimensional measure of the central section orthogonal to a. For $k \in\{1, \cdots, n\}$, let $f_{k}:=\frac{1}{\sqrt{k}}(\underbrace{1, \cdots, 1}_{k}, 0, \cdots, 0) \in S^{n-1}$.
K. Ball: \quad For Lebesgue measure $(h=1), \quad A(a, 1) \leq A\left(f_{2}, 1\right)$.
A. Zvavitch: False in general for Gaussian measure, $h_{\lambda}(s)=\exp \left(-\lambda s^{2}\right)$: For $n>3$ and large $\lambda>0, A\left(f_{n}, h_{\lambda}\right)>A\left(f_{2}, h_{\lambda}\right)$.

The main result

Theorem 1

Let $h:[-1,1] \rightarrow \mathbb{R}_{>0}$ be even and in C^{3} with $h^{\prime} \leq 0, h^{\prime \prime} \leq 0, h^{\prime \prime \prime} \geq 0$ on $[0,1]$ and $h(0) \leq \frac{3}{2} h(1)$. Suppose further that

$$
\begin{equation*}
\pi\left(\int_{0}^{1} r^{2} h(r) d r\right)\left(\int_{0}^{1} h(r)^{2} d r\right)^{2} \geq\left(\int_{0}^{1} h(r) d r\right)^{5} \tag{1}
\end{equation*}
$$

Consider $d \mu_{h}(s):=\prod_{j=1}^{n} h\left(s_{j}\right) d s_{j} /\left(\int_{-1}^{1} h(r) d r\right)^{n}, \quad s=\left(s_{j}\right)_{j=1}^{n} \in B_{\infty}^{n}$. Let $a=\left(a_{j}\right)_{j=1}^{n} \in S^{n-1}$ with $a_{1} \geq \cdots \geq a_{n} \geq 0$. Then, if $a_{1} \leq 1 / \sqrt{2}$,

$$
A(a, h) \leq A\left(f_{2}, h\right)
$$

The main result

Theorem 1

Let $h:[-1,1] \rightarrow \mathbb{R}_{>0}$ be even and in C^{3} with $h^{\prime} \leq 0, h^{\prime \prime} \leq 0, h^{\prime \prime \prime} \geq 0$ on $[0,1]$ and $h(0) \leq \frac{3}{2} h(1)$. Suppose further that

$$
\begin{equation*}
\pi\left(\int_{0}^{1} r^{2} h(r) d r\right)\left(\int_{0}^{1} h(r)^{2} d r\right)^{2} \geq\left(\int_{0}^{1} h(r) d r\right)^{5} \tag{1}
\end{equation*}
$$

Consider $d \mu_{h}(s):=\prod_{j=1}^{n} h\left(s_{j}\right) d s_{j} /\left(\int_{-1}^{1} h(r) d r\right)^{n}, \quad s=\left(s_{j}\right)_{j=1}^{n} \in B_{\infty}^{n}$. Let $a=\left(a_{j}\right)_{j=1}^{n} \in S^{n-1}$ with $a_{1} \geq \cdots \geq a_{n} \geq 0$. Then, if $a_{1} \leq 1 / \sqrt{2}$,

$$
A(a, h) \leq A\left(f_{2}, h\right)
$$

Remark: The conditions $h^{\prime \prime \prime} \geq 0, h(0) \leq \frac{3}{2} h(1)$ are technical and can be weakened. Condition (1) is essential, without it, in general, for large n $A\left(f_{n}, h\right)>A\left(f_{2}, h\right)$.

