The Sine Transform of Isotropic Measures

G. Maresch
joint work with F.E. Schuster

May 16, 2011
Banff International Research Station

The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{C}(\mu)(u)=\int_{S^{n-1}}|u \cdot v| d \mu(v), \quad u \in S^{n-1}
$$

The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{C}(\mu)(u)=\int_{S^{n-1}}\|u \mid v\| d \mu(v), \quad u \in S^{n-1}
$$

The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{C}(\mu)(u)=\int_{S^{n-1}}\|u \mid v\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{C}(\mu)(u)=\int_{S^{n-1}}\|u \mid v\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{C} is a bounded linear operator.

The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{C}(\mu)(u)=\int_{S^{n-1}}\|u \mid v\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{C} is a bounded linear operator.
- \mathcal{C} is a multiplier map.

The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{C}(\mu)(u)=\int_{S^{n-1}}\|u \mid v\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{C} is a bounded linear operator.
- \mathcal{C} is a multiplier map.
- \mathcal{C} is injective on even measures.

The Cosine Transform

The cosine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{C}(\mu)(u)=\int_{S^{n-1}}\|u \mid v\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{C} is a bounded linear operator.
- \mathcal{C} is a multiplier map.
- \mathcal{C} is injective on even measures.
- \mathcal{C} annihilates odd measures.

Zonoids

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{C} \mu(u)$ is the support function of a unique convex body $\mathcal{C}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{C}_{\mu}\right)(u):=\int_{S^{n-1}}|u \cdot v| d \mu(v), \quad u \in S^{n-1}
$$

Zonoids

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{C} \mu(u)$ is the support function of a unique convex body $\mathcal{C}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{C}_{\mu}\right)(u):=\int_{S^{n-1}} h([-v, v], u) d \mu(v), \quad u \in S^{n-1}
$$

Zonoids

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{C} \mu(u)$ is the support function of a unique convex body $\mathcal{C}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{C}_{\mu}\right)(u):=\int_{S^{n-1}} h([-v, v], u) d \mu(v), \quad u \in S^{n-1}
$$

- C_{μ} is centered and origin-symmetric.

Zonoids

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{C} \mu(u)$ is the support function of a unique convex body $\mathcal{C}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{C}_{\mu}\right)(u):=\int_{S^{n-1}} h([-v, v], u) d \mu(v), \quad u \in S^{n-1}
$$

- C_{μ} is centered and origin-symmetric.
- \mathcal{C}_{μ} is a zonoid, i.e. can be approximated by finite Minkowski sums of segments.

Finite dimensional subspaces

Theorem (Bolker 1969; Lewis 1978)
Each n-dimensional subspace F of $L_{1}\left(S^{n-1}\right)$ is isometric to the Banach space $\left(\mathbb{R}^{n},\|\cdot\|_{F}\right)$ whose dual spaces norm is given by

$$
\|x\|_{F}^{*}:=h\left(\mathcal{C}_{\mu}, x\right)=\int_{S^{n-1}}|x \cdot v| d \mu(v)
$$

Finite dimensional subspaces

Theorem (Bolker 1969; Lewis 1978)
Each n-dimensional subspace F of $L_{1}\left(S^{n-1}\right)$ is isometric to the Banach space $\left(\mathbb{R}^{n},\|\cdot\|_{F}\right)$ whose dual spaces norm is given by

$$
\|x\|_{F}^{*}:=h\left(\mathcal{C}_{\mu}, x\right)=\int_{S^{n-1}}|x \cdot v| d \mu(v)
$$

where μ is a measure on S^{n-1} with the following properties

Finite dimensional subspaces

Theorem (Bolker 1969; Lewis 1978)
Each n-dimensional subspace F of $L_{1}\left(S^{n-1}\right)$ is isometric to the Banach space $\left(\mathbb{R}^{n},\|\cdot\|_{F}\right)$ whose dual spaces norm is given by

$$
\|x\|_{F}^{*}:=h\left(\mathcal{C}_{\mu}, x\right)=\int_{S^{n-1}}|x \cdot v| d \mu(v)
$$

