## The Sine Transform of Isotropic Measures

# G. Maresch joint work with F.E. Schuster

#### May 16, 2011 Banff International Research Station

# The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{C}(\mu)(u) = \int\limits_{S^{n-1}} |u \cdot v| \, d\mu(v), \qquad u \in S^{n-1}.$$

・ 母 と ・ ヨ と ・ ヨ と

# The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{C}(\mu)(u)=\int\limits_{S^{n-1}}\|u|v\|\,d\mu(v),\qquad u\in S^{n-1}.$$

・ 母 と ・ ヨ と ・ ヨ と

# The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{C}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v\| \, d\mu(v), \qquad u \in S^{n-1}.$$

**Basic Properties:** 

(4 回) (4 回) (4 回)

# The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{C}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v\| \, d\mu(v), \qquad u \in S^{n-1}.$$

#### **Basic Properties:**

C is a bounded linear operator.

# The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{C}(\mu)(u)=\int\limits_{S^{n-1}}\|u|v\|\,d\mu(v),\qquad u\in S^{n-1}.$$

#### **Basic Properties:**

- C is a bounded linear operator.
- C is a multiplier map.

# The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{C}(\mu)(u)=\int\limits_{S^{n-1}}\|u|v\|\,d\mu(v),\qquad u\in S^{n-1}.$$

#### **Basic Properties:**

- C is a bounded linear operator.
- $\blacktriangleright C$  is a multiplier map.
- C is injective on even measures.

# The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{C}(\mu)(u)=\int\limits_{S^{n-1}}\|u|v\|\,d\mu(v),\qquad u\in S^{n-1}.$$

#### **Basic Properties:**

- C is a bounded linear operator.
- C is a multiplier map.
- C is injective on even measures.
- C annihilates odd measures.

向下 イヨト イヨト

# Zonoids

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $C\mu(u)$  is the support function of a unique convex body  $C_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{C}_{\mu})(u) := \int\limits_{S^{n-1}} |u \cdot v| d\mu(v), \qquad u \in S^{n-1}$$

・ロト ・回ト ・ヨト ・ヨト

# Zonoids

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $C\mu(u)$  is the support function of a unique convex body  $C_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{C}_{\mu})(u) := \int\limits_{S^{n-1}} h([-v,v],u) \, d\mu(v), \qquad u \in S^{n-1}$$

イロン イヨン イヨン イヨン

# Zonoids

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $C\mu(u)$  is the support function of a unique convex body  $C_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{C}_{\mu})(u) := \int\limits_{S^{n-1}} h([-v,v],u) \, d\mu(v), \qquad u \in S^{n-1}$$

•  $C_{\mu}$  is centered and origin-symmetric.

# Zonoids

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $C\mu(u)$  is the support function of a unique convex body  $C_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{C}_{\mu})(u) := \int\limits_{S^{n-1}} h([-v,v],u) d\mu(v), \qquad u \in S^{n-1}$$

- $C_{\mu}$  is centered and origin-symmetric.
- ▶ C<sub>µ</sub> is a zonoid, i.e. can be approximated by finite Minkowski sums of segments.

## Finite dimensional subspaces

#### Theorem (Bolker 1969; Lewis 1978)

Each n-dimensional subspace F of  $L_1(S^{n-1})$  is isometric to the Banach space  $(\mathbb{R}^n, \|.\|_F)$  whose dual spaces norm is given by

$$||x||_{F}^{*} := h(\mathcal{C}_{\mu}, x) = \int_{S^{n-1}} |x \cdot v| d\mu(v),$$

- (目) - (日) - (日)

## Finite dimensional subspaces

#### Theorem (Bolker 1969; Lewis 1978)

Each n-dimensional subspace F of  $L_1(S^{n-1})$  is isometric to the Banach space  $(\mathbb{R}^n, \|.\|_F)$  whose dual spaces norm is given by

$$||x||_F^* := h(\mathcal{C}_{\mu}, x) = \int_{S^{n-1}} |x \cdot v| d\mu(v),$$

where  $\mu$  is a measure on  $S^{n-1}$  with the following properties

## Finite dimensional subspaces

#### Theorem (Bolker 1969; Lewis 1978)

Each n-dimensional subspace F of  $L_1(S^{n-1})$  is isometric to the Banach space  $(\mathbb{R}^n, \|.\|_F)$  whose dual spaces norm is given by

$$||x||_F^* := h(\mathcal{C}_{\mu}, x) = \int_{S^{n-1}} |x \cdot v| d\mu(v),$$

where  $\mu$  is a measure on  $S^{n-1}$  with the following properties  $\blacktriangleright \mu$  is even,

(4 回) (4 回) (4 回)