Corollary. For $\lambda>0$ consider the Gaussian measure with $h(r)=\exp \left(-\lambda r^{2}\right)$

$$
d \mu(s)=\exp \left(-\lambda\|s\|_{2}^{2}\right) d s /\left(\int_{-1}^{1} \exp \left(-\lambda r^{2}\right) d r\right)^{n}, \quad s \in B_{\infty}^{n}
$$

Then for $\lambda \leq 0.196262$ and $a_{1} \leq 1 / \sqrt{2}$

$$
A(a, h) \leq A\left(f_{2}, h\right)
$$

while for $\lambda>0.196263$ and large n

$$
A\left(f_{n}, h\right)>A\left(f_{2}, h\right)
$$

Condition (1) is satisfied for $h(r)=\exp \left(-\lambda r^{2}\right) \Leftrightarrow \lambda \leq 0.1962627 \ldots$

Formula for the measure of the cube section

Proposition 1

Let $h:[-1,1] \rightarrow \mathbb{R}_{>0}$ be even and in C^{1}. Let

$$
\begin{equation*}
f(t):=\int_{0}^{1} \cos (t r) h(r) d r / \int_{0}^{1} h(r) d r, \quad t \in \mathbb{R} . \tag{2}
\end{equation*}
$$

Then the measure μ_{h} of the section of B_{∞}^{n} orthogonal to $a=\left(a_{j}\right)_{j=1}^{n} \in S^{n-1}$ is given by

$$
A(a, h)=\frac{1}{\pi} \int_{0}^{\infty} \prod_{j=1}^{n} f\left(a_{j} r\right) d r
$$

Analogue of K. Ball's main inequality

Proposition 2

Assume $\quad h \in C^{3}[0,1], \quad h>0, \quad h^{\prime} \leq 0, \quad h^{\prime \prime} \leq 0, \quad h^{\prime \prime \prime} \geq 0, \quad h(0) \leq \frac{3}{2} h(1)$ and (1). Let

$$
\begin{aligned}
f(t) & :=\int_{0}^{1} \cos (t r) h(r) d r / \int_{0}^{1} h(r) d r, \\
H(p) & :=\sqrt{p} \int_{0}^{\infty}|f(t)|^{p} d t, \quad p \geq 0 .
\end{aligned}
$$

Then for all $p \geq 2, \quad H(p) \leq H(2)$.

Proof of the Theorem using Proposition 2:
Let $a=\left(a_{j}\right)_{j=1}^{n} \in S^{n-1}, \quad 0 \leq a_{1} \leq 1 / \sqrt{2}$. Then
$p_{j}:=a_{j}^{-2} \geq 2, \quad \sum_{j=1}^{n} \frac{1}{p_{j}}=1$ and Hölder's inequality yields

$$
\begin{aligned}
A(a, h) & =\frac{1}{\pi} \int_{0}^{\infty} \prod_{j=1}^{n} f\left(a_{j} r\right) d r \\
& \leq \frac{1}{\pi} \prod_{j=1}^{n}\left(\int_{0}^{\infty}\left|f\left(a_{j} r\right)\right|^{p_{j}} d r\right)^{1 / p_{j}}, \quad a_{j} r=t \\
& =\frac{1}{\pi} \prod_{j=1}^{n}\left(\sqrt{p_{j}} \int_{0}^{\infty}|f(t)|^{p_{j}} d t\right)^{1 / p_{j}}
\end{aligned}
$$

Proof of the Theorem using Proposition 2:
Let $a=\left(a_{j}\right)_{j=1}^{n} \in S^{n-1}, \quad 0 \leq a_{1} \leq 1 / \sqrt{2}$. Then
$p_{j}:=a_{j}^{-2} \geq 2, \quad \sum_{j=1}^{n} \frac{1}{p_{j}}=1$ and Hölder's inequality yields

$$
\begin{aligned}
A(a, h) & =\frac{1}{\pi} \int_{0}^{\infty} \prod_{j=1}^{n} f\left(a_{j} r\right) d r \\
& \leq \frac{1}{\pi} \prod_{j=1}^{n}\left(\int_{0}^{\infty} \mid f\left(a_{j} r\right)^{p_{j}} d r\right)^{1 / p_{j}}, \quad a_{j} r=t \\
& =\frac{1}{\pi} \prod_{j=1}^{n}\left(\sqrt{p_{j}} \int_{0}^{\infty}|f(t)|^{p_{j}} d t\right)^{1 / p_{j}} \\
& =\frac{1}{\pi} \prod_{j=1}^{n} H\left(p_{j}\right)^{1 / p_{j}} \leq \frac{1}{\pi} H(2) \\
& =\frac{1}{\pi} \int_{0}^{\infty} f(r / \sqrt{2})^{2} d r=A\left(f_{2}, h\right)
\end{aligned}
$$

