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General Framework

e Supervised learning: Given training data { (x;, y;)i_{ }, i.i.d. ~
unknown P(x,y).

— input x; € R? as predictor;
— outcome y; as class.

e Build a prediction model, or classifier:

— enable us to do prediction.

e Good classifier: accurately predicts the class y for given @
(Good Generalization).



Classification Methods

e Traditional statistical methods

Linear/Quadratic Discriminant Analysis, Nearest Neighbor, Logistic
Regression, etc.

e Machine learning
Margins — SVM (Boser et al., 1992, Vapnik, 1995),
Boosting (Freund & Schapire, 1997),
1-Learning (Shen et al., 2003, Liu & Shen, 2006),
Distance Weighted Discrimination (Marron et al. 2007), etc.



Binary Large-Margin Classifiers

& Regularization

o yc{£1};
Estimate f () with classification rule sign[f(x)] : RY — {£1},
y=+1if f(x) >0andy = —1if f(x) <O.

e Regularization framework

e Regularization term J( f): roughness penalty of f;
Loss [: data fit measure.

e Consider f(x) = wx+b (Nonlinear learning via basis expansion or
kernel learning).



Large-Margin Loss Functions

e The loss [(u) is typically non-increasing in .
— u = y; f(a;): functional margin.

— Correction classification if y; f (x;) > 0.

e The SVM:
— The Hinge Loss: I(f(x;),y;) = [1 — y; f(x;)]+ (Vapnik, 1998;
Wahba, 1998).
— The minimizeris f*(x) = sign(p(x) — 1/2);
p(x) = P(Y =1|X = x) (Lin, 2002).
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Outlier Effects & Robust
Learning

e Unbounded loss [ (e.g. The hinge loss): large loss for outliers; sensitive
to outliers.
e Robust Learning: Reduce the loss for outliers

— Loss Truncation. (Wu and Liu, JASA, 2007; Park and Liu, CJS,
2011)

— Adaptive Weighting.



Optimization Problem for SVM

To get (w, b) for the optimal hyperplane, solve:

1, -
.4 C |
i glwl+C ) &
subject to

where C' > 0 is a tuning parameter.



The dual problem for SVM

minL p () Z ;05 YiY; (i, T5) Z%

1,J=1
subject to: 0<;, <C, 1=1,2,---,n

mn
Z a;y; =0
i—1

e Can be solved by quadratic programming.

e Recoverw: w = Y ., a;y;&;; For given w, b can be solved using
KKT conditions or Linear Programming (LP).

e Kernel Trick: Replace (x;, x ;) by K (x;, ;) and
fl@) = Y, oK (@, @) + b
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Support Vectors

o ;, = 0— vy f(x;) > 1;
not needed in constructing

f(z).

Support vectors:

o0 < o < C —
yi f (i) = 1 (Solve b).

o o, =C— vy f(x;) < 1.
e Quitliers will be SVs!
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Truncation of unbounded losses

e Work for general unbounded losses.

e Truncated hinge loss: Tx(u) = Hi(u) — Hs(u);
Hy(u) = [s — u]; similar for the logistic loss.

e Choice of s is important (especially for multicategory classification).

e — ot L L h ]
s O 3 -3 s O 1 3
z z
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D.C. Algorithm

e Key: D.C. decomposition (Diff. Convex functions).

o Ti(u) = Hi(u) — Hs(u).

ol
e e— ot L L h ]
s O 3 -3 s O 1 3
z z

13



D.C. Algorithm

D.C. Algorithm: The Difference Convex Algorithm for minimizing
J(0) = Juex(O) + Jeaw(©)

1. Initialize ©g.
2. Repeat O, 1 = argming (Jyez (0) + (J.,.(0:),0 — O))
until convergence of ©;.

e The algorithm converges in finite steps (Liu et al., JCGS, 2005).

e Choice of initial values: Use the original classifiers without truncation.

e The set of SVsis a only a SUBSET of the original one!
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Weighted Learning

e Assign weights v, ..., v, for the n training points.
e Bigger (smaller) weights for points close to (far from) the boundary.
e Quitliers far from the boundary receive smaller weights.

e Robustness can be achieved with properly chosen weights.
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Optimization Problem for
Weighted SVM

To get (w, b) for the optimal hyperplane, solve:

2
mm—w +C Vi E;
i 2w §: ¢

subject to

where C' > 0 is a tuning parameter and v; > 0 is the weight for the ¢-th
point.
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The dual problem for Weighted
SVM

minL p () Z ;0 Yy (i, T5) Zozz

zg 1
subject to: 0<a; <Cv;, 1=1,2,---

Z a;y; = 0
i=1



Choice of Weights

e Loss [(u) is non-increasing.

e Define the weight function v (-)

. 1 ifu <0
P (w) :{ 1) /1(—) > 0

e [*(u) is close to the 0-1 loss and enjoys Fisher consistency.
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Adaptive Weighting: One-step
weighting (OWSVM)

e Do not solve the nonconvex loss [*(u) directly.

e Apply the idea of adaptive weighting

Steps:

e Implement standard learning with equal weights and obtain

(@), fl@n)

e Apply one-step weighted learning with weights v; = v(y; f(x;)).
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Adaptive Weighting: Iterative
weighting (IWSVM)

Step 1 (Initialization): Solve standard learning with equal weights.

Step 2 (lteration): At tth iteration, set v,L-(t) = 1 if
s <y; f¢ V) (x;) < 1and 0 otherwise for i = 1,2, -, n. Solve
WSVM with weights vgt)’s to get £ (-).

Step 3 (Convergence): lterate until convergence.
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Figure 1: Plot of the weight functions for the OWSVM and IWSVM
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Connection between DCA and
IWSVM

e IWSVM can be shown to yield a local minimizer of RSVM.

e Both DCA and IWSVM solve the RSVM.

e Theorem: The DCA and IWSVM algorithms are equivalent in terms of
fixed points. Namely, the local solution of the DCA is a fixed point of the

proposed IWSVM algorithm, and vice versa.
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From Binary to Multicategory
o Label: {—1,+1} — {1,2,... k}.

e k-class

— Construct decision function vector f = (f1,..., fx).
(k =2 only one f)

— Classifier: argmax,;_;

.....

e Accuracy
Generalization Error (GE): Err(f) = P(Y # argmax; f;(X)).
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Multicategory Framework

Multiple comparison: g(x,y) = {f,(x) — f;(x), V] # y}. (Liu and

Shen, JASA, 2006)
— Compare class y with rest kK — 1 classes.

- g(x,y) = fy(x) — fa—y(x) when k = 2.

f yields correct classification for (a, y) if g(x,y) > 0r_1, i.e.,
min(g(z, y)) > 0.

Generalized functional margin: min(g(x, y)); reduces to y f () for
binary case withy € {—1,+1}.

Extension can be made via using the generalized functional margin.
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Numerical Examples

e Generate (1, x2) uniformly from the circle
{(x1,22) 1 27 + 23 < 1},

e y = L2 | + 1, where ¥ is the angle between the ray from (0, 0) to
(1, 0) and another ray from (0, 0) to (x1, x2).

e Randomly select some points and flip their labels to the remaining
k — 1 classes with equal probabilities.

e Sizes of training, tuning and testing data are 100, 100 and 10000.

e Choose (' based on the tuning set.
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Figure 2: Classification accuracy comparison for X = 2.
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flipping perc=5%
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Figure 3: Classification accuracy comparison for X = 3.
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Figure 4: Computational time comparison for X = 2.
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Wisconsin Breast Cancer Data

Goal: use a digitized image of a fine needle aspirate of a breast mass
to diagnose the corresponding breast cancer status.

Binary classification: response of diagnosis as either malignant or
benign.

d = 30 and n = 569; training, tuning, and test sets of sizes 150, 150,
and 269.

Three different levels of flipping 0%, 5%, and 10%.

Report the average testing error over the test set across 100 random
repetitions.
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0%

5%

10%

SVM 0.0382(0.0013)
OWSVM  0.0377(0.0013)
IWSVM 0.0381(0.0014)

0.0438(0.0014)
0.0401(0.0016)
0.0377(0.0015)

0.0521(0.0017)
0.0444(0.0018)
0.0413(0.0016)

Table 1: Classification accuracy of the SVM, OWSVM, and IWSVM on the

WDBC data.
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Summary

Propose robust large-margin classifiers: truncated loss functions &
Adaptive weighting.

Weighted learning: one-step weighting and iterative weighting.
Equivalence between DCA and IWSVM.

Numerical examples.
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