# Finite dimensional subspaces

#### Theorem (Bolker 1969; Lewis 1978)

Each n-dimensional subspace F of  $L_1(S^{n-1})$  is isometric to the Banach space  $(\mathbb{R}^n, \|.\|_F)$  whose dual spaces norm is given by

$$||x||_F^* := h(\mathcal{C}_{\mu}, x) = \int_{S^{n-1}} |x \cdot v| d\mu(v),$$

where  $\mu$  is a measure on  $S^{n-1}$  with the following properties

- $\blacktriangleright$   $\mu$  is even,
- $\mu$  is not concentrated on any great-sphere,

- 4 同 6 4 日 6 4 日 6

# Finite dimensional subspaces

#### Theorem (Bolker 1969; Lewis 1978)

Each n-dimensional subspace F of  $L_1(S^{n-1})$  is isometric to the Banach space  $(\mathbb{R}^n, \|.\|_F)$  whose dual spaces norm is given by

$$||x||_F^* := h(\mathcal{C}_{\mu}, x) = \int_{S^{n-1}} |x \cdot v| d\mu(v),$$

where  $\mu$  is a measure on  $S^{n-1}$  with the following properties

- $\blacktriangleright$   $\mu$  is even,
- µ is not concentrated on any great-sphere,
- μ is isotropic.

## Finite dimensional subspaces

#### Example

F := span{u → u · x : x ∈ ℝ<sup>n</sup>} = H<sup>n</sup><sub>1</sub>. Then the representing measure is suitably normalized spherical Lebesgue measure

$$\lambda = \frac{1}{\kappa_n} \, d\sigma$$

## Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

・ 同 ト ・ ヨ ト ・ ヨ ト

### Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

1. 
$$\operatorname{Id}_n = \int\limits_{S^{n-1}} u \otimes u \, d\mu(u).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

1. 
$$\begin{aligned} & \mathsf{Id}_n = \int\limits_{S^{n-1}} u \otimes u \, d\mu(u). \\ & \mathsf{2.} \ \|x\|^2 = \int\limits_{S^{n-1}} |x \cdot u|^2 \, d\mu(u) \text{ for every } x \in \mathbb{R}^n \end{aligned}$$

## Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

1. 
$$\mathsf{Id}_n = \int_{S^{n-1}} u \otimes u \, d\mu(u).$$
  
2. 
$$\|x\|^2 = \int_{S^{n-1}} |x \cdot u|^2 \, d\mu(u) \text{ for every } x \in \mathbb{R}^n.$$

**Basic Properties:** 

・ 同 ト ・ ヨ ト ・ ヨ ト

## Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

1. 
$$\mathsf{Id}_n = \int_{S^{n-1}} u \otimes u \, d\mu(u).$$
  
2. 
$$\|x\|^2 = \int_{S^{n-1}} |x \cdot u|^2 \, d\mu(u) \text{ for every } x \in \mathbb{R}^n.$$

**Basic Properties:** 

•  $\mu$  is not concentrated on any great-sphere.

(1) マン・ション・

## Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

1. 
$$\mathsf{Id}_n = \int_{S^{n-1}} u \otimes u \, d\mu(u).$$
  
2. 
$$\|x\|^2 = \int_{S^{n-1}} |x \cdot u|^2 \, d\mu(u) \text{ for every } x \in \mathbb{R}^n.$$

#### **Basic Properties:**

- $\mu$  is not concentrated on any great-sphere.
- $\mu$  has total mass *n*.

(1) マン・ション・

## Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

1. 
$$\mathsf{Id}_n = \int_{S^{n-1}} u \otimes u \, d\mu(u).$$
  
2. 
$$\|x\|^2 = \int_{S^{n-1}} |x \cdot u|^2 \, d\mu(u) \text{ for every } x \in \mathbb{R}^n.$$

#### **Basic Properties:**

- $\mu$  is not concentrated on any great-sphere.
- $\mu$  has total mass *n*.
- ► The set of all isotropic measures is a convex and weakly closed subset of *M*(*S<sup>n-1</sup>*).

# Isotropic Measure

A measure  $\mu$  on  $S^{n-1}$  is called isotropic if one of the following equivalent conditions holds:

1. 
$$\mathsf{Id}_n = \int_{S^{n-1}} u \otimes u \, d\mu(u).$$
  
2. 
$$\|x\|^2 = \int_{S^{n-1}} |x \cdot u|^2 \, d\mu(u) \text{ for every } x \in \mathbb{R}^n.$$

#### **Basic Properties:**

- $\mu$  is not concentrated on any great-sphere.
- $\mu$  has total mass *n*.
- ► The set of all isotropic measures is a convex and weakly closed subset of M(S<sup>n-1</sup>).
- The set of all discrete isotropic measures is a weakly dense subset of all isotropic measures (due to F. Barthe).