Nazarov-Podkorytov's Lemma on distribution functions

Lemma 1
(X, λ) measure space, $f, g: X \rightarrow \mathbb{R}$ in $L_{p}(X, \lambda)$ for any $p>0$,
$F(x)=\lambda\{t \in X| | f(t) \mid>x\}, \quad G(x)=\lambda\{t \in X| | g(t) \mid>x\}, \quad x \in \mathbb{R}_{\geq 0}$.
Assume there is $x_{0}>0$ such that

$$
\begin{equation*}
G \leq F \quad \text { on } \quad\left(0, x_{0}\right) \quad \text { and } \quad G \geq F \quad \text { on } \quad\left(x_{0}, \infty\right) . \tag{3}
\end{equation*}
$$

Nazarov-Podkorytov's Lemma on distribution functions

Lemma 1

(X, λ) measure space, $f, g: X \rightarrow \mathbb{R}$ in $L_{p}(X, \lambda)$ for any $p>0$,
$F(x)=\lambda\{t \in X| | f(t) \mid>x\}, \quad G(x)=\lambda\{t \in X| | g(t) \mid>x\}, \quad x \in \mathbb{R}_{\geq 0}$.
Assume there is $x_{0}>0$ such that

$$
\begin{equation*}
G \leq F \quad \text { on } \quad\left(0, x_{0}\right) \quad \text { and } \quad G \geq F \quad \text { on } \quad\left(x_{0}, \infty\right) . \tag{3}
\end{equation*}
$$

Then $\quad \varphi(p)=\frac{1}{p x_{0}^{p}} \int_{x}\left(|g(t)|^{p}-|f(t)|^{p}\right) d t \quad$ is increasing in $p \in \mathbb{R}_{>0}$.
Therefore $\quad \int_{x}|f(t)|^{p_{0}} d t \leq \int_{x}|g(t)|^{p_{0}} d t \quad$ for some $p_{0}>0$ implies $\quad \int_{x}|f(t)|^{p} d t \leq \int_{x}|g(t)|^{p} d t \quad$ for all $p \geq p_{0}$.

The L_{2}-norm of f

We apply Lemma 1 with $p_{0}=2, f$ and a suitable exponential function g. For this we need

Lemma 2

Let h be as in Proposition 1 and for $t>0$

$$
\begin{aligned}
& f(t)=\int_{0}^{1} \cos (t r) h(r) d r / \int_{0}^{1} h(r) d r, \\
& g(t)=\exp \left(-d t^{2}\right), \quad d:=\frac{1}{2 \pi}\left(\int_{0}^{1} h(r) d r\right)^{4} /\left(\int_{0}^{1} h(r)^{2} d r\right)^{2} .
\end{aligned}
$$

Then

$$
\int_{0}^{\infty}|f(t)|^{2} d t=\int_{0}^{\infty}|g(t)|^{2} d t .
$$

Zeros of f

Under the conditions imposed on $h, \quad f(t)$ resembles $\frac{\sin t}{t}$:

Proposition 3

(Polya-Szegö)
Assume $h \in C^{2}[0,1]$ with $h>0$, and $\left[h^{\prime} \leq 0, h^{\prime \prime}<0\right]$ or $\left[h^{\prime} \geq 0\right]$ and let

$$
f(t)=\int_{0}^{1} \cos (t r) h(r) d r / \int_{0}^{1} h(r) d r
$$

Then f has infinitely many zeros, all of which are real.
For all $n \in \mathbb{N}$, there is exactly one zero between $n \pi$ and $(n+1) \pi$ (and between $-(n+1) \pi$ and $-n \pi$).