where μ is a measure on S^{n-1} with the following properties

- μ is even,

Finite dimensional subspaces

Theorem (Bolker 1969; Lewis 1978)
Each n-dimensional subspace F of $L_{1}\left(S^{n-1}\right)$ is isometric to the Banach space $\left(\mathbb{R}^{n},\|\cdot\|_{F}\right)$ whose dual spaces norm is given by

$$
\|x\|_{F}^{*}:=h\left(\mathcal{C}_{\mu}, x\right)=\int_{S^{n-1}}|x \cdot v| d \mu(v),
$$

where μ is a measure on S^{n-1} with the following properties

- μ is even,
- μ is not concentrated on any great-sphere,

Finite dimensional subspaces

Theorem (Bolker 1969; Lewis 1978)
Each n-dimensional subspace F of $L_{1}\left(S^{n-1}\right)$ is isometric to the Banach space $\left(\mathbb{R}^{n},\|\cdot\|_{F}\right)$ whose dual spaces norm is given by

$$
\|x\|_{F}^{*}:=h\left(\mathcal{C}_{\mu}, x\right)=\int_{S^{n-1}}|x \cdot v| d \mu(v)
$$

where μ is a measure on S^{n-1} with the following properties

- μ is even,
- μ is not concentrated on any great-sphere,
- μ is isotropic.

Finite dimensional subspaces

Example

- $F:=\operatorname{span}\left\{u \mapsto u \cdot x: x \in \mathbb{R}^{n}\right\}=\mathcal{H}_{1}^{n}$. Then the representing measure is suitably normalized spherical Lebesgue measure

$$
\lambda=\frac{1}{\kappa_{n}} d \sigma
$$

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

$$
\text { 1. } \quad \mathrm{Id}_{n}=\int_{S^{n-1}} u \otimes u d \mu(u) \text {. }
$$

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

$$
\text { 1. } \operatorname{ld}_{n}=\int_{S^{n-1}} u \otimes u d \mu(u) \text {. }
$$

2. $\|x\|^{2}=\int_{S^{n-1}}|x \cdot u|^{2} d \mu(u)$ for every $x \in \mathbb{R}^{n}$.

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

$$
\text { 1. } \operatorname{ld}_{n}=\int_{S^{n-1}} u \otimes u d \mu(u) \text {. }
$$

2. $\|x\|^{2}=\int_{S^{n-1}}|x \cdot u|^{2} d \mu(u)$ for every $x \in \mathbb{R}^{n}$.

Basic Properties:

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

$$
\text { 1. } \operatorname{ld}_{n}=\int_{S^{n-1}} u \otimes u d \mu(u) \text {. }
$$

2. $\|x\|^{2}=\int_{S^{n-1}}|x \cdot u|^{2} d \mu(u)$ for every $x \in \mathbb{R}^{n}$.

Basic Properties:

- μ is not concentrated on any great-sphere.

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

$$
\text { 1. } \operatorname{ld}_{n}=\int_{S^{n-1}} u \otimes u d \mu(u) \text {. }
$$

2. $\|x\|^{2}=\int_{S^{n-1}}|x \cdot u|^{2} d \mu(u)$ for every $x \in \mathbb{R}^{n}$.

Basic Properties:

- μ is not concentrated on any great-sphere.
- μ has total mass n.

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

1. $\operatorname{ld}_{n}=\int_{S^{n-1}} u \otimes u d \mu(u)$.
2. $\|x\|^{2}=\int_{S^{n-1}}|x \cdot u|^{2} d \mu(u)$ for every $x \in \mathbb{R}^{n}$.

Basic Properties:

- μ is not concentrated on any great-sphere.
- μ has total mass n.
- The set of all isotropic measures is a convex and weakly closed subset of $\mathcal{M}\left(S^{n-1}\right)$.

Isotropic Measure

A measure μ on S^{n-1} is called isotropic if one of the following equivalent conditions holds:

1. $\operatorname{ld}_{n}=\int_{S^{n-1}} u \otimes u d \mu(u)$.
2. $\|x\|^{2}=\int_{S^{n-1}}|x \cdot u|^{2} d \mu(u)$ for every $x \in \mathbb{R}^{n}$.

Basic Properties:

- μ is not concentrated on any great-sphere.
- μ has total mass n.
- The set of all isotropic measures is a convex and weakly closed subset of $\mathcal{M}\left(S^{n-1}\right)$.
- The set of all discrete isotropic measures is a weakly dense subset of all isotropic measures (due to F. Barthe).