# Isotropic Position

The minimal surface area of a convex body  $K \subseteq \mathbb{R}^n$  is defined as

$$\partial(K) := \inf\{S(\Phi K) : \Phi \in SL(n)\},\$$

where  $S(\cdot)$  is the surface area.

(4回) (1日) (日)

# Isotropic Position

The minimal surface area of a convex body  $K \subseteq \mathbb{R}^n$  is defined as

$$\partial(K) := \inf\{S(\Phi K) : \Phi \in SL(n)\},\$$

where  $S(\cdot)$  is the surface area.



K is in surface isotropic position if  $S(K) = \partial(K)$ .

# Isotropic Position

#### Theorem (Petty 1961)

Let  $K \subseteq \mathbb{R}^n$  be a convex body. Then there exists a linear transformation  $\Phi \in SL(n)$  such that  $\Phi K$  is in surface isotropic position. This  $\Phi$  is unique up to orthogonal transformations.

(4 回) (4 回) (4 回)

# Isotropic Position

#### Theorem (Petty 1961)

Let  $K \subseteq \mathbb{R}^n$  be a convex body. Then there exists a linear transformation  $\Phi \in SL(n)$  such that  $\Phi K$  is in surface isotropic position. This  $\Phi$  is unique up to orthogonal transformations.

#### Theorem (Petty 1961)

Let  $K \subseteq \mathbb{R}^n$  be a convex body. K is in surface isotropic position if and only if the surface area measure  $\mu_K$  is (up to normalization) isotropic.

(1) マン・ション・

# Volume Inequalities for the Cosine Transform

#### Theorem (Lutwak, 1990)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

(4月) (4日) (4日)

# Volume Inequalities for the Cosine Transform

#### Theorem (Lutwak, 1990)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$\operatorname{Vol}(\mathcal{C}_\mu)^{1/n} \ \leq \operatorname{Vol}(\mathcal{C}_\lambda)^{1/n}$$

(4月) (4日) (4日)

# Volume Inequalities for the Cosine Transform

#### Theorem (Lutwak, 1990)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$egin{aligned} & extsf{Vol}(\mathcal{C}_{\mu})^{1/n} & \leq extsf{Vol}(\mathcal{C}_{\lambda})^{1/n} \ & extsf{Vol}(\mathcal{C}_{\lambda}^{*})^{1/n} & \leq & extsf{Vol}(\mathcal{C}_{\mu}^{*})^{1/n} \end{aligned}$$

(4月) (4日) (4日)

# Volume Inequalities for the Cosine Transform

#### Theorem (Lutwak, 1990)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$egin{aligned} & extsf{Vol}(\mathcal{C}_{\mu})^{1/n} & \leq extsf{Vol}(\mathcal{C}_{\lambda})^{1/n} \ & extsf{Vol}(\mathcal{C}_{\lambda}^{*})^{1/n} & \leq & extsf{Vol}(\mathcal{C}_{\mu}^{*})^{1/n} \end{aligned}$$

Equality is attained exactly for  $\lambda$ .

向下 イヨト イヨト

# Volume Inequalities for the Cosine Transform

#### Theorem (Lutwak, 1990)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$egin{aligned} & extsf{Vol}(\mathcal{C}_\mu)^{1/n} & \leq extsf{Vol}(\mathcal{C}_\lambda)^{1/n} \ & extsf{Vol}(\mathcal{C}_\lambda^*)^{1/n} & \leq & extsf{Vol}(\mathcal{C}_\mu^*)^{1/n} \end{aligned}$$

Equality is attained exactly for  $\lambda$ .

#### Remark:

Extremizers exist due to compactness.

向下 イヨト イヨト

# Volume Inequalities for the Cosine Transform

#### Proof.

Makes use of the Urysohn inequality:

$$\left(\frac{\operatorname{Vol}(K)}{\kappa_n}\right)^{1/n} \leq \frac{1}{n \kappa_n} \int_{S^{n-1}} h(K, u) \, du$$

Where equality only holds if h(K, u) is constant.

# Volume Inequalities for the Cosine Transform

#### Proof.

Makes use of the Urysohn inequality:

$$\left(\frac{\operatorname{Vol}(\mathcal{C}_{\mu})}{\kappa_{n}}\right)^{1/n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} h(\mathcal{C}_{\mu}, u) \, du$$

Where equality only holds if  $h(C_{\mu}, u)$  is constant.