Comparison of f and g near 0

To prove Proposition 2 using Lemma 1, take f, g as above and let F, G denote their distribution functions. We have to show (3): there is $x_{0}>0$ with

$$
G \leq F \quad \text { on } \quad\left(0, x_{0}\right), \quad G \geq F \quad \text { on } \quad\left(x_{0}, 1\right] .
$$

Note $|f|, g \leq 1$. For $G \geq F$ on $\left(x_{0}, 1\right]$ we need $|f| \leq g$ near 0 , where $|f|, g$ are maximal. Let

$$
d^{\prime}:=\frac{1}{2} \int_{0}^{1} r^{2} h(r) d r / \int_{0}^{1} h(r) d r
$$

Near

$$
t=0: \quad \cos (\operatorname{tr}) \simeq 1-\frac{1}{2} t^{2} r^{2}, \quad f(t) \simeq 1-d^{\prime} t^{2} \simeq \exp \left(-d^{\prime} t^{2}\right)
$$

Comparison of f and g near 0

To prove Proposition 2 using Lemma 1 , take f, g as above and let F, G denote their distribution functions. We have to show (3): there is $x_{0}>0$ with

$$
G \leq F \quad \text { on } \quad\left(0, x_{0}\right), \quad G \geq F \quad \text { on } \quad\left(x_{0}, 1\right] .
$$

Note $|f|, g \leq 1$. For $G \geq F$ on $\left(x_{0}, 1\right]$ we need $|f| \leq g$ near 0 , where $\quad|f|, g$ are maximal. Let

$$
d^{\prime}:=\frac{1}{2} \int_{0}^{1} r^{2} h(r) d r / \int_{0}^{1} h(r) d r .
$$

Near

$$
t=0: \quad \cos (t r) \simeq 1-\frac{1}{2} t^{2} r^{2}, \quad f(t) \simeq 1-d^{\prime} t^{2} \simeq \exp \left(-d^{\prime} t^{2}\right)
$$

Thus $\quad|f(t)| \leq g(t)=\exp \left(-d t^{2}\right) \quad$ near $\quad t=0 \quad$ requires $\quad d^{\prime} \geq d$ or

$$
\begin{equation*}
\left(\int_{0}^{1} h(r) d r\right)^{5} \leq \pi\left(\int_{0}^{1} r^{2} h(r) d r\right)\left(\int_{0}^{1} h(r)^{2} d r\right)^{2} \tag{1}
\end{equation*}
$$

Lemma 3

$h \in C^{2}, h>0, h^{\prime} \leq 0, h^{\prime \prime}<0, \overline{t_{1}}=$ smallest positive zero of f,

$$
f(t)=\int_{0}^{1} \cos (t r) h(r) d r / \int_{0}^{1} h(r) d r
$$

Then for all $\quad 0 \leq t \leq \bar{t}_{1}, \quad|f(t)| \leq \exp \left(-d^{\prime} t^{2}\right)$,

$$
d^{\prime}=\frac{1}{2} \int_{0}^{1} r^{2} h(r) d r / \int_{0}^{1} h(r) d r
$$

Proof. Denote the zeros of f by
$\bar{t}_{n} \in\left(n \pi,(n+1) \pi \quad\right.$ and $\quad-\bar{t}_{n}, \quad f(0)=1, \quad f^{\prime}(0)=0$:

$$
f(t)=\prod_{n \in \mathbb{N}}\left(1-\frac{t^{2}}{\overline{t_{n}^{2}}}\right), \quad \ln f(\sqrt{x})=\sum_{n \in \mathbb{N}} \ln \left(1-\frac{x}{\overline{t_{n}^{2}}}\right)
$$

$\ln (1-c x)^{\prime \prime}=\frac{-c^{2}}{(1-c x)^{2}}<0 \quad$ implies that
$(\ln f(\sqrt{\cdot}))^{\prime}(x)=\frac{f^{\prime}(\sqrt{x})}{f(\sqrt{x})} \frac{1}{2 \sqrt{x}} \quad$ is decreasing in $x>0$.
Hence $\quad \frac{f^{\prime}(t)}{f(t)} \frac{1}{2 t} \leq \lim _{t \rightarrow 0} \frac{f^{\prime}(t)}{f(t)} \frac{1}{2 t}=\frac{1}{2} f^{\prime \prime}(0)=-d^{\prime} \quad$ and
$\left(\exp \left(d^{\prime} t^{2}\right) f(t)\right)^{\prime}=\left(f^{\prime}(t)+2 d^{\prime} t f(t)\right) \exp \left(-d^{\prime} t^{2}\right) \leq 0$.
Therefore $\quad f(t) \leq \exp \left(-d^{\prime} t^{2}\right), \quad t \leq t_{1}$.

