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Delirium superimposed on dementia: defining disease states
and course from longitudinal measurements of a multivariate
index using latent class analysis and hidden Markov chains
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ABSTRACT

Background: The study of mental disorders in the elderly presents substantial challenges due to population
heterogeneity, coexistence of different mental disorders, and diagnostic uncertainty. While reliable tools have
been developed to collect relevant data, new approaches to study design and analysis are needed. We focus
on a new analytic approach.

Methods: Our framework is based on latent class analysis and hidden Markov chains. From repeated
measurements of a multivariate disease index, we extract the notion of underlying state of a patient at a
time point. The course of the disorder is then a sequence of transitions among states. States and transitions
are not observable; however, the probability of being in a state at a time point, and the transition probabilities
from one state to another over time can be estimated.

Results: Data from 444 patients with and without diagnosis of delirium and dementia were available from a
previous study. The Delirium Index was measured at diagnosis, and at 2 and 6 months from diagnosis. Four
latent classes were identified: fairly healthy, moderately ill, clearly sick, and very sick. Dementia and delirium
could not be separated on the basis of these data alone. Indeed, as the probability of delirium increased, so did
the probability of decline of mental functions. Eight most probable courses were identified, including good
and poor stable courses, and courses exhibiting various patterns of improvement.

Conclusion: Latent class analysis and hidden Markov chains offer a promising tool for studying mental disorders
in the elderly. Its use may show its full potential as new data become available.
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Introduction

The study of mental disorders in elderly populations
presents substantial challenges due to population
heterogeneity, frequent coexistence of more than
one disorder in the same patient, and lack of
mutually exclusive definitions of the disorders of
interest. At a particular point in time, the patient
presents a constellation of symptoms and signs,
often conceptualized as the manifestation of an
underlying state of a disorder (e.g. delirium). The
evolution of the patient in time is usually referred to
as course. State and course of a disorder are basic
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clinical concepts, useful in diagnosis, prognosis
and treatment. Data collected on patients with a
particular disorder can be used to understand and
define these concepts as precisely as possible.

A state may also represent the simultaneous
occurrence of more than one disorder (e.g.
patients with concomitant delirium and dementia).
Therefore, one way of conceptualizing the evolution
of such patients is to say that a patient moves
in time through the states of a disorder complex.
This description is particularly useful if one can
identify a finite and preferably small number of
highly probable trajectories, each representing a
typical course of the disorder complex.

In this paper, we consider the situation in which
the available data are in the form of repeated
measurements of a multivariate index taken on
patients at a number of points in time. The values
of the multivariate index represent constellations of
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symptoms and signs. We propose to show that the
statistical methodology known as latent class analysis
can be a powerful tool for abstracting from data
meaningful definitions of the state and course of a
disorder over time. The use of latent classes enables
us to represent a state as a latent class; then, the
complex time evolution of the observed symptoms
and signs (multivariate index) can be represented as
a path through a finite number of latent classes. The
key idea is that states are not observable; however,
we can attach to each patient at each point in time
a probability of being in a particular state. Similarly,
we do not observe the transition from one state to
another, but we can, through latent class analysis,
assign probabilities to each possible transition, and,
hence, to each possible trajectory.

Although latent class analysis has a long history
(Lazarsfeld and Henry, 1968; Goodman, 1974;
McCutcheon, 1987), its use in old age psychiatry
is only beginning to be explored, and then only
when studying the evolution of a univariate index.
Recent examples are the studies by Wilkosza
et al. (2010) and Terrera et al. (2010), both of
which focus on describing cognitive decline in an
elderly population as measured by a univariate
index. The former uses latent class analysis
(LCA), the latter relies on growth mixture models
(GMM), a related technique. In both LCA and
GGM “a given subject may follow a weighted
mixture of several entirely different trajectories.
The weights represent a set of probabilities,
one for each trajectory” (Wilkosza et al.,
2010, p. 282). The focus of this paper is on the
use of latent class analyses of multivariate indices to
describe the evolution of disorders.

To illustrate the proposed approach, we will
concentrate on a concrete and challenging example:
delirium possibly superimposed on dementia in
the same patient. As described in the DSM-IV,
delirium is characterized by acute onset, fluctuating
course and potentially reversible disturbances
in consciousness, orientation, memory, thought,
perception and behavior. Dementia, on the other
hand, is characterized by insidious onset, normal
level of consciousness and a slowly progressive
irreversible decline in mental function. These
disabling mental syndromes commonly coexist
among older people. Between 25% and 75% of
patients with delirium have dementia (Fick et al.,
2002); the presence of dementia increases the risk
of delirium fivefold (Elie et al., 1998). Moreover,
both are probably heterogeneous conditions, each
including several different disease states.