Isotropic Position

The minimal surface area of a convex body $K \subseteq \mathbb{R}^{n}$ is defined as

$$
\partial(K):=\inf \{S(\Phi K): \Phi \in \operatorname{SL}(n)\}
$$

where $S(\cdot)$ is the surface area.

Isotropic Position

The minimal surface area of a convex body $K \subseteq \mathbb{R}^{n}$ is defined as

$$
\partial(K):=\inf \{S(\Phi K): \Phi \in \operatorname{SL}(n)\}
$$

where $S(\cdot)$ is the surface area.

K is in surface isotropic position if $S(K)=\partial(K)$.

Isotropic Position

Theorem (Petty 1961)
Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Then there exists a linear transformation $\Phi \in S L(n)$ such that ΦK is in surface isotropic position. This Φ is unique up to orthogonal transformations.

Isotropic Position

Theorem (Petty 1961)
Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Then there exists a linear transformation $\Phi \in S L(n)$ such that ΦK is in surface isotropic position. This Φ is unique up to orthogonal transformations.

Theorem (Petty 1961)
Let $K \subseteq \mathbb{R}^{n}$ be a convex body. K is in surface isotropic position if and only if the surface area measure μ_{K} is (up to normalization) isotropic.

Volume Inequalities for the Cosine Transform

Theorem (Lutwak, 1990)
Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

Volume Inequalities for the Cosine Transform

Theorem (Lutwak, 1990)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\operatorname{Vol}\left(\mathcal{C}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)^{1 / n}
$$

Volume Inequalities for the Cosine Transform

Theorem (Lutwak, 1990)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\operatorname{Vol}\left(\mathcal{C}_{\lambda}^{*}\right)^{1 / n} \leq \begin{aligned}
& \operatorname{Vol}\left(\mathcal{C}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)^{1 / n} \\
& \operatorname{Vol}\left(\mathcal{C}_{\mu}^{*}\right)^{1 / n}
\end{aligned}
$$

Volume Inequalities for the Cosine Transform

Theorem (Lutwak, 1990)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\operatorname{Vol}\left(\mathcal{C}_{\lambda}^{*}\right)^{1 / n} \leq \begin{aligned}
& \operatorname{Vol}\left(\mathcal{C}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)^{1 / n} \\
& \operatorname{Vol}\left(\mathcal{C}_{\mu}^{*}\right)^{1 / n}
\end{aligned}
$$

Equality is attained exactly for λ.

Volume Inequalities for the Cosine Transform

Theorem (Lutwak, 1990)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\operatorname{Vol}\left(\mathcal{C}_{\lambda}^{*}\right)^{1 / n} \leq \begin{aligned}
& \operatorname{Vol}\left(\mathcal{C}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)^{1 / n} \\
& \operatorname{Vol}\left(\mathcal{C}_{\mu}^{*}\right)^{1 / n}
\end{aligned}
$$

Equality is attained exactly for λ.
Remark:

- Extremizers exist due to compactness.

Volume Inequalities for the Cosine Transform

Proof.

Makes use of the Urysohn inequality:

$$
\left(\frac{\operatorname{Vol}(K)}{\kappa_{n}}\right)^{1 / n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} h(K, u) d u
$$

Where equality only holds if $h(K, u)$ is constant.

Volume Inequalities for the Cosine Transform

Proof.

Makes use of the Urysohn inequality:

$$
\left(\frac{\operatorname{Vol}\left(\mathcal{C}_{\mu}\right)}{\kappa_{n}}\right)^{1 / n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} h\left(\mathcal{C}_{\mu}, u\right) d u
$$

Where equality only holds if $h\left(\mathcal{C}_{\mu}, u\right)$ is constant.

Volume Inequalities for the Cosine Transform

Proof.

Makes use of the Urysohn inequality:

$$
\left(\frac{\operatorname{Vol}\left(\mathcal{C}_{\mu}\right)}{\kappa_{n}}\right)^{1 / n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} \int_{S^{n-1}}|u \cdot v| d \mu(v) d u
$$

Where equality only holds if $h\left(\mathcal{C}_{\mu}, u\right)$ is constant.

Volume Inequalities for the Cosine Transform

Proof.