# Volume Inequalities for the Cosine Transform

#### Proof.

Makes use of the Urysohn inequality:

$$\left(\frac{\operatorname{Vol}(\mathcal{C}_{\mu})}{\kappa_{n}}\right)^{1/n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} \int_{S^{n-1}} |u \cdot v| \, d\mu(v) \, du$$

Where equality only holds if  $h(\mathcal{C}_{\mu}, u)$  is constant.

# Volume Inequalities for the Cosine Transform

#### Proof.

Makes use of the Urysohn inequality:

$$\left(\frac{\operatorname{Vol}(\mathcal{C}_{\mu})}{\kappa_n}\right)^{1/n} \leq \frac{1}{n \kappa_n} \int_{S^{n-1}} \int_{S^{n-1}} |u \cdot v| \, du \, d\mu(v)$$

Where equality only holds if  $h(C_{\mu}, u)$  is constant.

# Volume Inequalities for the Cosine Transform

#### Proof.

Makes use of the Urysohn inequality:

$$\left(\frac{\operatorname{Vol}(\mathcal{C}_{\mu})}{\kappa_{n}}\right)^{1/n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} 2 \kappa_{n-1} \, d\mu(v)$$

Where equality only holds if  $h(C_{\mu}, u)$  is constant.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Volume Inequalities for the Cosine Transform

#### Proof.

Makes use of the Urysohn inequality:

$$\left(\frac{\mathsf{Vol}(\mathcal{C}_{\mu})}{\kappa_n}
ight)^{1/n} \leq rac{2\kappa_{n-1}}{\kappa_n}$$

Where equality only holds if  $h(C_{\mu}, u)$  is constant.

# Volume Inequalities for the Cosine Transform

#### Proof.

Makes use of the Urysohn inequality:

$$\left(\frac{\mathsf{Vol}(\mathcal{C}_{\mu})}{\kappa_{n}}\right)^{1/n} \leq \frac{2\kappa_{n-1}}{\kappa_{n}} = \left(\frac{\mathsf{Vol}(\mathcal{C}_{\lambda})}{\kappa_{n}}\right)^{1/n}$$

- 4 同 6 4 日 6 4 日 6

# Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

(4月) イヨト イヨト

## Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

$$egin{aligned} & extsf{Vol}(\mathcal{C}_{\mu})^{1/n} & \leq extsf{Vol}(\mathcal{C}_{\lambda})^{1/n} \ & extsf{Vol}(\mathcal{C}_{\lambda}^{*})^{1/n} & \leq & extsf{Vol}(\mathcal{C}_{\mu}^{*})^{1/n} \end{aligned}$$

(4月) イヨト イヨト

# Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

$$\begin{array}{lll} \operatorname{Vol}(\mathcal{C}_{\nu})^{1/n} \leq & \operatorname{Vol}(\mathcal{C}_{\mu})^{1/n} & \leq \operatorname{Vol}(\mathcal{C}_{\lambda})^{1/n} \\ \operatorname{Vol}(\mathcal{C}_{\lambda}^{*})^{1/n} \leq & \operatorname{Vol}(\mathcal{C}_{\mu}^{*})^{1/n} & \leq \operatorname{Vol}(\mathcal{C}_{\nu}^{*})^{1/n} \end{array}$$

where  $\lambda$  is suitably normalized spherical Lebesgue measure and  $\nu$  is any cross measure.

(1) マン・ション・

# Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

$$\begin{array}{lll} \operatorname{Vol}(\mathcal{C}_{\nu})^{1/n} \leq & \operatorname{Vol}(\mathcal{C}_{\mu})^{1/n} & \leq \operatorname{Vol}(\mathcal{C}_{\lambda})^{1/n} \\ \operatorname{Vol}(\mathcal{C}_{\lambda}^{*})^{1/n} \leq & \operatorname{Vol}(\mathcal{C}_{\mu}^{*})^{1/n} & \leq \operatorname{Vol}(\mathcal{C}_{\nu}^{*})^{1/n} \end{array}$$

where  $\lambda$  is suitably normalized spherical Lebesgue measure and  $\nu$  is any cross measure. Equality is attained exactly for  $\lambda$  resp.  $\nu$ .

(4月) イヨト イヨト

## The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} (1 - |u \cdot v|^2)^{1/2} d\mu(v), \qquad u \in S^{n-1}.$$

イロン イヨン イヨン イヨン

2

## The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v^{\perp}\|\,d\mu(v), \qquad u\in S^{n-1}.$$

イロン イヨン イヨン イヨン

## The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v^{\perp}\| d\mu(v), \qquad u \in S^{n-1}$$

**Basic Properties:** 

イロン イヨン イヨン イヨン

2

# The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v^{\perp}\|\,d\mu(v), \qquad u\in S^{n-1}.$$

### **Basic Properties:**

• S is a bounded linear operator.