The task of understanding these two conditions,
their underlying disease states and interrelationships
is formidable. Further studies of phenomenology,
epidemiology and prognosis using current meth-

odologies are likely to be of limited value. New
methodologies are needed. These new methods may
include new measures, new models of pathogenesis
(Inouye and Ferrucci, 2006) or novel statistical
approaches such as the one described in this paper.

A well-validated instrument used in delirium
research is the Delirium Index (DI) (McCusker
et al., 2004). The DI was developed to measure
the severity of symptoms of delirium. It consists of
eight ordinal variables (subscales), each with four
symptom levels: absence, low, medium and high.
The subscales are defined as: Inattention, Disor-
ganized thinking, Altered level of consciousness,
Disorientation, Memory Impairment, Perceptual
disturbances, Hyperactivity, Hypoactivity. Clearly,
some of the symptoms assessed in the DI are
common to both delirium and dementia.

The DI has been used both as a multivariate
index and as a univariate score obtained by simply
summing scores of the subscales. In a clinical study
on delirium in which the multivariate DI was used as
the main instrument, Cole et al. (2002) attempted
to discover different forms of delirium (states of the
disorder). Using direct data exploration and cluster
analysis, they identified two forms of delirium:
hypo-alert and hyper-alert.

The problem of defining delirium course was
investigated informally in another study (McCusker
et al., 2004) based on the multivariate DI. The
evolution in time of the DI subscales over a 12-
month period was presented, and it was found that
some of the symptoms were more persistent than
others. Course, however, was not defined formally.
A formal definition of course was developed in
a third study, based on the univariate DI score
(Sylvestre et al., 2006). A patient’s course was
represented by the time curve or trajectory of the
DI score; finding typical courses was formulated
as a problem of clustering trajectories. Using
a combination of feature extraction, principal
component analysis and k-means clustering, these
authors identified five distinct typical courses:
Steady, Fluctuating, Worsening, Slow improvement
and Fast improvement. The authors did not attempt
to work with multivariate DI curves.

The idea of latent classes was absent from the
above studies. Instead, these studies detect (“hard”)
clusters, i.e. groups in data. In general, as a result
of the application of cluster analysis to a particular
dataset, a patient of the dataset belongs to one and
only one of the defined clusters – states or courses in
our case. If a new patient has to be assigned to one
of the clusters in the above analyses, the clustering
framework would only permit assignment of this
new patient to one and only one of the clusters. In
contrast, latent class analysis aims to discover non-
observable classes, to which a patient can be assigned
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(a) Simplified model

(b)Model that takes into account
deathand missingness

(c)Latent trajectory model

Figure 1. Graphical representation of latent class models.

with probabilities estimated from the data. The idea
of non-observable classes is far better suited than
that of clusters to represent the inherent uncertainty
in diagnosis of mental disorders.

In this paper we will apply the proposed latent
class methodology to a real dataset from a study
of delirium conducted at St. Mary’s Hospital, a
McGill University-affiliated hospital in Montreal,
Canada (McCusker et al. 2003). First, we describe
the latent class model used for the analysis of
this dataset, emphasizing the role of the key
parameters on which our approach is based.
Next, we discuss the estimation of the parameters,
outlining the gist of the methodology while avoiding
technicalities. Finally, we present the results and
their interpretation.

Methods

The proposed model and its parameters
To describe disease states and disease course we
propose a statistical model as described by the
graphs of Figure 1. We have adhered to the standard
convention of graphical models: two or more
variables that are not directly joined by an arrow
are assumed to be conditionally independent given
the variables that are joined to them by an arrow
(Agresti, 2002). Also, we followed the convention of
representing latent variables by circles and manifest
variables by squares. Thus, in the case of delirium,
the y’s denote the components of the DI and the
C’s denote the latent class variables representing
the states of delirium. The sequence of groups

of squares denotes repeated measurements of the
multivariate DI, and the sequence of circles below
represents the sequence of disease states at the time
points of the observations. Notice that without the
concept of latent class, the only way to represent the
dynamics of the illness would be to draw a great deal
of arrows joining all y variables, both at each time
point and across time points. In contrast, the model
proposed here seeks to simplify the representation
of the dynamics, by assuming a relatively simple
dynamic at a non-observable level; this level
provides a simple explanation of the complex
evolution of the observable multivariate DI.

A first property of the model apparent from
Figure 1a is that we can reconstruct the joint
probability distribution of all variables – manifest
and latent ones – in terms of a reduced number
of probabilistic quantities. Indeed, in order to
define the model, we need to specify, at each
observation time: (a) the probability distribution
of each manifest variable given the corresponding
latent class, i.e. given the value of the latent class
variable C at the same observation time; (b) the
(marginal) probability distributions of the latent
class variable; and (c) the transition probability from
each latent class at the observation time, to each
latent class at the next observation time.