Distribution functions

Hence for $d^{\prime} \leq d$, i.e. condition (1), $\quad f(t) \leq g(t)=\exp \left(-d t^{2}\right), \quad t \leq \overline{t_{1}}$,
and $\int_{0}^{1}|f(t)|^{2} d t=\int_{0}^{1}|g(t)|^{2} d t$, which means that

$$
\int_{0}^{1} x F(x) d x=\int_{0}^{1} x G(x) d x
$$

Since $F<G$ near $x=1, F-G$ has at least one zero $0<x_{0}<1$. It will have exactly one such zero if $F-G$ is strictly decreasing, i.e. $F^{\prime}<G^{\prime}$ or $\quad\left|F^{\prime}\right|>\left|G^{\prime}\right|$. Note $F^{\prime}<0, \quad G^{\prime}<0$. Hence (3) of Lemma 1 for f, g and Proposition 2 will follow from

$$
\begin{equation*}
\left|F^{\prime}(x) / G^{\prime}(x)\right|>1, \quad x \in[0,1] \tag{4}
\end{equation*}
$$

Since $\quad G(x)=g^{-1}(x)=\sqrt{\ln \frac{1}{x}} / \sqrt{d}$,

$$
1 /\left|G^{\prime}(x)\right|=2 \sqrt{d} x \sqrt{\ln \frac{1}{x}}
$$

Distribution function of f

Let $0<\overline{t_{1}}<\overline{t_{2}}<\cdots$ denote the zeros of f and
$x_{i}=\max _{t \in\left[\bar{t}_{i}, \bar{t}_{i+1}\right]}|f(t)|=:\left|f\left(\tilde{t}_{i}\right)\right|, \quad i \in \mathbb{N}$.
The maxima x_{i} are decreasing in $\quad i \in \mathbb{N}$ under the conditions of the Theorem, as seen by estimates based on integration by parts. Since $f<g$ on $\left(0, \bar{t}_{1}\right],\left|F^{\prime}\right|>\left|G^{\prime}\right|$ on $\left[x_{1}, 1\right)$. For $x \in\left(0, x_{1}\right)$, there is $m \in \mathbb{N}$ with $x \in\left[x_{m+1}, x_{m}\right)$. Considering level sets one finds

$$
\left|F^{\prime}(x)\right|=\sum_{|f(t)|=x} \frac{1}{\left|f^{\prime}(t)\right|}
$$

Distribution function of f

Let $0<\overline{t_{1}}<\overline{t_{2}}<\cdots$ denote the zeros of f and
$x_{i}=\max _{t \in\left[\tilde{t}_{i}, \bar{t}_{i+1}\right]}|f(t)|=:\left|f\left(\tilde{t}_{i}\right)\right|, \quad i \in \mathbb{N}$.
The maxima x_{i} are decreasing in $\quad i \in \mathbb{N}$ under the conditions of the Theorem, as seen by estimates based on integration by parts.
Since $f<g$ on $\left(0, \bar{t}_{1}\right],\left|F^{\prime}\right|>\left|G^{\prime}\right|$ on $\left[x_{1}, 1\right)$. For $x \in\left(0, x_{1}\right)$, there is $m \in \mathbb{N}$ with $x \in\left[x_{m+1}, x_{m}\right)$. Considering level sets one finds

$$
\left|F^{\prime}(x)\right|=\sum_{|f(t)|=x} \frac{1}{\left|f^{\prime}(t)\right|} .
$$

Thus (4) means

$$
\begin{equation*}
2 \sqrt{d} \sum_{|f(t)|=x} \frac{|f(t)|}{\left|f^{\prime}(t)\right|} \sqrt{\ln \frac{1}{|f(t)|}}>1, \quad x \in\left[x_{m+1}, x_{m}\right) \tag{5}
\end{equation*}
$$

For $x \in\left[x_{m+1}, x_{m}\right)$, there is one such $t=t_{0} \in\left(0, \bar{t}_{1}\right)$ and two t-values with $t_{i}<t_{i}^{\prime}$ in $\left(\bar{t}_{i}, \bar{t}_{i+1}\right) \quad$ for $\quad i=1, \cdots, m$.