イロン イヨン イヨン イヨン

# The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v^\perp\|\,d\mu(v), \qquad u\in S^{n-1}.$$

### **Basic Properties:**

- S is a bounded linear operator.
- ▶ S is a multiplier map.

## The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v^\perp\|\,d\mu(v), \qquad u\in S^{n-1}.$$

### **Basic Properties:**

- S is a bounded linear operator.
- ▶ S is a multiplier map.
- S is injective on even measures.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

# The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v^\perp\|\,d\mu(v), \qquad u\in S^{n-1}.$$

### **Basic Properties:**

- S is a bounded linear operator.
- $\triangleright$  S is a multiplier map.
- S is injective on even measures.
- S annihilates odd measures.

# The Sine Transform

The sine transform assigns to each finite (signed) Borel measure  $\mu$  on  $S^{n-1}$  the continuous function

$$\mathcal{S}(\mu)(u) = \int\limits_{S^{n-1}} \|u|v^{\perp}\|\,d\mu(v), \qquad u\in S^{n-1}.$$

### **Basic Properties:**

- S is a bounded linear operator.
- $\triangleright$  S is a multiplier map.
- S is injective on even measures.
- S annihilates odd measures.
- ►  $S\mu = c_n \cdot \mathcal{R}(C\mu)$ , where  $\mathcal{R}$  is the Radon transform and  $c_n$  a constant only depending on the dimension.

ロト 不得下 不足下 不足下

### **Disc Bodies**

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $S\mu(u)$  is the support function of a unique convex body  $S_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{S}_{\mu})(u) := \int\limits_{\mathcal{S}^{n-1}} (1 - |u \cdot v|^2)^{1/2} \, d\mu(v), \qquad u \in \mathcal{S}^{n-1}.$$

・ロン ・回と ・ヨン ・ヨン

### **Disc Bodies**

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $S\mu(u)$  is the support function of a unique convex body  $S_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{S}_{\mu})(u) := \int\limits_{\mathcal{S}^{n-1}} h(B_n|v^{\perp}, u) d\mu(v), \qquad u \in \mathcal{S}^{n-1}$$

・ロン ・回と ・ヨン ・ヨン

## **Disc Bodies**

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $S\mu(u)$  is the support function of a unique convex body  $S_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{S}_{\mu})(u) := \int\limits_{\mathcal{S}^{n-1}} h(B_n|v^{\perp}, u) d\mu(v), \qquad u \in \mathcal{S}^{n-1}$$

•  $S_{\mu}$  is centered and origin-symmetric.

・ロン ・回と ・ヨン ・ヨン

## **Disc Bodies**

If  $\mu$  is an even (positive) Borel measure on  $S^{n-1}$ , then  $S\mu(u)$  is the support function of a unique convex body  $S_{\mu} \subset \mathbb{R}^{n}$ :

$$h(\mathcal{S}_{\mu})(u) := \int\limits_{\mathcal{S}^{n-1}} h(B_n|v^{\perp}, u) d\mu(v), \qquad u \in \mathcal{S}^{n-1}.$$

- $S_{\mu}$  is centered and origin-symmetric.
- ► S<sub>µ</sub> is a disc body, i.e. can be approximated by finite Minkowski sums of (n − 1 dimensional) discs. Disc bodies constitute a subclass of zonoids.

・ロン ・回と ・ヨン・

# Examples

For a convex body K in ℝ<sup>n</sup>, denote its *i*-th intrinsic volume by V<sub>i</sub>(K). Then, h(Π<sub>i</sub>K, u) := V<sub>i</sub>(K|u<sup>⊥</sup>) defines the projection body of order *i* and

# Examples

For a convex body K in ℝ<sup>n</sup>, denote its *i*-th intrinsic volume by V<sub>i</sub>(K). Then, h(Π<sub>i</sub>K, u) := V<sub>i</sub>(K|u<sup>⊥</sup>) defines the projection body of order *i* and

$$\frac{\kappa_{n-2}}{n-1}\mathcal{S}\mu_{K}(u)=h(\Pi_{1}\Pi K,u)$$

・ロン ・回と ・ヨン ・ヨン

# Examples

For a convex body K in ℝ<sup>n</sup>, denote its *i*-th intrinsic volume by V<sub>i</sub>(K). Then, h(Π<sub>i</sub>K, u) := V<sub>i</sub>(K|u<sup>⊥</sup>) defines the projection body of order *i* and

$$\frac{\kappa_{n-2}}{n-1}\mathcal{S}\mu_{K}(u)=h(\Pi_{1}\Pi K,u).$$

• If K is a convex body in  $\mathbb{R}^n$  then

$$\frac{1}{2(n+1)} \mathcal{S}\mu_{K}(u) = \int_{-\infty}^{\infty} \operatorname{Vol}_{n-2} \left( K \cap (u^{\perp} + t \, u) \right) \, dt,$$

where  $\operatorname{Vol}_{n-2}(L)$  denotes the n-2 dimensional surface area of the n-1 dimensional body L. This characterization of S is due to Schneider.