Makes use of the Urysohn inequality:

$$
\left(\frac{\operatorname{Vol}\left(\mathcal{C}_{\mu}\right)}{\kappa_{n}}\right)^{1 / n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} \int_{S^{n-1}}|u \cdot v| d u d \mu(v)
$$

Where equality only holds if $h\left(\mathcal{C}_{\mu}, u\right)$ is constant.

Volume Inequalities for the Cosine Transform

Proof.

Makes use of the Urysohn inequality:

$$
\left(\frac{\operatorname{Vol}\left(\mathcal{C}_{\mu}\right)}{\kappa_{n}}\right)^{1 / n} \leq \frac{1}{n \kappa_{n}} \int_{S^{n-1}} 2 \kappa_{n-1} d \mu(v)
$$

Where equality only holds if $h\left(\mathcal{C}_{\mu}, u\right)$ is constant.

Volume Inequalities for the Cosine Transform

Proof.

Makes use of the Urysohn inequality:

$$
\left(\frac{\operatorname{Vol}\left(\mathcal{C}_{\mu}\right)}{\kappa_{n}}\right)^{1 / n} \leq \frac{2 \kappa_{n-1}}{\kappa_{n}}
$$

Where equality only holds if $h\left(\mathcal{C}_{\mu}, u\right)$ is constant.

Volume Inequalities for the Cosine Transform

Proof.

Makes use of the Urysohn inequality:

$$
\left(\frac{\operatorname{Vol}\left(\mathcal{C}_{\mu}\right)}{\kappa_{n}}\right)^{1 / n} \leq \frac{2 \kappa_{n-1}}{\kappa_{n}}=\left(\frac{\operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)}{\kappa_{n}}\right)^{1 / n}
$$

Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang)
Let μ be an even isotropic measure on S^{n-1}, then

Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang)
Let μ be an even isotropic measure on S^{n-1}, then

$$
\operatorname{Vol}\left(\mathcal{C}_{\lambda}^{*}\right)^{1 / n} \leq \begin{aligned}
& \operatorname{Vol}\left(\mathcal{C}_{\mu}\right)^{1 / n} \\
& \operatorname{Vol}\left(\mathcal{C}_{\mu}^{*}\right)^{1 / n}
\end{aligned} \leq \operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)^{1 / n}
$$

Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang)
Let μ be an even isotropic measure on S^{n-1}, then

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{C}_{\nu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\mu}\right)^{1 / n} & \leq \operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)^{1 / n} \\
\operatorname{Vol}\left(\mathcal{C}_{\lambda}^{*}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\mu}^{*}\right)^{1 / n} & \leq \operatorname{Vol}\left(\mathcal{C}_{\nu}^{*}\right)^{1 / n}
\end{aligned}
$$

where λ is suitably normalized spherical Lebesgue measure and ν is any cross measure.

Reverse Volume Inequalities for the Cosine Transform

Theorem (Ball; Barthe; Lutwak, Yang, Zhang)
Let μ be an even isotropic measure on S^{n-1}, then

$$
\begin{aligned}
& \operatorname{Vol}\left(\mathcal{C}_{\nu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\lambda}\right)^{1 / n} \\
& \operatorname{Vol}\left(\mathcal{C}_{\lambda}^{*}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\mu}^{*}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{C}_{\nu}^{*}\right)^{1 / n}
\end{aligned}
$$

where λ is suitably normalized spherical Lebesgue measure and ν is any cross measure. Equality is attained exactly for λ resp. ν.

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left(1-|u \cdot v|^{2}\right)^{1 / 2} d \mu(v), \quad u \in S^{n-1}
$$

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left\|u \mid v^{\perp}\right\| d \mu(v), \quad u \in S^{n-1}
$$

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left\|u \mid v^{\perp}\right\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left\|u \mid v^{\perp}\right\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{S} is a bounded linear operator.

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left\|u \mid v^{\perp}\right\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{S} is a bounded linear operator.
- \mathcal{S} is a multiplier map.

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left\|u \mid v^{\perp}\right\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{S} is a bounded linear operator.
- \mathcal{S} is a multiplier map.
- \mathcal{S} is injective on even measures.