Reduction to the size of f The most difficult case to show (5) is $m=1$. We reduce this to size estimates of $|f|$ and estimates of $t_{0}, t_{i}, t_{i}^{\prime}$ and x_{2} by

Reduction to the size of f

The most difficult case to show (5) is $m=1$. We reduce this to size estimates of $|f|$ and estimates of $t_{0}, t_{i}, t_{i}^{\prime}$ and x_{2} by

Lemma 4

Under the assumptions of the Polya-Szegö Proposition, when $h^{\prime} \leq 0$

$$
\frac{|f(t)|}{\left|f^{\prime}(t)\right|} \geq t \frac{|f(t)|}{1-\varepsilon|f(t)|}, \quad \varepsilon=\operatorname{sgn}\left(f(t) f^{\prime}(t)\right), \quad t>0 .
$$

Reduction to the size of f

The most difficult case to show (5) is $m=1$. We reduce this to size estimates of $|f|$ and estimates of $t_{0}, t_{i}, t_{i}^{\prime}$ and x_{2} by

Lemma 4

Under the assumptions of the Polya-Szegö Proposition, when $h^{\prime} \leq 0$

$$
\frac{|f(t)|}{\left|f^{\prime}(t)\right|} \geq t \frac{|f(t)|}{1-\varepsilon|f(t)|}, \quad \varepsilon=\operatorname{sgn}\left(f(t) f^{\prime}(t)\right), \quad t>0 .
$$

Proof. Integration by parts yields with $h^{\prime} \leq 0$

$$
f^{\prime}(t)=\frac{h(1)}{\int_{0}^{1} h(r) d r} \frac{\cos t}{t}-\frac{f(t)}{t}+\frac{1}{x} \frac{\int_{0}^{1} \cos (t r) r\left|h^{\prime}(r)\right| d r}{\int_{0}^{1} h(r) d r} .
$$

If $f^{\prime}(t) \geq 0$ use $\cos (\operatorname{tr}) \leq 1$, if $f^{\prime}(t) \leq 0$ use $\cos (t r) \geq-1$, and $\int_{0}^{1} r\left|h^{\prime}(r)\right| d r=\int_{0}^{1} h(t) d t-h(1)$ to conclude

$$
\left|f^{\prime}(t)\right| \leq \frac{1}{t}\left[1-\operatorname{sgn}\left(f^{\prime}(t)\right) f(t)\right] .
$$

Dividing by $|f(t)|$ and forming reciprocals yields Lemma 4.

Estimate of $\left|F^{\prime}(x) / G^{\prime}(x)\right|$
Using that h is decreasing and concave with $h(1) \geq \frac{2}{3} h(0)=\frac{2}{3}$, we find

$$
\begin{aligned}
2 \sqrt{d} & =\sqrt{\frac{2}{\pi}}\left(\int_{0}^{1} h(r) d r\right)^{2} /\left(\int_{0}^{1} h(r)^{2} d r\right) \\
& \geq \sqrt{\frac{2}{\pi}} \int_{0}^{1} h(r) d r \geq \sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(1-\frac{r}{3}\right) d r=\frac{5}{6} \sqrt{\frac{2}{\pi}} .
\end{aligned}
$$

Estimate of $\left|F^{\prime}(x) / G^{\prime}(x)\right|$
Using that h is decreasing and concave with $h(1) \geq \frac{2}{3} h(0)=\frac{2}{3}$, we find

$$
\begin{aligned}
2 \sqrt{d} & =\sqrt{\frac{2}{\pi}}\left(\int_{0}^{1} h(r) d r\right)^{2} /\left(\int_{0}^{1} h(r)^{2} d r\right) \\
& \geq \sqrt{\frac{2}{\pi}} \int_{0}^{1} h(r) d r \geq \sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(1-\frac{r}{3}\right) d r=\frac{5}{6} \sqrt{\frac{2}{\pi}} .
\end{aligned}
$$