A second property that can be read directly from
the graph is the conditional independence, at each
observation time, of the DI components, given the
latent class. This is the latent class property in its
classic form (Vermunt, 1997).

A third property represented in the graph is the
“Markov property” for the dynamics of the latent
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class variables: the probability of being in a disease
state at an observation time depends only on the
disease state at the previous observation time. In
view of the Markov property, the model in Figure 1a
is known as a Hidden Markov Chain model
(Rabiner, 1989).

Our model therefore rests on a number of
assumptions, some more natural than others. We
have made them in order to reduce the number of
parameters, without sacrificing the essential features
we wish to describe. The graph itself suggests how
to enlarge the model step by step in case we have
enough data to estimate additional parameters. For
example, one can add arrows linking the manifest
variables, which correspond to the local dependence
assumption in latent class analysis (Hagenaars,
1990); similarly, if we want to allow a longer
“memory” in the dynamics, arrows can be added
joining a latent class variable at time ti-2 to the latent
class variable at ti.

Two further assumptions, not appearing in the
graphs of Figure 1, are homogeneity and stationarity.
By homogeneity we mean that the relationship
between manifest and latent variables does not
change in time; in other words, the conditional
distribution of the manifest variables given the latent
class variable is the same at all observation times.
The homogeneity assumption plays a key role in
developing the description of disease states and
course. The stationarity assumption states that the
probabilities of the transitions from one state to
another during an observation time interval are
constant in time. This assumption facilitates the
study of disease course: it is also important and easy
to test. It should also be noted that the time interval
between T1 and T2 is the double of the time interval
between T0 and T1; this is conveniently addressed
in our framework by taking the transition matrix
between T1 and T2 as the square of the transition
matrix between T0 and T1.

In view of the size of the typical clinical dataset,
it may be useful to reduce further the number of
model parameters. Without going into too much
detail, this can be achieved by introducing some
additional “technical’ assumptions, which can be
translated into logistic regressions to simplify the
relationships between manifest and latent variables.

Our model can be improved to include other
important aspects of clinical reality. In the case of
delirium, two aspects must be considered: (1) a
number of patients die in the course of the study;
and (2) some patients may not be available for
an interview at one or more time points for a
variety of uncontrollable reasons. We may decide
to restrict the analysis to patients who do not die
during the study and are assessed at all time points.
However, if we do this, we are left with a much

reduced dataset; moreover, if the excluded patients
are different from the rest, results may be biased.
In Figure 1b we present a model that includes
death and missingness with minimal assumptions.
The lower part of the graph consists of manifest
variables (squares), with D and Mis denoting,
respectively, the death and missingness indicators.
The additional arrows joining the C’s to the D’s
mean that the probability of dying between two
assessments may be a function of the latent class of
the patient at the time of the last assessment. There
are no arrows joining the latent class variables to the
Mis variables; this implies an assumption of random
missingness.

To summarize, the parameters of the model
in Figure 1a are: (a) the conditional probabilities
of the observed values of the multivariate DI
components given the latent classes (same at all
times under homogeneity); (b) the probabilities
of dying given the latent classes during the
time interval between two consecutive observation
times; (c) the probabilities of loss to follow up
given the latent classes during the time interval
between two consecutive observation times; and (d)
the transition probabilities from latent classes to
latent classes for two consecutive observation times
(same at all times under stationarity). From these
parameters, several quantities of clinical interest
can be easily calculated using elementary results of
probability theory such as Bayes theorem. As we
shall see in the results section, this will permit us
to attach probabilities to disease states and disease
courses from clinical observations.

For completeness, we note that there is an
alternative way of modeling the data. This is
represented by the graph of Figure 1c, which
represents a model that might be termed a “latent
trajectory model”. The graph has two layers of
latent classes, with the lower level consisting of
one latent variable: its latent classes can be directly
interpretable as distinct “courses” of the disorder.
Appealing as this model may seem, it does miss an
important clinical aspect, namely the dependence of
the state at a given time on the state at the previous
time. It is easy, however, to let the data decide which
point of view is preferable, and we have done this,
as briefly mentioned in the results section.

Maximum likelihood inference
In order to analyze actual data and interpret the
results of the analysis, we need to estimate the
parameters of our general model and test various
hypotheses about them. To do this, we have relied
on maximum likelihood inference, in view of its
many desirable properties. This approach can be
conveniently applied to our model and data. In



Latent classes to describe delirium 5

fact, a simple and powerful approach to maximum
likelihood inference based on the EM algorithm
has been developed (Dempster et al., 1977) for a
very broad class of latent class models, including
ours. This approach has been implemented in both
commercial and free software packages. In this work
we have relied on the package LEM (Vermunt,
1997), which is free and in the public domain.
In what follows, we briefly describe methods and
techniques that are included in LEM.