# Volume Inequalities for the Sine Transform

### Theorem (M&S, 2010)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

# Volume Inequalities for the Sine Transform

### Theorem (M&S, 2010)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$\operatorname{Vol}(\mathcal{S}_\mu)^{1/n} \leq \operatorname{Vol}(\mathcal{S}_\lambda)^{1/n}$$

# Volume Inequalities for the Sine Transform

### Theorem (M&S, 2010)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$egin{aligned} & extsf{Vol}(\mathcal{S}_{\mu})^{1/n} & \leq extsf{Vol}(\mathcal{S}_{\lambda})^{1/n} \ & extsf{Vol}(\mathcal{S}_{\lambda}^{*})^{1/n} & \leq & extsf{Vol}(\mathcal{S}_{\mu}^{*})^{1/n} \end{aligned}$$

# Volume Inequalities for the Sine Transform

### Theorem (M&S, 2010)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$egin{aligned} & extsf{Vol}(\mathcal{S}_{\mu})^{1/n} & \leq extsf{Vol}(\mathcal{S}_{\lambda})^{1/n} \ & extsf{Vol}(\mathcal{S}_{\lambda}^*)^{1/n} & \leq & extsf{Vol}(\mathcal{S}_{\mu}^*)^{1/n} \end{aligned}$$

Equality is attained exactly for  $\lambda$ .

伺い イヨト イヨト

# Volume Inequalities for the Sine Transform

## Theorem (M&S, 2010)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$  and  $\lambda$  suitably normalized Lebesgue measure, then

$$egin{aligned} & extsf{Vol}(\mathcal{S}_{\mu})^{1/n} & \leq extsf{Vol}(\mathcal{S}_{\lambda})^{1/n} \ & extsf{Vol}(\mathcal{S}_{\lambda}^*)^{1/n} & \leq & extsf{Vol}(\mathcal{S}_{\mu}^*)^{1/n} \end{aligned}$$

Equality is attained exactly for  $\lambda$ .

#### Remark:

Extremizers exist due to compactness.

向下 イヨト イヨト

# Reverse Volume Inequalities for the Cosine Transform

Theorem (M&S, 2010)

Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

(4月) イヨト イヨト

## Reverse Volume Inequalities for the Cosine Transform

Theorem (M&S, 2010) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

$$au_n^{1/n} \mathit{Vol}(\mathcal{S}_
u)^{1/n} < \hspace{0.1 cm} \mathit{Vol}(\mathcal{S}_\mu)^{1/n} \hspace{0.1 cm} \leq \hspace{0.1 cm} \mathit{Vol}(\mathcal{S}_\lambda)^{1/n}$$

(4月) イヨト イヨト

## Reverse Volume Inequalities for the Cosine Transform

Theorem (M&S, 2010) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

$$egin{array}{ll} & au_n^{1/n} \operatorname{Vol}(\mathcal{S}_
u)^{1/n} < & \operatorname{Vol}(\mathcal{S}_\mu)^{1/n} & \leq \operatorname{Vol}(\mathcal{S}_\lambda)^{1/n} \ & \operatorname{Vol}(\mathcal{S}_\lambda^*)^{1/n} \leq & \operatorname{Vol}(\mathcal{S}_\mu^*)^{1/n} & < \operatorname{Vol}(\mathcal{S}_
u^*)^{1/n} \eta_n^{1/n} \end{array}$$

イロト イポト イヨト イヨト

3

## Reverse Volume Inequalities for the Cosine Transform

Theorem (M&S, 2010) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

$$egin{array}{ll} & au_n^{1/n} \operatorname{Vol}(\mathcal{S}_
u)^{1/n} < & \operatorname{Vol}(\mathcal{S}_\mu)^{1/n} & \leq \operatorname{Vol}(\mathcal{S}_\lambda)^{1/n} \ & \operatorname{Vol}(\mathcal{S}_\lambda^*)^{1/n} \leq & \operatorname{Vol}(\mathcal{S}_\mu^*)^{1/n} & < \operatorname{Vol}(\mathcal{S}_
u^*)^{1/n} \eta_n^{1/n} \end{array}$$

where  $\lambda$  is suitably normalized spherical Lebesgue measure and  $\nu$  is any cross measure; Here  $\tau_n$  and  $\eta_n$  not only stay bounded but also satisfy