Therefore (5) is satisfied if

$$
\begin{equation*}
\frac{5}{6} \sqrt{\frac{2}{\pi}} \sum_{f(t)=x} t \frac{|f(t)|}{1-\varepsilon|f(t)|} \sqrt{\ln \frac{1}{|f(t)|}}>1, \quad x \in\left[x_{m+1}, x_{m}\right) \tag{6}
\end{equation*}
$$

Estimate of $\left|F^{\prime}(x) / G^{\prime}(x)\right|$
Using that h is decreasing and concave with $h(1) \geq \frac{2}{3} h(0)=\frac{2}{3}$, we find

$$
\begin{aligned}
2 \sqrt{d} & =\sqrt{\frac{2}{\pi}}\left(\int_{0}^{1} h(r) d r\right)^{2} /\left(\int_{0}^{1} h(r)^{2} d r\right) \\
& \geq \sqrt{\frac{2}{\pi}} \int_{0}^{1} h(r) d r \geq \sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(1-\frac{r}{3}\right) d r=\frac{5}{6} \sqrt{\frac{2}{\pi}} .
\end{aligned}
$$

Therefore (5) is satisfied if

$$
\begin{equation*}
\frac{5}{6} \sqrt{\frac{2}{\pi}} \sum_{f(t)=x} t \frac{|f(t)|}{1-\varepsilon|f(t)|} \sqrt{\ln \frac{1}{|f(t)|}}>1, \quad x \in\left[x_{m+1}, x_{m}\right) \tag{6}
\end{equation*}
$$

For $m=1$ this means, with $f\left(t_{i}\right)=x$,

$$
\begin{aligned}
& \frac{5}{6} \sqrt{\frac{2}{\pi}}\left(\left(t_{0}+t_{1}^{\prime}\right) \frac{x}{1-x}+t_{1} \frac{x}{1+x}\right) \sqrt{\ln \frac{1}{x}} \\
& =\frac{5}{6} \sqrt{\frac{2}{\pi}}\left(\left(t_{0}+t_{1}+t_{1}^{\prime}\right) \frac{x}{1-x}-t_{1} \frac{2 x^{2}}{1-x^{2}}\right) \sqrt{\ln \frac{1}{x}}>1, \quad x \in\left[x_{2}, x_{1}\right) .
\end{aligned}
$$

Since $\frac{x}{1-x} \sqrt{\ln \frac{1}{x}}$ is increasing in $x,(6)$ is satisfied provided that

$$
\begin{equation*}
\frac{5}{6} \sqrt{\frac{2}{\pi}}\left(\left(t_{0}+t_{1}+t_{1}^{\prime}\right) \frac{x_{2}}{1-x_{2}}-t_{1} \frac{2 x_{2}^{2}}{1-x_{2}^{2}}\right) \sqrt{\ln \frac{1}{x_{2}}}>1 \tag{7}
\end{equation*}
$$

with $f\left(t_{i}\right)=x_{2}=$ second maximum of $|f|$. We need lower estimates of $t_{0}, t_{1}, t_{1}^{\prime}$ and x_{2}.

Since $\frac{x}{1-x} \sqrt{\ln \frac{1}{x}}$ is increasing in $x,(6)$ is satisfied provided that

$$
\begin{equation*}
\frac{5}{6} \sqrt{\frac{2}{\pi}}\left(\left(t_{0}+t_{1}+t_{1}^{\prime}\right) \frac{x_{2}}{1-x_{2}}-t_{1} \frac{2 x_{2}^{2}}{1-x_{2}^{2}}\right) \sqrt{\ln \frac{1}{x_{2}}}>1 \tag{7}
\end{equation*}
$$

with $f\left(t_{i}\right)=x_{2}=$ second maximum of $|f|$. We need lower estimates of $t_{0}, t_{1}, t_{1}^{\prime}$ and x_{2}.