The estimation of a latent class model is
conditional on the number of classes. Usually, this
is unknown. We have therefore to consider the
number of classes as an index of a super-model
family within which we have to select a particular
one. In general, an analyst is often interested in
comparing a large number of models in order to
choose a particular model for in-depth investigation
and for drawing substantive conclusions. So, we can
distinguish a model selection mode and a model
assessment mode of analysis.

When working in model selection mode, the
analyst usually relies on a simple approach; using
a model performance index that can be computed
relatively fast from the data, the best performing
model is chosen. The most commonly used
performance indices are the Akaike Information
Criterion (AIC) (Akaike, 1973) and the Bayesian
Information Criterion (BIC) (Schwarz, 1978; Kass
and Raftery, 1995). Both of them are likelihood
based and are obtained by summing a measure of
lack-of-fit and a measure of model complexity. In
both cases, model fit is measured by the deviance
(-2log-likelihood evaluated at the maximum), while
model complexity is measured by a quantity
proportional to the number of free parameters; the
proportionality coefficient is 2 for the AIC, and the
logarithm of the sample size for the BIC. Thus,
between two models with the same deviance, these
criteria select the one with smaller complexity, in
keeping with the general principle of parsimony
(Ockham’s razor) (Roger, 1976; Vermunt, 1997).

In a model assessment mode, the analyst
examines the fit and the properties of the chosen
model, often comparing it to other slightly more
complex ones, obtained by adding appropriate
arrows to the graph of the chosen model. When
comparing nested models, likelihood ratio tests are
available and can be easily performed. In principle,
all assumptions discussed above may be tested using
likelihood ratio statistics. In practice, however, this
is rarely possible in the latent class context: in fact,
in view of the large number of parameters and
the sparseness of the data, the χ2 approximation
to the null distribution of the test statistics is of
dubious validity. Although one can develop tests
based on the bootstrap, we have preferred here

to stress the exploratory nature of our modeling
effort and to model comparisons based on the BIC.
Thus we consider that a model is acceptable if the
BICs of models obtained by relaxing simplifying
assumptions are larger than the BIC of the model
under assessment (Vermunt, 1997).

A simple method for treating missing data is
to modify the likelihood by integrating over the
missing variables; for example, if some or all of
the DI measurements at a particular point in
time are missing for a patient, the term in the
likelihood corresponding to that patient is modified
by summing over all the possible levels of the
missing measurements. It should be noted that this
is by no means the ideal way to treat missing data,
as the underlying assumption is that the patients
with missing measurements have exactly the same
distribution as those with complete measurements,
which implies that data are missing completely
at random. Unfortunately, however, alternative
approaches are not easily available in popular
packages such as LEM.

Results

The dataset and some preliminary decisions
The dataset, well described elsewhere (McCusker
et al. 2003), was based on an original study of 444
patients conducted at St. Mary’s Hospital, a 400-
bed primary acute care university-affiliated hospital
in Montreal, Canada. Briefly, a study nurse was
responsible for patient screening and enrolment in
the two studies. Only patients aged 65 years and over
who were admitted from the emergency department
to medical services were included. Excluded were
patients with a primary diagnosis of stroke, those
admitted to the oncology unit, those admitted to
the intensive care unit or cardiac monitoring unit
unless they were transferred to a medical ward
within 48 hours of admission, and those who did
not speak English or French. Patients were screened
for delirium at admission using the Confusion
Assessment Method. Patients without delirium at
admission were re-screened daily for the following
week. Non-delirious subjects were selected from
patients screened for delirium but free of this
condition. At regular time intervals, a Research
Assistant (RA) assessed the patient. The main
assessment, from the point of view of this work,
was the measurement of the Delirium Index (DI).
At enrollment, the RA also collected demographic
and clinical data. In particular, the RA measured
dementia using the Informant Questionnaire on
Cognitive Decline in the Elderly (IQCODE), which
was dichotomized with a cutoff at 3.5 (if the score
was greater than 3.5 the patient was considered
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to have dementia). It should be noted that this
definition is not longitudinal, but refers to the
measurement of the IQCODE at enrollment.

We have worked only with DI measurements
taken at enrollment (Time T0) and at two and
six months from enrollment (Time T1 and T2

respectively). Table 1 provides the descriptive
statistics of the DI measurements and of some
demographic and clinical covariates for the 413
patients who had at least two assessments of the
DI. Notice that we have coded the DI levels as 0,
1, 2, 3, (from “absence of symptom” to “high level
of symptom”), thus implicitly treating the DIs as
ordered variables, which we summarize by giving
only the means and SD.

