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John Tukey

“. . . just which robust/resistant methods you use is
not important – what is important is that you use
some...” John. W. Tukey (1979)
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PART I

BACKGROUND

AND

MOTIVATION
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. . . . . .

SNP

SNPs are the most abundant form (90%) of genetic variability,

SNPs are defined as DNA sequence variations that occur when a
single base (A, C, G or T) in the genome is altered.

Combinations of SNPs are partly responsible for
- disease susceptibility,
- response to illness
- response to medical therapy
- adverse drug reaction
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. . . . . .

SNP Genotyping

The determination of a given person’s base sequence at a specific
SNP site is called SNP genotyping.

Many medium to high throughput genotyping techniques have been
developed and tested in recent years

Affymetrix GeneChips (Kennedy et al., 2003)
Illumina’s bead-array system (Oliphant et al., 2002, Fan et al., 2006)

These are designed to analyze thousands of SNPs simultaneously
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. . . . . .

SNP Genotyping in Clinical Settings

A challenge for the Human Genome Project is to transfer genetic
knowledge to benefits society at large.

Project: to apply SNP-related research to medical and clinical
settings.

Leading SNP genotyping technologies are ”research oriented”
(expensive and relatively slow)

In clinical settings we need genotyping hundreds of SNPs
simultaneously for a patient

The genotyping method should be:

rapid (e.g. couple of hours)
accurate,
robust,
cost effective
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. . . . . .

ScottTebbutt’s Genotyping Approach

Tebbut’s genotyping array chip design (Tebbutt et al., 2004) is based
on a redundant chemistry.

The genotyping technology involves four probes:

classical APEX probe, Left strand
classical APEX probe, Right strand
allele-specific APEX (ASO), Left strand
allele-specific APEX (ASO), Right strand
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PART II

GENOTYPING

MODEL

Ruben Zamar (joint work with Mohua Podder and Will Welch) Department of Statistics, UBC ()Robust Classification December 12, 2011 8 / 38



. . . . . .

Genotyping Data

For any given SNP we have two “expected alleles” (say alleles C and
T, to fix ideas)

From each probe, then, we get two readings:

X = “intensity of allele C”

Y = “intensity of allele T”
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. . . . . .

Genotyping Data

2 4 6 8 10

4
6

8
10

Example of a Typical Case

X

Y
43
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. . . . . .

Genotyping Data (Continued)

We have a total of 4 pairs of variables (a pair from each probe)

Probe Name Variables

ASO-Left X1,Y1

ASO-Right X2,Y2

APEX-Left X3,Y3

APEX-Right X4,Y 4
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. . . . . .

GenotypingData (Continued)
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. . . . . .

GenotypingData (Continued)
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. . . . . .

Data Sets

To build and test the genotyping model, we have two independent
data sets:

CORIEL DATA

32 Coriell DNA samples

SIRS DATA

270 DNA samples

CORIEL DATA: see http://coriell.umdnj.edu/; and

SIRS DATA: samples from systematic inflammatory response
syndrome (SIRS) patients at the ICU at St. Paul’s Hospital.

Each microarray chip has a total of 100 SNPs.
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. . . . . .

Genotyping Algorithm

Classification problem: assign each SNP/sample to one of the three
possible genotypes, using the given 8 input variables

X1,X2,X3,X4,

Y1,Y2,Y3,Y4

→

N Wild (X / X)

N Mutant (Y / Y)

N Hybrid (X / Y)
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. . . . . .

Building a Genotyping Model

Conventional variables selection uses the training data to build a
single (optimal) classifier.

The optimal classifier is then used to call the future test cases.

Our APEX-based genotyping platform, however, is deliberately
redundant

The occasional failure of one or more chemistries is expected

Therefore, occasional outliers are expected in the training and the
future data
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. . . . . .

Our Genotyping Approach

Our approach is to build

4 separate “base classifiers”

for each SNP.

Each base classifier uses data from a single chemistry

ASO-LEFT
ASO-RIGHT
APEX-LEFT
APEX-RIGHT
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. . . . . .

Robust Training

Since the training data is expected to have outliers we use a
robustified version of LDA, which we call RLDA

Sample means and covariance matrices in LDA are replaced by robust
S-estimates of bivariate location and scatter
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. . . . . .

Prediction

At the prediction stage, the base classifiers are ensembled to call
each SNP/sample

We use weights derived from the “confidence” (or lack of)
associated with each base classifier

Confidence (lack of) is assessed (dynamically) for each individual
classifier and for each individual test SNP/sample.
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. . . . . .

Ensemble Using Entropy Weights

Consider the four genotype probabilities distributions and their
corresponding entropies:

Chemistry XX YY XY Entropy

ASO-LEFT p11 p12 p13 e1
ASO-RIGHT p21 p22 p23 e2
APEX-LEFT p31 p32 p33 e3
APEX-RIGHT p41 p42 p43 e4

Ensembled Prob p1 p2 p3
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. . . . . .

Ensemble Using Entropy Weights (continued)

For j = 1, 2, 3 (the three differente genotypes) we set

pj =
p1j (1/e1) + p2j (1/e2) + p3j (1/e3) + p4j (1/e4)

(1/e1) + (1/e2) + (1/e3) + (1/e4)

The SNP/sample genotype is decided based on the ensembled
probabilities (p1, p2, p3)

Chemistries with less entropy are given more weight
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. . . . . .

Genotyping Case 84 - APEX-Right Base Classifier
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. . . . . .