Lemma 5

Let $\quad x_{1}=\left|f\left(\tilde{t_{1}}\right)\right|$ be the first maximum of $|f|$. Then $\tilde{t_{1}} \geq T_{1} \simeq 4.4934$, the first maximum of $\left|\frac{\sin t}{t}\right| \quad$ and $\quad t_{1}+t_{1}^{\prime} \geq 2 \tilde{t}_{1} \geq 2 T_{1}$.
Further $t_{0} \geq \pi\left(1-x_{2}\right)$.

Lower estimate of x_{2}
Since $\quad x_{2}=\left|f\left(\tilde{t}_{2}\right)\right| \quad$ with $\quad 2 \pi<\bar{t}_{2}<\tilde{t}_{2}<\bar{t}_{3}$, we know $x_{2} \geq\left|f\left(\frac{5}{2} \pi\right)\right|$.

Lemma 6

Assume that $h \in C^{3}[-1,1]$ with $h^{\prime \prime \prime} \geq 0$. Then

$$
x_{2} \geq f\left(\frac{5}{2} \pi\right) \geq \frac{h(1)}{\int_{0}^{1} h(r) d r} \frac{1}{\frac{5}{2} \pi} \geq \frac{4}{15 \pi} .
$$

Lower estimate of x_{2}
Since $\quad x_{2}=\left|f\left(\tilde{t}_{2}\right)\right| \quad$ with $\quad 2 \pi<\bar{t}_{2}<\tilde{t}_{2}<\bar{t}_{3}$, we know $x_{2} \geq\left|f\left(\frac{5}{2} \pi\right)\right|$.

Lemma 6

Assume that $h \in C^{3}[-1,1]$ with $h^{\prime \prime \prime} \geq 0$. Then

$$
x_{2} \geq f\left(\frac{5}{2} \pi\right) \geq \frac{h(1)}{\int_{0}^{1} h(r) d r} \frac{1}{\frac{5}{2} \pi} \geq \frac{4}{15 \pi} .
$$

Proof. Integration by parts yields with $\sin (t r) h^{\prime \prime \prime}(r) \leq h^{\prime \prime \prime}(r)$

$$
f(t) \cdot\left(\int_{0}^{1} h(r) d r\right) \geq h(1) \frac{\sin t}{t}+h^{\prime}(1) \frac{\cos t}{t^{2}}-h^{\prime}(0) \frac{1}{t^{2}}+h^{\prime \prime}(0) \frac{1}{t^{3}}-h^{\prime \prime}(1) \frac{1+\sin t}{t^{3}} .
$$

Since $h \in C^{3}$ is even and $h^{\prime \prime \prime} \geq 0, h^{\prime}(0)=h^{\prime \prime}(0)=0,-h^{\prime \prime}(1) \geq 0$.
Put $t=\frac{5}{2} \pi$.

Estimate of $\left|F^{\prime}(x) / G^{\prime}(x)\right|$ for $m=1$
We have to prove (7). Using Lemma 5 and Lemma 6, (7) follows from

$$
\frac{5}{6} \sqrt{\frac{2}{\pi}}\left[\pi+\frac{2 T}{1-x_{2}}-\frac{4 \pi x_{2}}{1-x_{2}^{2}}\right] x_{2} \sqrt{\ln \frac{1}{x_{2}}}>1,2 T=8.9868
$$

which is true for $x_{2} \geq \frac{4}{15 \pi}>\frac{1}{12}$; The left side is increasing in x_{2}.

Estimate of $\left|F^{\prime}(x) / G^{\prime}(x)\right|$ for $m=1$
We have to prove (7). Using Lemma 5 and Lemma 6, (7) follows from

$$
\frac{5}{6} \sqrt{\frac{2}{\pi}}\left[\pi+\frac{2 T}{1-x_{2}}-\frac{4 \pi x_{2}}{1-x_{2}^{2}}\right] x_{2} \sqrt{\ln \frac{1}{x_{2}}}>1,2 T=8.9868
$$

which is true for $x_{2} \geq \frac{4}{15 \pi}>\frac{1}{12}$; The left side is increasing in x_{2}. The estimate for $m \geq 2$ is easier.