Only 188 of 413 patients have complete data
at all time points; on the other hand, only 124
patients have missing information beyond baseline.
For details, see Table S1 (published as online
supplementary material attached to the electronic
version of this paper at http://www.journals.
cambridge.org/ipg).

Model selection with missing and death
indicators
We applied the latent class/HMC modeling
techniques described above to the subset of 413
patients who were assessed at times T0, T1, and
T2. We included missing and death indicators at
the time T1 and T2, considering also the possibility
that they may be related to other manifest or latent
class variables, as in the model shown in Figure 1b.
Specifically we assumed: (i) stationarity of the
HMC; (ii) homogeneity of the relationship between
manifest and latent variables across times T0, T1

and T2; (iii) linearity in the latent variables; and,
moreover, (iv) we took the transition matrix between
2 and 6 months to be equal to the square of the
transition matrix between enrollment and 2 months.

Table S2 (published as online supplementary
material attached to the electronic version of this
paper at http://www.journals.cambridge.org/ipg)
contains the essential results of our exploration. Our
modeling strategy consisted of four steps. At the first
step we worked with the model of Figure 1b, varying
the number of latent classes. Table S2 shows BIC
values for 2, 3, 4 and 5 latent classes: we concluded
that the model with 4 latent classes seems to be the
best, since it has the smallest BIC.

At the second step we tested a simpler 4
class model, in which the missingness and death
indicators are assumed mutually independent and
independent of all other variables in the model.
At the third step we tested our assumption of
stationarity, homogeneity and linearity of the 4
class model. At the fourth step we examined two

more complex 4 class models, one which assumes
dependence of the missingness indicator on time,
and the other which is represented graphically by
the latent trajectory model of Figure 1c. As Table
S2 shows, all these additional comparisons favor the
model of Figure 1b with 4 latent classes.

Model parameters and interpretation
All parameters and its standard errors of our final
selected model with 4 latent classes are shown in
the Supplementary Appendix (published as online
material attached to the electronic version of this
paper at http://www.journals.cambridge.org/ipg).
Graphical representation of model parameters and
interpretation of the main ones is provided below.

TR A N S I T I O N M AT R I X

As can be seen from Table S3 (supplementary
online material), the transition probabilities have
standard deviations between 0 and 0.07. The latent
classes are ordered by disorder severity: the healthier
patients belong to the lower latent classes, and the
sicker to the higher latent classes. The transition
matrix shows that the majority of patients tend to
remain in the same class during six months from
enrollment. More detailed interpretation of these
parameters is provided below where we describe the
disease course.

IN T E R P R E T I N G L ATE N T C L A S S E S

An interpretation of the latent class model is
obtained from the distribution of the multivariate
DI given the latent classes. This is given in
numerical form in Table S4 (supplementary online
material), and is presented in graphical form in
Figure 2a and 2b. Since both the DI subscales
and the latent classes are ordered, patients in latent
class 1 have less severe DI symptoms than patients
in class 2, etc. Figure 2b exploits the order by
showing the average values of the DI subscales by
latent classes. It should be noted that the Perceptual
Disturbance and Hyperactivity subscales do not
vary substantially across latent classes; hence these
two variables do not help to discriminate among
latent classes. The following descriptions are based
on Figure 2a.

Class 1 comprises fairly healthy patients (probably
no delirium), who have high probability (≥0.68)
of having no problems in focusing attention, in
organizing their thoughts, in orientation and in level
of activity; however, 28% of them experience a low
level of memory problems, and 29% of them have
no memory problems at all.

Class 2 comprises moderately ill patients with
high probability (≥0.80) of no disorganized thinking
and no hyper- and hypoactivity; however, focusing
attention is concentrated between no symptoms and
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Table 1. Descriptive statistics of DI and demographic and clinical covariates, n = 413

T I M E 0: T I M E 1: T I M E 2: COVA R I AT E CAT EG O RY N %
A D MISSION 2 MONTHS 6 MONTHS

N = 413 N = 249 N = 228 Sex Female 257 62.2

DELIRIUM INDEX VARIABLES MEAN STD M EAN STD MEAN STD
male 156 37.8

Age 65–74 51 12.3
DI_1: focusing attention 1.17 0.93 0.73 0.82 0.74 0.94 74–85 174 42.1
DI_2: thinking disorganized 0.82 1.07 0.38 0.8 0.64 1.03 85+ 188 45.5
DI_3: altered level of consciousness 0.35 0.69 0.07 0.39 0.04 0.23 Living

arrangement
prior to
admission

Home, alone 133 32.2
DI_4: disorientation 1.7 1.12 1.31 1.21 1.5 1.23 Home, with spouse 109 26.4
DI_5: memory problem 2.27 0.99 1.96 1.13 2.28 1.03 Home, with family 56 13.6
DI_6: perceptual disturbances 0.31 0.72 0.16 0.53 0.2 0.59 Senior-residence 53 12.8
DI_7: hyperactivity 0.2 0.51 0.03 0.19 0.04 0.18 Foster-home 20 4.8
DI_8: hypoactivity 0.47 0.71 0.17 0.47 0.16 0.38 Nursing-home 42 10.2

