

Tanya SVITKINA







# **QUASI-SARCOMERIC ORGANIZATION OF STRESS FIBERS**



Verkhovsky et al., 1995

# MYOSIN II IN STRESS FIBERS OF NONMUSCLE CELLS

Myosin II labeled with gold-conjugated antibody

Myosin II filaments in the absence of actin





Verkhovsky et al., 1995

# MYOSIN II IN LAMELLA OF NONMUSCLE CELLS





Verkhovsky et al., 1995

# FOCAL ADHESIONS



Actin + vinculin

# FORCE DEPENDANCE OF FOCAL ADHESION FORMATION



Burridge et al., 1997

# HOW TO INVESTIGATE THE CONTRACTILE SYSTEM ASSEMBLY?



# LAMELLIPODIA DEPEND ON MYOSIN II ACTIVITY

# Control 75 μM 100 μM Image: Description of the second se

**Blebbistatin treatment** 

# Washout of 100 $\mu$ M blebbistatin

1 min

5 min

15 min





Lamellipodia inhibition and recovery



# LAMELLIPODIA DEPEND ON MYOSIN II ACTIVITY (EM)

### Blebbistatin treatment

Control

75 μΜ

100 μM







Washout of 100  $\mu$ M blebbistatin

1 min







15 min



# STRUCTURE OF LAMELLIPODIA AFTER MYOSIN II INHIBITION

Blebbistatin treatment

100 μM

Control 75 μΜ



# FOCAL COMPLEXES DEPEND ON MYOSIN II ACTIVITY



Myosin II motor activity is required for formation of lamellipodia and focal complexes

# **INACTIVE MYOSIN II DISSOCIATES FROM THE CYTOSKELETON**



# MYOSIN II FILAMENTS DISASSEMBLE AFTER BLEBBISTATIN TREATMENT (75 μM)



# MYOSIN II FILAMENTS DISASSEMBLE AFTER BLEBBISTATIN TREATMENT (100 μM)

Myosin II - ImmunoGold

Gelsolin treatment



# SLOW REFORMATION OF MYOSIN II FILAMENTS AFTER BLEBBISTATIN WASHOUT (1 MIN)



# SLOW RECOVERY OF MYOSIN II FILAMENTS AFTER BLEBBISTATIN WASHOUT

Washout of 100  $\mu$ M blebbistatin







# MYOSIN LIGHT CHAIN REMAINS PHOSPHORYLATED AFTER BLEBBISTATIN TREATMENT

### Blebbistatin treatment



When myosin motor activity is inhibited, myosin II bipolar filaments disassemble, despite persisting MRLC phosphorylation

# <u>MYOSIN II POLYMERIZATION MAY BE REGULATED IN TENSION-</u> <u>DEPENDENT MANNER</u>



# LAMELLIPODIA RECOVER SOONER THAN THE CYTOSKELETAL ASSOCIATION OF MYOSIN II



Myosin II promotes formation of lamellipodia and focal complexes before assembling into bipolar filaments

# <u>MYOSIN II POLYMERIZATION MAY BE NEGATIVELY REGULATED IN</u> <u>PROTRUSIONS</u>





Myosin II is double phosphorylated in protrusions, but its polymerization there is inhibited

# MYOSIN II MOVES CENTRIPETALLY AFTER BLEBBISTATIN WASHOUT



## MYOSIN II MOVES CENTRIPETALLY AFTER BLEBBISTATIN WASHOUT

Activated unpolymerized myosin II quickly leaves protrusions in motor activity-dependent manner



# VISUALIZATION OF KEY COMPONENTS OF THE CONTRACTILE SYSTEM



# FOCAL COMPLEXES ARE INITIALLY FORMED UNDER FILOPODIA AND CONCAVE ACTIN ARCS



Blebbistatin washout (1 min)

# FOCAL COMPLEXES ARE INITIALLY FORMED UNDER FILOPODIA AND CONCAVE ACTIN ARCS



Blebbistatin washout (1 min)

# MYOSIN II BEGINS TO ACCUMULATE IN FILOPODIAL ROOTS AND CONCAVE ARCS



F-actin Vinculin Myosin II EM

Blebbistatin washout (5 min)

# ORGANIZATION OF ACTIN, MYOSIN II AND FOCAL ADHESION IN NASCENT STRESS FIBERS



Blebbistatin washout (15 min)

# MYOSIN II FILAMENTS APPEAR IN LAMELLA AND FORM CHAINS AT CONCAVE CELL EDGES



Blebbistatin washout (5 min)

# MYOSIN II FORMS CHAINS, BUT NOT STACKS, IN NASCENT STRESS FIBERS



# ROLES OF MYOSIN II IN ASSEMBLY OF THE CONTRACTILE SYSTEM



# MUTUAL DEPENDENCE OF LAMELLIPODIA AND FOCAL COMPLEXES







# Effect of disrupting α4–MIIA association on cell adhesion and spreading.



Rosado et al. J Cell Sci 2011;124:483-492

