Mechanics of the Lamellar Actomyosin Cytoskeleton

Margaret Gardel

http://squishycell.uchicago.edu/

University of Chicago

Physics Department, James Franck Institute, Institute for Biophysical Dynamics

Mechanics of Cell Adhesion and Migration

Endothelial cell in collagen gel

(B. Fischer, NHLBI)

MG, Ann. Cell Dev Bio, 2010

Distinct Actin Structure and Dynamics Drive Migration

MG, Ann. Cell Dev Bio, 2010

Force transmission in Cell Adhesion and Migration

Actin Cytoskeleton Force Generation & Mechanics

Force transmission in Cell Adhesion and Migration

Gardel JCB 2008, Aratyn-Schaus & Gardel, CB, 2010, Stricker et. al., BJ 2011

Force transmission in Cell Adhesion and Migration

Quantitative predictions of how actomyosin cytoskeleton transmits forces

Diverse Organizations of Lamellar Actomyosin Cytoskeleton

Dynamically regulate contractile phenotype

Actin Paxillin Myosin Light Chain

Blebbistatin Washout Drives Self-Assembly of Lamellar Networks and Bundles

High Resolution Traction Force Microscopy

10-20 μm thick polyacrylamide gel40 nm far red latex spheres

GFP-actin

Cy5 beads

Displacement Field, U

Traction Stress Field, F

Assembly of Contractile Lamella and Traction Forces

Rapid and Slow Phases of Tension Build-Up

Fast Time Scale: Rapid Actin Dynamics

Inverse Force-Velocity Relationship for Lamellar Actin Networks

J. Howard, Mechanics of Motor Proteins

Lamellar mechanics mimics myosin II mechanochemistry

40000 motors working in parallel

J. Howard, Mechanics of Motor Proteins

Lamellar mechanics mimics myosin II mechanochemistry

GFP-Myosin mApple-Actin

~500 pN/µm

- ~5 pN stall force/motor
- ~100 motors/ μ m working in parallel
- ~ 2 puncta/µm
- 8 motors per minifilament

6 minifilaments per puncta

400 μm

Long time scale: Stress Fiber Formation

Order Parameter to Measure Extent of Bundling

Aratyn-Schaus Y, Oakes P & Gardel, MBoC, 2011

Myosin II drives stress fiber formation

GFP-myosin light chain

Myosin band spacing decreases as tension builds

Aratyn-Schaus Y, Oakes P & Gardel, MBoC, 2011

$\alpha\text{-actinin}$ bands form at increased tension

Lamellar Architecture regulates Force Transmission

Myosin-Driven Tension		
0%5		0%───70%──► 100%
Actin Organization	Lamellar Network	Stress Fibers form + thicken
Myosin bands	random	~2 μm → ~1 μm
α-actinin bands	N/A	form + intensify ∼1.5 μm — ► ~1 μm
Dynamics	25 nm/sec → 5 nm/sec	5 nm/sec

Aratyn-Schaus Y, Oakes P & Gardel, MBoC, 2011

Prestress increases the Maxwell Relaxation time of Actomyosin **Networks**

Dorsal Stress Fibers thought to link adhesions to Lamellar Actin

Pellegrin & Mellor, JCS 2007

Stress fiber elongation occurs via mDia1 driven actin polymerization and myosin-dependent retrograde flow

Elongation rate = 5 nm/s

Hotulainen and Lappalainen, JCB 2006

Myosin II – generates force and retrograde
movement, cross-links F-actin $mDia 1 - actin filament nucleator
<math>\alpha$ -actinin – actin crosslinking protein

What are the consequences of inhibiting stress fiber assembly?

Formin and α -actinin required for stress fiber assembly

Eliminating stress fibers results in rapid lamellar actin flow

Actin Flow Vectors

Large Traction Forces Generated in the Absence of Stress Fibers

Tension build up at adhesions occurs in the absence of stress fiber assembly

Lamellar Network

Dorsal Stress Fibers

Traction Forces Retrograde Flow FA lifetime FA Morphology FA Composition ECM Remodeling 1-12 nN 10 nm/s 30 min small 1-12 nN 5 nm/s 50 min large Reduced pY397 FAK/pY 31 Pxn

Impaired formation of fibrillar adhesions

Tension is insufficient to mediate compositional maturation of adhesions

Inhibiting Stress Fiber Assembly Abolishes ECM remodeling

Lamellar Network

Dorsal Stress Fibers

Traction Forces Retrograde Flow FA lifetime FA maturation FN remodeling 1-12 nN 10 nm/s 30 min NO NO 1-12 nN 5 nm/s 50 min YES YES

Summary

- Disordered Actomyosin networks generate large forces over rapid time scales
 - Rate of Force build up is insensitive to substrate stiffness
- Force-velocity relationship of contractile Lamellar Networks mimics myosin-II mechanochemistry
 - In Lamellar Networks, Contractile Elements add in parallel!

Reconstituted actomyosin *bundles* have contractile elements in series

king adhesion plaques to efficient force transmission ctin remodeling

rs do not reflect the extent of

Cell Biology

Yvonne Beckham (Mol. Biology) Venkat Maruthamuthu (Chem E) Patrick Oakes (Physics) Jonathan Stricker (Physics) Steve Winter (MD/PhD) Chris Harland (Physics) – E. Munro Yvonne Aratyn-Schaus (Cell Bio)

In Vitro

Tobias Falzone (Biophysics) – D. Kovar Melanie Norstrom (Biochem) Todd Thoresen (Biochem) Sam Stam (Biophysics) – W. Zhang Patrick McCall (Physics) Michael Murrell (BioE) – D. Kovar

Simulation/Theory

Martin Lenz (Physics) – A. Dinner Moshe Naoz (Physics) – E. Munro Tae Yoon Kim (Mech E) – E. Munro

Colloids Tom Caswell – S. Nagel

Chicago Cytoskeleton Group:

Michael Glotzer Moe Gupta Dave Kovar Ed Munro Ron Rock M. Gardel

Funding: Burroughs Wellcome Career Award, NIH Director's Pioneer Award, Packard Foundation