Dementia Yes 296 71.7
No 117 28.3

CONTINUOUS C OVA R IAT E N MEAN STD M IN MEDIAN MAX Severity of
illness

Low 60 14.5
MMSE 413 16.65 7.35 0 18 29 Medium 281 68
BARTHEL 413 45.03 29.38 0 44 100 High 72 17.4
IADL 394 6.94 3.76 0 6 14 Charlson

Comorbidity
Index

Low 133 32.2
Medium 166 40.2
High 114 27.6

DI = Delirium Index; MMSE = Mini-Mental State Examination; Barthel = Barthel Index; IADL = instrumental activities of daily living
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(a) Delirium Index (DI) distribution conditional on four latent classes 
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Figure 2. The distribution of the multivariate Delirium Index (DI) given the latent classes: graphical representations.

low symptoms, while disorientation is distributed
almost evenly among severity levels, and memory
problems have a mostly high severity level (59%)
and a medium severity level (24%) (probably low level
of delirium with symptoms of decline of mental function
such as found in dementia).

In Class 3 we find clearly sick patients with high
level of memory problems (85%), medium and high
levels of disorientation (27% and 63% respectively),
low and medium level of focusing attention (27%
and 65% respectively), low or medium levels of
disorganized thinking (31% and 42% respectively),
and no or low level of hypoactivity (61% and 33%
respectively) (probably medium level of delirium with
medium or high decline of mental function).

Finally, in Class 4 we find very sick patients
with high levels of memory problems (95%)
and disorientation (91%), high levels of focusing
attention (93%), high level of disorganized thinking
(88%), and no or low levels of hypoactivity (31%
and 39% respectively) (probably severe form of
delirium with high decline of mental function).

The relationship between delirium latent class
and dementia should also be noted. Using the
IQCODE to define dementia, our model gives the
following percentage of patients with dementia at
baseline: 32.4% in Class 1, 59.0% in Class 2,
72.4% in Class 3 and 84.2% in Class 4. Thus, the
probability of dementia increases with the order of
latent class.
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Focusing attention= Medium;  Disorganized thinking=Medium

Disorientation=High;  Memory problems=High

Disorientation=Low
Memory problems=Medium
Memory problems=Low

6 months
later

2 months
later

state 2

at admission

state 1

state 3

state 4

Course 1(22%): stable good

Course 4 (23%): stable fair

Course 6 (6%): late improvement poor to fair

Course 5 (4%) early improvement poor to fair

Course 7 (12%) : stable poor

Course 8 (4%): stable very poor 

Course 3 (6%): late improvement fair to good

Course 2 (4%) early improvement fair to good

Focusing attention= Medium;  Disorganized thinking=Medium

Disorientation=High;  Memory problems=High
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6 months
later

2 months
later
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at admission

state 1
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Course 1(22%): stable good

Course 4 (23%): stable fair

Course 6 (6%): late improvement poor to fair

Course 5 (4%) early improvement poor to fair

Course 7 (12%) : stable poor

Course 8 (4%): stable very poor 

Course 3 (6%): late improvement fair to good

Course 2 (4%) early improvement fair to good

Figure 3. The eight most probable courses of delirium (probability ≥ 4%).

IN T E R P R E T I N G L ATE N T C O U R S E S

Since the best model is a stationary Hidden
Markov Chain (HMC), the initial state probability
distribution and the transition matrix entirely define
the dynamics of the illness. With the HMC model,
every subject has his individual ‘course’, i.e. his
specific path of the HMC. The estimated values
of the elements of the HMC transition matrix are
shown in the Supplementary Appendix (Table S3).
Figure S1 (supplementary online material) rep-
resents the same information in graphical form.
From a time point to the next, there are 4 × 4 =
16 possible transitions (including the transition
from a state to itself). The diagonal of Table S3
represents the probabilities of remaining in the same
state: these probabilities range from 0.71 to 0.99,
indicating a tendency to the status quo. The upper
diagonal represents transitions from a better to a
worse state; the probabilities range between 0 and
0.03, indicating little tendency to worsening. The
lower diagonal represents “improvement”, and the
probabilities range between 0 and 0.16. On the
whole, there are 4 × 4 × 4 = 64 possible distinct
paths, i.e. latent courses of the illness; however,
most of them are exceedingly rare: for example, 18
latent courses have a probability greater than 0.01,
and the probability of any other of the remaining
courses is less than 0.03; also, only three latent
courses have a probability greater than 0.10, for
a cumulative total of 0.58. Figure 3 presents the
eight most probable latent courses – those with
probabilities ≥ 4%.