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left\|u \mid v^{\perp}\right\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{S} is a bounded linear operator.
- \mathcal{S} is a multiplier map.
- \mathcal{S} is injective on even measures.
- \mathcal{S} annihilates odd measures.

The Sine Transform

The sine transform assigns to each finite (signed) Borel measure μ on S^{n-1} the continuous function

$$
\mathcal{S}(\mu)(u)=\int_{S^{n-1}}\left\|u \mid v^{\perp}\right\| d \mu(v), \quad u \in S^{n-1}
$$

Basic Properties:

- \mathcal{S} is a bounded linear operator.
- \mathcal{S} is a multiplier map.
- \mathcal{S} is injective on even measures.
- \mathcal{S} annihilates odd measures.
- $\mathcal{S} \mu=c_{n} \cdot \mathcal{R}(\mathcal{C} \mu)$, where \mathcal{R} is the Radon transform and c_{n} a constant only depending on the dimension.

Disc Bodies

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{S} \mu(u)$ is the support function of a unique convex body $\mathcal{S}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{S}_{\mu}\right)(u):=\int_{S^{n-1}}\left(1-|u \cdot v|^{2}\right)^{1 / 2} d \mu(v), \quad u \in S^{n-1}
$$

Disc Bodies

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{S} \mu(u)$ is the support function of a unique convex body $\mathcal{S}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{S}_{\mu}\right)(u):=\int_{S^{n-1}} h\left(B_{n} \mid v^{\perp}, u\right) d \mu(v), \quad u \in S^{n-1}
$$

Disc Bodies

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{S} \mu(u)$ is the support function of a unique convex body $\mathcal{S}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{S}_{\mu}\right)(u):=\int_{S^{n-1}} h\left(B_{n} \mid v^{\perp}, u\right) d \mu(v), \quad u \in S^{n-1}
$$

- \mathcal{S}_{μ} is centered and origin-symmetric.

Disc Bodies

If μ is an even (positive) Borel measure on S^{n-1}, then $\mathcal{S} \mu(u)$ is the support function of a unique convex body $\mathcal{S}_{\mu} \subset \mathbb{R}^{n}$:

$$
h\left(\mathcal{S}_{\mu}\right)(u):=\int_{S^{n-1}} h\left(B_{n} \mid v^{\perp}, u\right) d \mu(v), \quad u \in S^{n-1}
$$

- \mathcal{S}_{μ} is centered and origin-symmetric.
- \mathcal{S}_{μ} is a disc body, i.e. can be approximated by finite Minkowski sums of ($n-1$ dimensional) discs. Disc bodies constitute a subclass of zonoids.

Examples

- For a convex body K in \mathbb{R}^{n}, denote its i-th intrinsic volume by $V_{i}(K)$. Then, $h\left(\Pi_{i} K, u\right):=V_{i}\left(K \mid u^{\perp}\right)$ defines the projection body of order i and

Examples

- For a convex body K in \mathbb{R}^{n}, denote its i-th intrinsic volume by $V_{i}(K)$. Then, $h\left(\Pi_{i} K, u\right):=V_{i}\left(K \mid u^{\perp}\right)$ defines the projection body of order i and

$$
\frac{\kappa_{n-2}}{n-1} \mathcal{S} \mu_{K}(u)=h\left(\Pi_{1} \Pi K, u\right)
$$

Examples

- For a convex body K in \mathbb{R}^{n}, denote its i-th intrinsic volume by $V_{i}(K)$. Then, $h\left(\Pi_{i} K, u\right):=V_{i}\left(K \mid u^{\perp}\right)$ defines the projection body of order i and

$$
\frac{\kappa_{n-2}}{n-1} \mathcal{S} \mu_{K}(u)=h\left(\Pi_{1} \Pi K, u\right)
$$

- If K is a convex body in \mathbb{R}^{n} then

$$
\frac{1}{2(n+1)} \mathcal{S} \mu_{K}(u)=\int_{-\infty}^{\infty} \operatorname{VoI}_{n-2}\left(K \cap\left(u^{\perp}+t u\right)\right) d t
$$

where $\mathrm{Vol}_{n-2}(L)$ denotes the $n-2$ dimensional surface area of the $n-1$ dimensional body L. This characterization of \mathcal{S} is due to Schneider.