$$\lim_{n\to\infty}\tau_n=\lim_{n\to\infty}\eta_n=1.$$

## Reverse Volume Inequalities for the Cosine Transform

Theorem (M&S, 2010) Let  $\mu$  be an even isotropic measure on  $S^{n-1}$ , then

$$egin{array}{ll} & au_n^{1/n} \operatorname{Vol}(\mathcal{S}_
u)^{1/n} < & \operatorname{Vol}(\mathcal{S}_\mu)^{1/n} & \leq \operatorname{Vol}(\mathcal{S}_\lambda)^{1/n} \ & \operatorname{Vol}(\mathcal{S}_\lambda^*)^{1/n} \leq & \operatorname{Vol}(\mathcal{S}_\mu^*)^{1/n} & < \operatorname{Vol}(\mathcal{S}_
u^*)^{1/n} \eta_n^{1/n} \end{array}$$

where  $\lambda$  is suitably normalized spherical Lebesgue measure and  $\nu$  is any cross measure; Here  $\tau_n$  and  $\eta_n$  not only stay bounded but also satisfy

$$\lim_{n\to\infty}\tau_n=\lim_{n\to\infty}\eta_n=1.$$

Remark: These inqualities are *asymptotically* optimal.

# Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let  $\mu$  be a discrete measure such that  $\frac{1}{n-1}\,\mu$  is isotropic, say

$$\mu := c_1 \delta_{u_1} + \ldots + c_m \delta_{u_m}.$$

Then for any measurable functions  $f_i : \mathbb{R}^{n-1} \to [0,\infty), 1 \le i \le m$ :

소리가 소문가 소문가 소문가

### Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let  $\mu$  be a discrete measure such that  $\frac{1}{n-1}\,\mu$  is isotropic, say

$$\mu := c_1 \delta_{u_1} + \ldots + c_m \delta_{u_m}.$$

Then for any measurable functions  $f_i : \mathbb{R}^{n-1} \to [0,\infty), 1 \le i \le m$ :

$$\int_{\mathbb{R}^n} \prod_{i=1}^m f_i(x|u_i^{\perp})^{c_i} dx \leq \prod_{i=1}^m \left( \int_{\mathbb{R}^{n-1}} f_i(x) dx \right)^{c_i}$$
(1)

소리가 소문가 소문가 소문가

#### Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let  $\mu$  be a discrete measure such that  $\frac{1}{n-1}\mu$  is isotropic, say

$$\mu := c_1 \delta_{u_1} + \ldots + c_m \delta_{u_m}$$

Then for any measurable functions  $f_i : \mathbb{R}^{n-1} \to [0,\infty), 1 \le i \le m$ :

$$\int_{\mathbb{R}^n} \prod_{i=1}^m f_i(x|u_i^{\perp})^{c_i} dx \leq \prod_{i=1}^m \left( \int_{\mathbb{R}^{n-1}} f_i(x) dx \right)^{c_i}$$
(1)  
$$\int_{\mathbb{R}^n} \sup_{\substack{x=\sum_{i=1}^m c_i y_i \\ \text{with } y_i \perp u_i}} \prod_{i=1}^m f_i(y_i)^{c_i} dx \geq \prod_{i=1}^m \left( \int_{\mathbb{R}^{n-1}} f_i(x) dx \right)^{c_i}$$
(2)

소리가 소문가 소문가 소문가

## Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let  $\mu$  be a discrete measure such that  $\frac{1}{n-1}\,\mu$  is isotropic, say

$$\mu := c_1 \delta_{u_1} + \ldots + c_m \delta_{u_m}.$$

Then for any measurable functions  $f_i : \mathbb{R}^{n-1} \to [0,\infty), 1 \le i \le m$ :

$$\int_{\mathbb{R}^n} \prod_{i=1}^m f_i(x|u_i^{\perp})^{c_i} dx \leq \prod_{i=1}^m \left( \int_{\mathbb{R}^{n-1}} f_i(x) dx \right)^{c_i}$$
(1)  
$$\int_{\mathbb{R}^n} \sup_{\substack{x=\sum_{i=1}^m c_i y_i \\ \text{with } y_i \perp u_i}} \prod_{i=1}^m f_i(y_i)^{c_i} dx \geq \prod_{i=1}^m \left( \int_{\mathbb{R}^{n-1}} f_i(x) dx \right)^{c_i}$$
(2)

Choose  $f_1(x) = ... = f_m(x) = \exp(-||x||)$ .