PO S T E R I O R C L A S S I F I C AT I O N

At each time point, the model assigns to each
of the 413 patients a probability of belonging to

each latent class, given the patient’s multivariate
DI and death indicator. From this it is possible to
classify each patient to a unique latent class, the one
with the highest posterior probability. Notice that
patients with missing information can be classified
just as easily as those with complete information. In
Table S6 (supplementary online material) we report
the number of patients assigned to each class and at
each time point.

The 12 panels of Figure 4 show the posterior
probabilities of the latent classes for each patient,
as they vary over time and across latent classes.
In each panel patients are ordered from lowest
to highest posterior probabilities of belonging to
the latent class to which they have been assigned.
The posterior latent class probabilities are color
coded: red, yellow, green and blue correspond to
the posterior probability of being in latent classes 1,
2, 3 and 4 respectively. It is apparent that the column
panels corresponding to latent classes 1 and 4 have
one clearly dominant color: this indicates that all
or almost all patients belonging to classes 1 and 4
can be classified with a high level of certainty. By
contrast, uncertainty is higher for some patients in
latent classes 2 and 3.

MO D E L-R E L AT E D FR E QU E N T QU E S T I O N S

In practice, the model can be applied to real
data to answer specific questions. A typical clinical
question is: “what is the probability distribution of
the clinical states of a patient at initial time given
the values of the DI scales at initial time?” As
an example, consider a patient with the following
clinical presentation at initial time:

y(t0)
1 = Medium level of “Focusing attention”

y(t0)
2 = Medium level of “Disorganized thinking”
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Figure 4. Graphical representation of posterior probabilities of latent class.

y(t0)
3 = Medium level of “Altered level of

consciousnesses”
y(t0)

4 = High level of “Disorientation”
y(t0)

5 = High level of “Memory problem”
y(t0)

6 = High level of “Perceptual disturbances”
y(t0)

7 = High level of “Hyperactivity”
y(t0)

8 = High level of “Hypoactivity”.

Then from our model we obtain the conditional
probabilities of being in states 1, 2, 3, 4, given
the above values of the DI scales at t0, namely 0,
0, 0.75, and 0.25 respectively. Thus the patient
is certainly in state 3 or 4 and most probably in
state 3.

At this point one may ask: “what is the probability
distribution of the clinical states of a patient in six
months if, initially, s/he is in state 3? In state 4?” We
find that for patients in state 3 at the initial time,
the (conditional) probabilities of being in states 1,
2, 3, and 4 at 6 months are 0.07, 0.44, 0.44, and
0.05 respectively. Similarly for patients in state 4,
these probabilities are 0.04, 0.21, 0.42, and 0.33
respectively.

Finally we may ask: “What are the most probable
courses of the illness for our patient given the initial
clinical presentation?” For a patient with a clinical
presentation as above, we find that the three most
probable courses are (3,3,3) (pr = 0.32), (3,3,2)
(pr = 0.19), and (3,2,2) (pr = 0.14).

Discussion

In this work, we have presented a novel application
of latent class analysis to a classical clinical problem:
how to define from data the concepts of the state
and course of a disease. We have proposed a general
framework within the graphical model with latent
classes, in which latent classes describe distinct
clinical states while the transitions from one clinical
state to another over time serves as a basis for
defining disease course. We have developed a BIC-
based pragmatic strategy for choosing a model
within the general framework.

Our framework may be especially useful when
studying mental disorders in older people with
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conditions that are imperfectly described by a
constellation of symptoms and signs. Many mental
disorders in old age are of this type. Indeed, mental
health clinicians and researchers have attempted to
develop disease classifications from data for many
years. A well-known result of such a process is
the Diagnostic and Statistical Manual of Mental
Disorders (DSM). We have attempted to provide
a useful tool for work of this type.

Applying this to delirium data, the motivation
of this work, has been performed with some
success. Indeed, the proposed strategy identified
a reasonable model, while providing evidence
in support of its fundamental assumptions of
homogeneity and stationarity and of the technical
assumption of linearity. We found also that our
model is preferable to the radically different
trajectory model of Figure 1c.