Genotyping Case 84 - APEX-Right Base Classifier

The genotyping results using classical LDA and RLDA are:

Method XX YY XY

LDA 0.000 0.001 0.999

RLDA 0.000 0.0001 0.9999

Similar results are obtained from the ASO-Left.
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. . . . . .

Using the 4 Redundant Chemistries
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. . . . . .

Genotyping Results Using the 4 Chemistries

Method XX YY XY

Case 84 LAD 0.0 0.45 0.55

RLDA 0.0 0.49 0.51

Better, but still giving the wrong genotype.

PROBLEM: ASO-Left and APEX-Right call Case 84 “YY” with
high confidence!

Ruben Zamar (joint work with Mohua Podder and Will Welch) Department of Statistics, UBC ()Robust Classification December 12, 2011 25 / 38



. . . . . .

Genotyping Results Using the 4 Chemistries

Method XX YY XY

Case 84 LAD 0.0 0.45 0.55

RLDA 0.0 0.49 0.51

Better, but still giving the wrong genotype.

PROBLEM: ASO-Left and APEX-Right call Case 84 “YY” with
high confidence!

Ruben Zamar (joint work with Mohua Podder and Will Welch) Department of Statistics, UBC ()Robust Classification December 12, 2011 25 / 38



. . . . . .

Genotyping Results Using the 4 Chemistries

Method XX YY XY

Case 84 LAD 0.0 0.45 0.55

RLDA 0.0 0.49 0.51

Better, but still giving the wrong genotype.

PROBLEM: ASO-Left and APEX-Right call Case 84 “YY” with
high confidence!

Ruben Zamar (joint work with Mohua Podder and Will Welch) Department of Statistics, UBC ()Robust Classification December 12, 2011 25 / 38



. . . . . .

“Outlier-Shy” Classifier

We need an “outlier-shy classifier”

A classifier that shows little confidence when the sample is an outlier
taking as reference the training data.

The ideal “outlier-shy classifier” would assign probability 1/3 to
each of the three genotypes.
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. . . . . .

“Outlier-Shy” Classifier (continued)

Instead of modelling the chemistry output (x , y) as bivariate normal
we use the mixture model

h (x , y | c) = (1− δ) f (x , y | c) + δg (x , y)

Informative readings come from f (x , y | c) which depends on the
true genotype

c = XX ,XY ,YY

Non-informative readings come from g (x , y)

0 < δ < 0.5 represents the probability that (x , y) is informative
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. . . . . .

Posterior Probabilities

For each base classifier the posterior probability of C = c
[c = XX ,XY ,YY ] is given by

P (C = c | x , y) = pc f (x , y | c)
∑c ′∈{XX ,YY ,XY } pc f (x , y | c ′)

=
pc [(1− δ) f (x , y | c) + δg (x , y)]

∑c ′∈{XX ,YY ,XY } pc ′ [ (1− δ) f (x , y | c ′) + δg (x , y)]

pXX , pYY and pXY are the prior probabilities for the genotypes (e.g.
estimated from the training data).
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. . . . . .

Some Remarks
Outlying Test Case

Suppose that (x , y) is an outlier with respect to the training data for
the three possible genotypes

Then (1− δ) f (x , y | c) is much smaller than δg (x , y) for all
c = XX ,XY ,YY

Therefore

P (C = c | x , y) ≈ pc

∑c ′∈{XX ,YY ,XY } pc ′
≈ 1

3

for relatively balanced genotype probabilities.
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. . . . . .

Some Remarks (continued)
Non-Outlying Test Case

Suppose now that (x , y) is not an outlier,

In this case δ should be small enough to not affect the posterior
probability calculations.

On the other hand, δ should be many orders of magnitud larger than
f (x , y | c) for all c when (x , y) is an outlier.
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. . . . . .

Genotyping Case 84 - APEX-Right Base Classifier

The genotyping results using the APEX-Right base classifier with the
Gaussian and the Mixture models:

Method XX YY XY

LDA 0.000 0.001 0.9990

RLDA 0.000 0.0001 0.9999

LDA-Mixture 0.333 0.333 0.333

RLDA-Mixture 0.333 0.333 0.333

Similar results are obtained from the ASO-Left.
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. . . . . .

Genotyping Case 84 - Ensemble of 4 Classifiers

The genotyping results using the ensemble of 4 classifiers, with the
Gaussian and the Mixture models:

Method XX YY XY

LDA 0.000 0.45 0.55

RLDA 0.000 0.49 0.51

LDA-Mixture 0.000 0.60 0.40

RLDA-Mixture 0.000 0.66 0.34
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. . . . . .

PART III

NUMERICAL RESULTS
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. . . . . .

SIRS DATA - Five-Fold Cross Validation
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. . . . . .

Confidence Scores for APEC-Right

Take a closer look at the behavior of each single base classifier

Confidence Score: posterior probabilities for the misclassified
SNP/sample

We give the results from a 5-fold-CV of SIRS data on 100 SNPs for
APEX-Right

The results for the other base classifiers are similar
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. . . . . .

Confidence Scores for APEC-Right
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. . . . . .

Simulation Results

Generated bivariate data with approximately the same level of overlap
and correlation observed in the SIRS dataset.

Training data: added 2% of contamination (data points generated
from an uniform background noise)

Testing data: 20% probability of contamination for each test sample
fed to the single base classifiers (again, data generated from an
uniform background noise)
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