Volume Inequalities for the Sine Transform

Theorem (M\&S, 2010)
Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

Volume Inequalities for the Sine Transform

Theorem (M\&S, 2010)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n}
$$

Volume Inequalities for the Sine Transform

Theorem (M\&S, 2010)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\begin{aligned}
& \operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n} \\
& \left.\operatorname{Vol}\left(\mathcal{S}_{\lambda}^{*}\right)^{1 / n} \leq \mathcal{S}_{\mu}^{*}\right)^{1 / n}
\end{aligned}
$$

Volume Inequalities for the Sine Transform

Theorem (M\&S, 2010)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\begin{aligned}
& \operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n} \\
& \left.\operatorname{Vol}\left(\mathcal{S}_{\lambda}^{*}\right)^{1 / n} \leq\right)^{1 / n}
\end{aligned}
$$

Equality is attained exactly for λ.

Volume Inequalities for the Sine Transform

Theorem (M\&S, 2010)

Let μ be an even isotropic measure on S^{n-1} and λ suitably normalized Lebesgue measure, then

$$
\begin{aligned}
& \operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n} \\
& \operatorname{Vol}\left(\mathcal{S}_{\lambda}^{*}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\mu}^{*}\right)^{1 / n}
\end{aligned}
$$

Equality is attained exactly for λ.
Remark:

- Extremizers exist due to compactness.

Reverse Volume Inequalities for the Cosine Transform

Theorem (M\&S, 2010)
Let μ be an even isotropic measure on S^{n-1}, then

Reverse Volume Inequalities for the Cosine Transform

Theorem (M\&S, 2010)
Let μ be an even isotropic measure on S^{n-1}, then

$$
\tau_{n}^{1 / n} \operatorname{Vol}\left(\mathcal{S}_{\nu}\right)^{1 / n}<\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n}
$$

Reverse Volume Inequalities for the Cosine Transform

Theorem (M\&S, 2010)
Let μ be an even isotropic measure on S^{n-1}, then

$$
\begin{aligned}
\tau_{n}^{1 / n} \operatorname{Vol}\left(\mathcal{S}_{\nu}\right)^{1 / n}<\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} & \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n} \\
\operatorname{Vol}\left(\mathcal{S}_{\lambda}^{*}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\mu}^{*}\right)^{1 / n} & <\operatorname{Vol}\left(\mathcal{S}_{\nu}^{*}\right)^{1 / n} \eta_{n}^{1 / n}
\end{aligned}
$$

Reverse Volume Inequalities for the Cosine Transform

Theorem (M\&S, 2010)

Let μ be an even isotropic measure on S^{n-1}, then

$$
\begin{aligned}
\tau_{n}^{1 / n} \operatorname{Vol}\left(\mathcal{S}_{\nu}\right)^{1 / n}<\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} & \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n} \\
\operatorname{Vol}\left(\mathcal{S}_{\lambda}^{*}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\mu}^{*}\right)^{1 / n} & <\operatorname{Vol}\left(\mathcal{S}_{\nu}^{*}\right)^{1 / n} \eta_{n}^{1 / n}
\end{aligned}
$$

where λ is suitably normalized spherical Lebesgue measure and ν is any cross measure; Here τ_{n} and η_{n} not only stay bounded but also satisfy

$$
\lim _{n \rightarrow \infty} \tau_{n}=\lim _{n \rightarrow \infty} \eta_{n}=1
$$

Reverse Volume Inequalities for the Cosine Transform

Theorem (M\&S, 2010)

Let μ be an even isotropic measure on S^{n-1}, then

$$
\begin{aligned}
& \tau_{n}^{1 / n} \operatorname{Vol}\left(\mathcal{S}_{\nu}\right)^{1 / n}<\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\lambda}\right)^{1 / n} \\
& \operatorname{Vol}\left(\mathcal{S}_{\lambda}^{*}\right)^{1 / n} \leq \operatorname{Vol}\left(\mathcal{S}_{\mu}^{*}\right)^{1 / n}<\operatorname{Vol}\left(\mathcal{S}_{\nu}^{*}\right)^{1 / n} \eta_{n}^{1 / n}
\end{aligned}
$$

where λ is suitably normalized spherical Lebesgue measure and ν is any cross measure; Here τ_{n} and η_{n} not only stay bounded but also satisfy

$$
\lim _{n \rightarrow \infty} \tau_{n}=\lim _{n \rightarrow \infty} \eta_{n}=1
$$

Remark: These inqualities are asymptotically optimal.

Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let μ be a discrete measure such that $\frac{1}{n-1} \mu$ is isotropic, say

$$
\mu:=c_{1} \delta_{u_{1}}+\ldots+c_{m} \delta_{u_{m}} .
$$

Then for any measurable functions $f_{i}: \mathbb{R}^{n-1} \rightarrow[0, \infty), 1 \leq i \leq m$:

Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let μ be a discrete measure such that $\frac{1}{n-1} \mu$ is isotropic, say

$$
\mu:=c_{1} \delta_{u_{1}}+\ldots+c_{m} \delta_{u_{m}} .
$$

Then for any measurable functions $f_{i}: \mathbb{R}^{n-1} \rightarrow[0, \infty), 1 \leq i \leq m$:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{i}\left(x \mid u_{i}^{\perp}\right)^{c_{i}} d x \leq \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n-1}} f_{i}(x) d x\right)^{c_{i}} \tag{1}
\end{equation*}
$$

Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let μ be a discrete measure such that $\frac{1}{n-1} \mu$ is isotropic, say

$$
\mu:=c_{1} \delta_{u_{1}}+\ldots+c_{m} \delta_{u_{m}} .
$$

Then for any measurable functions $f_{i}: \mathbb{R}^{n-1} \rightarrow[0, \infty), 1 \leq i \leq m$:

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{i}\left(x \mid u_{i}^{\perp}\right)^{c_{i}} d x & \leq \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n-1}} f_{i}(x) d x\right)^{c_{i}} \tag{1}\\
\int_{\mathbb{R}^{n}} \sup _{\substack{x=\sum_{i=1}^{m}=1 \\
\text { with } y_{i} \perp u_{i}}} \prod_{i=1}^{m} f_{i}\left(y_{i}\right)^{c_{i}} d x & \geq \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n-1}} f_{i}(x) d x\right)^{c_{i}} \tag{2}
\end{align*}
$$

Brascamp-Lieb Inequality

Main tool is the Brascamp-Lieb inequality: Let μ be a discrete measure such that $\frac{1}{n-1} \mu$ is isotropic, say

$$
\mu:=c_{1} \delta_{u_{1}}+\ldots+c_{m} \delta_{u_{m}} .
$$

Then for any measurable functions $f_{i}: \mathbb{R}^{n-1} \rightarrow[0, \infty), 1 \leq i \leq m$:

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{i}\left(x \mid u_{i}^{\perp}\right)^{c_{i}} d x & \leq \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n-1}} f_{i}(x) d x\right)^{c_{i}} \tag{1}\\
\int_{\mathbb{R}^{n}} \sup _{\substack{x=\sum_{i=1}^{m}=1 \\
\text { with } c_{i} y_{i} y_{i}}} \prod_{i=1}^{m} f_{i}\left(y_{i}\right)^{c_{i}} d x & \geq \prod_{i=1}^{m}\left(\int_{\mathbb{R}^{n-1}} f_{i}(x) d x\right)^{c_{i}} \tag{2}
\end{align*}
$$

Choose $f_{1}(x)=\ldots=f_{m}(x)=\exp (-\|x\|)$.

Projection and Disc Bodies

If K is a centered concex body with surface area measure μ_{K},

Projection and Disc Bodies

If K is a centered concex body with surface area measure μ_{K}, - $\Pi K:=\mathcal{C} \mu_{K}$ is the Projection Body of K,

Projection and Disc Bodies

If K is a centered concex body with surface area measure μ_{K},

- $\Pi K:=\mathcal{C} \mu_{K}$ is the Projection Body of K,
- $\Psi K:=\mathcal{S} \mu_{K}$ is the Disc Body of K.

Projection and Disc Bodies

If K is a centered concex body with surface area measure μ_{K},

- $\Pi K:=\mathcal{C} \mu_{K}$ is the Projection Body of K,
- $\Psi K:=\mathcal{S} \mu_{K}$ is the Disc Body of K.