This study has four major strengths. The first is
that the four latent classes are interpretable, and the
interpretation seems reasonable and consistent with
general clinical hypotheses. Class 1 corresponds to
the clinical state of a patient who is generally well,
except for low levels of impairment as might be
expected in an elderly population. Class 2 points to
a low level of DI symptoms that are also symptoms
of dementia. Classes 3 and 4 seem to describe
patients with increasingly severe symptoms of both
delirium and dementia. It should be noted that
in an earlier work (Cole et al., 2002), simple data
exploration led to the identification of two delirium
presentations: alert and hypo-alert. Although our
classes do not correspond to these two forms, there
is evidence that hypo-alert patients are concentrated
in Classes 3 and 4, and especially in the latter (three
times more hypo-alert patients in Class 4 than in
Class 3).

The second strength is that the latent
class/hidden Markov chain approach can guide
diagnosis and prognosis. As we have shown in a few
examples in the Results sectionabove, we can indeed
calculate probabilities of initial states and future
courses from measurable clinical indices. In our
opinion, this is preferable to a categorical approach
(e.g. DSM), in which a number of simple rules
uniquely assign a patient to one class corresponding
to a specific illness.

The third strength of our analysis is the inclusion
of patients with incomplete information, which
routine techniques would exclude. Finally, the
fourth strength of the analysis is the use of powerful
graphical representations of the results, which
provide substantial clinical insight.

This work has three potential limitations. First,
the sample size does not permit us to take full
advantage of the model’s flexibility. Although our
delirium dataset is considered large by clinicians

(in fact, these data come from one of the
largest datasets available for studying delirium), the
models we propose have a fairly large number of
parameters. Consequently, it is difficult to separate
the uncertainty due to natural variation from that
attributable to insufficient sample size. This is
apparent, for example, when attempting to classify
patients from the posterior probabilities of the latent
classes.

The second limitation is the absence of
longitudinal data for dementia; indeed, dementia
is assessed only at enrolment and not with the
same level of depth as delirium. Since delirium
and dementia share common symptoms and appear
often together in the same patient, this limitation
is especially serious. In principle, however, it
could be remedied if both illnesses were measured
longitudinally and with scales specifically designed
for a patient assessment that allows a priori that the
two illnesses can coexist.

The third limitation is our handling of missing
data. We have chosen to use the likelihood
integration approach proposed by Vermunt (1997),
mainly because it is simple and readily available
in LEM, the free software package used for our
analysis. We might have used multiple imputation
(MI); however, the presence of latent classes and
the longitudinal nature of the data makes MI non-
trivial both conceptually and computationally.

Our current research aims to overcome some of
these limitations. For instance, we are developing
a fully Bayesian approach to the estimation of our
model parameters which handles missing data while
taking into account the presence of latent classes
and the longitudinal character of our problem. This
proves to be quite complex and computationally
heavy, but it will serve as a standard against which to
compare some pragmatic, computationally lighter
approaches to handling missing data, which we are
also investigating.

Another interesting direction of future work is
to consider models including more than one latent
variable. This would require extending the Hidden
Markov Chain treatment of the time evolution to
include the description of two concurrent disorders
that can be clearly distinguished. The clinical
motivation of this effort is clear: for example, we
could use two correlated latent variables to describe
delirium and dementia simultaneously. However,
as mentioned earlier, this would require collecting
appropriate data not presently available.

Finally, we plan to extend our approach to
allow for the effect of additional covariates on
delirium. How does information about the patient,
such as gender, age, and general health status,
affect the parameters of our model? The graphical
representation of our model suggests simple and
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intuitive ways to introduce the effect of these
variables on the latent classes. Details, however,
require further investigation.

We must add that there are other limitations to
the present findings that cannot be addressed by im-
provements of statistical methodology alone. Some
clinicians may not find our definitions of classes
entirely convincing. For example, to some, the
probability of 68% of no impairment associated with
Class 1, which we have referred to as “high”, may
not appear all that high. Clearly, for a classification
to be useful as a current research tool, these details
should be addressed and definitions should be
arrived at by clinical consensus. We therefore wish to
emphasize that the progress in this work is above all
conceptual. To obtain substantial clinical progress,
this work should be followed by studies in which
main findings can be replicated or incrementally
modified. Further studies, as we have mentioned,
should also attempt to follow longitudinally the
cognitive decline associated with dementia.

In conclusion, we hope that this work may con-
tribute towards the development of statistical tools
that help maximize the ability of geriatric psychiatry
researchers to extract information from clinical
data, and develop empirical classifications for old
age mental disorders and their courses. Tools other
than analytical will, of course, need to be developed,
such as appropriate study designs for collecting data
that appropriately reflect a target population.
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