# Projection and Disc Bodies

If K is a centered concex body with surface area measure  $\mu_{K}$ ,

(4回) (1日) (日)

# Projection and Disc Bodies

If K is a centered concex body with surface area measure  $\mu_{K}$ ,

•  $\Pi K := C \mu_K$  is the Projection Body of K,

・ 同 ト ・ 臣 ト ・ 臣 ト

# Projection and Disc Bodies

If K is a centered concex body with surface area measure  $\mu_{K}$ ,

- $\Pi K := C \mu_K$  is the Projection Body of K,
- $\Psi K := S \mu_K$  is the Disc Body of *K*.

# Projection and Disc Bodies

If K is a centered concex body with surface area measure  $\mu_{K}$ ,

- $\Pi K := C \mu_K$  is the Projection Body of K,
- $\Psi K := S \mu_K$  is the Disc Body of K.

Re-interpretation of the previous results:

・ 同 ト ・ ヨ ト ・ ヨ ト

# Projection and Disc Bodies

If K is a centered concex body with surface area measure  $\mu_{K}$ ,

- $\Pi K := C \mu_K$  is the Projection Body of K,
- $\Psi K := S \mu_K$  is the Disc Body of K.

Re-interpretation of the previous results:

$$\mathsf{parallelotopes} \leq \partial(K)^{-1}\mathsf{Vol}(\Pi K)^{1/n} \leq \mathsf{ellipsoids}$$
  
 $\mathsf{ellipsoids} \leq \partial(K) \; \mathsf{Vol}(\Pi^*K)^{1/n} \leq \mathsf{parallelotopes}$ 

If K is in surface isotropic position

#### **Open Problems**

G. Maresch and F.E. Schuster The Sine Transform of Isotropic Measures

#### **Open Problems**

• Minimizers of Vol( $S_{\mu}$ ) resp. maximizers of Vol( $S_{\mu}$ )\*?

・ロト ・回ト ・ヨト ・ヨト

3

## **Open Problems**

Minimizers of Vol(S<sub>μ</sub>) resp. maximizers of Vol(S<sub>μ</sub>)\*?
 Conjecture: Cross measures.
 Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.

## **Open Problems**

- Minimizers of Vol(S<sub>μ</sub>) resp. maximizers of Vol(S<sub>μ</sub>)\*?
   Conjecture: Cross measures.
   Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.
- ▶ Let µ be an isotropic measure on the Grassmannian Gr<sub>i,n</sub> and define

$$h(\mathcal{C}_i\mu, u) := \int_{\operatorname{\mathsf{Gr}}_{i,n}} \|u|F\| d\mu(F), \quad u \in S^{n-1}$$

イロン イヨン イヨン イヨン

## **Open Problems**

- Minimizers of Vol(S<sub>μ</sub>) resp. maximizers of Vol(S<sub>μ</sub>)\*?
   Conjecture: Cross measures.
   Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.
- ▶ Let µ be an isotropic measure on the Grassmannian Gr<sub>i,n</sub> and define

$$h(\mathcal{C}_i\mu, u) := \int_{\operatorname{\mathsf{Gr}}_{i,n}} \|u|F\| d\mu(F), \quad u \in S^{n-1}.$$

**Remark:** For i = 1 we recover the cosine and for i = n - 1 the sine transform.

소리가 소문가 소문가 소문가

## **Open Problems**

- Minimizers of Vol(S<sub>μ</sub>) resp. maximizers of Vol(S<sub>μ</sub>)\*?
   Conjecture: Cross measures.
   Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.
- ▶ Let µ be an isotropic measure on the Grassmannian Gr<sub>i,n</sub> and define

$$h(\mathcal{C}_i\mu, u) := \int_{\operatorname{\mathsf{Gr}}_{i,n}} \|u|F\| d\mu(F), \quad u \in S^{n-1}.$$

**Remark:** For i = 1 we recover the cosine and for i = n - 1 the sine transform.

Find sharp bounds for  $Vol(C_i\mu)$  resp.  $Vol(C_i^*\mu)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

## **Open Problems**

- Minimizers of Vol(S<sub>μ</sub>) resp. maximizers of Vol(S<sub>μ</sub>)\*?
   Conjecture: Cross measures.
   Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.
- ▶ Let µ be an isotropic measure on the Grassmannian Gr<sub>i,n</sub> and define

$$h(\mathcal{C}_i^{(p)}\mu, u)^p := \int_{\mathsf{Gr}_{i,n}} \|u|F\|^p d\mu(F), \quad u \in S^{n-1}.$$

**Remark:** For i = 1 we recover the cosine and for i = n - 1 the sine transform.

Find sharp bounds for  $Vol(C_i\mu)$  resp.  $Vol(C_i^*\mu)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト



# Thank you for your attention!

G. Maresch and F.E. Schuster The Sine Transform of Isotropic Measures

・ロン ・回と ・ヨン・