Re-interpretation of the previous results:

$$
\begin{aligned}
\text { parallelotopes } \leq \partial(K)^{-1} \operatorname{Vol}(\Pi K)^{1 / n} & \leq \text { ellipsoids } \\
\text { ellipsoids } \leq \partial(K) \operatorname{Vol}\left(\Pi^{*} K\right)^{1 / n} & \leq \text { parallelotopes }
\end{aligned}
$$

Projection and Disc Bodies

If K is a centered concex body with surface area measure μ_{K},

- $\Pi K:=\mathcal{C} \mu_{K}$ is the Projection Body of K,
- $\Psi K:=\mathcal{S} \mu_{K}$ is the Disc Body of K.

Re-interpretation of the previous results:

$$
\begin{aligned}
\text { parallelotopes } \leq \partial(K)^{-1} \operatorname{Vol}(\Pi K)^{1 / n} & \leq \text { ellipsoids } \\
\text { ellipsoids } \leq \partial(K) \operatorname{Vol}\left(\Pi^{*} K\right)^{1 / n} & \leq \text { parallelotopes }
\end{aligned}
$$

If K is in surface isotropic position

$$
\begin{aligned}
\text { cube } \lesssim \partial(K)^{-1} \operatorname{Vol}(\Psi K)^{1 / n} & \leq \text { ball } \\
\text { ball } \leq \partial(K) \operatorname{Vol}\left(\Psi^{*} K\right)^{1 / n} & \lesssim \text { cube }
\end{aligned}
$$

Open Problems

Open Problems

- Minimizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)$ resp. maximizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{*}$?

Open Problems

- Minimizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)$ resp. maximizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{*}$? Conjecture: Cross measures.
Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.

Open Problems

- Minimizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)$ resp. maximizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{*}$? Conjecture: Cross measures.
Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.
- Let μ be an isotropic measure on the Grassmannian $\mathrm{Gr}_{i, n}$ and define

$$
h\left(\mathcal{C}_{i} \mu, u\right):=\int_{\mathrm{Gr}_{i, n}}\|u \mid F\| d \mu(F), \quad u \in S^{n-1}
$$

Open Problems

- Minimizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)$ resp. maximizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{*}$? Conjecture: Cross measures.
Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.
- Let μ be an isotropic measure on the Grassmannian $\mathrm{Gr}_{i, n}$ and define

$$
h\left(\mathcal{C}_{i} \mu, u\right):=\int_{\mathrm{Gr}_{i, n}}\|u \mid F\| d \mu(F), \quad u \in S^{n-1}
$$

Remark: For $i=1$ we recover the cosine and for $i=n-1$ the sine transform.

Open Problems

- Minimizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)$ resp. maximizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{*}$? Conjecture: Cross measures.
Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.
- Let μ be an isotropic measure on the Grassmannian $\mathrm{Gr}_{i, n}$ and define

$$
h\left(\mathcal{C}_{i} \mu, u\right):=\int_{\mathrm{Gr}_{i, n}}\|u \mid F\| d \mu(F), \quad u \in S^{n-1}
$$

Remark: For $i=1$ we recover the cosine and for $i=n-1$ the sine transform.
Find sharp bounds for $\operatorname{Vol}\left(\mathcal{C}_{i} \mu\right)$ resp. $\operatorname{Vol}\left(\mathcal{C}_{i}^{*} \mu\right)$.

Open Problems

- Minimizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)$ resp. maximizers of $\operatorname{Vol}\left(\mathcal{S}_{\mu}\right)^{*}$?

Conjecture: Cross measures.
Possible Approach: Use paths of isotropic measures and displacement convexity of the involved functionals.

- Let μ be an isotropic measure on the Grassmannian $\mathrm{Gr}_{i, n}$ and define

$$
h\left(\mathcal{C}_{i}^{(p)} \mu, u\right)^{p}:=\int_{\mathrm{Gr}_{i, n}}\|u \mid F\|^{p} d \mu(F), \quad u \in S^{n-1}
$$

Remark: For $i=1$ we recover the cosine and for $i=n-1$ the sine transform.
Find sharp bounds for $\operatorname{Vol}\left(\mathcal{C}_{i} \mu\right)$ resp. $\operatorname{Vol}\left(\mathcal{C}_{i}^{*} \mu\right)$.

The End

Thank you for your attention!

