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Motivation

causality.

Objective: Want to discover regulatory interactions from time-course data.
A suitable framework for infering such mechanisms is that of Granger
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Granger Causality

@ Atime series X is said to Granger-cause Y if it can be shown, usually
through a series of F-tests on lagged values of X (and with lagged
values of Y also known), that those X values provide statistically
significant information about future values of Y.

@ Granger-causality does not imply true causality; it is built on correlations.

@ Recent work extends the framework beyond Gaussian rv’s.
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Network Granger Causality: lllustration

p variables observed over T time points
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Network Granger Causality: lllustration

p variables observed over T time points

n; iid observations at each time point
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Network Granger Causality: Definition

e Xi,...,X, stochastic processes and X' = (Xi,... X’)
e Graphical Granger Model:

T7 . .
e X/ 'is Granger-causal for X[ if A}, # 0.




Network Granger Causality: Definition

X, stochastic processes and X’ = (X|,... ,XI’,)T
e Graphical Granger Model:

XU = AlXT -1 pdxT-d T
° X_/.T*’ is Granger-causal for X/ if A} #0.

e Directed Acyclic Graph (DAG) with (d + 1) x p variables, corresponding
to a VAR model of order d with p variables.
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Network Granger Causality: Definition

e Xi,...,X, stochastic processes and X' = (Xi,... X’)
e Graphical Granger Model:
e X/ 'is Granger-causal for X/ if A}, # 0.

o Directed Acyclic Graph (DAG) with (d+ 1) x p variables, corresponding
to a VAR model of order d with p variables.

e Often d < T, but not known, so d =T — 1 is used, many variables for
large T.
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Previous work on GC in a high dimensional setting

@ The concept of Granger causality has been used in discovering

regulatory mechanisms by Fujita et al (2007) and Mukhopadhyay and
Chatterjee (2007)

@ Penalized model used in Lozano et al. (2009) for grouping effects over
time

@ Penalized model used in Arnold et al. (2007) in a financial application
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NGC and The Truncating Lasso Penalty

To avoid increasing the number of variables, need to estimate the order of the
time series.




NGC and The Truncating Lasso Penalty

To avoid increasing the number of variables, need to estimate the order of the
time series.

2" data at time ¢

d d )4
argminn” || 2,7 =Y. 2703+ A Y W'Y 16/ |w)
6reRp =1 =1 j=1

Wl pt = A lo<rB/(T=0} =

where M is a large constant, and f is the allowed false negative rate (FNR).
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NGC and The Truncating Lasso Penalty

To avoid increasing the number of variables, need to estimate the order of the
time series.

2" data at time ¢

d d P
argminn” || 2,7 =Y. 2703+ A Y W'Y 16/ |w)
6reRp =1 =1 j=1

Wl pt = A lo<rB/(T=0} =

where M is a large constant, and f is the allowed false negative rate (FNR).

We propose the following value of A that controls a version of the false
positive rate (FPR):
Aa)=2n""27"4_
2dp?
where Z; is the (1 —g)-th quantile of the standard normal distribution.
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lllustrative Example
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Properties of the estimator

e Under certain regularity conditions, if the Granger-causal effects decay
over time and vanish, then in high-dimensional sparse settings

(i) the probability of false positives is exponentially small,
(i) the probability of false negatives converges to the user-defined
value 3.

(iii) the order of the time series is correctly estimated with probability
converging to 1 — .
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Asymptotics for the Truncating Lasso Estimator

Theorem

Let s be the total number of true edges in the graphical Granger model and suppose that for some
a>0,p=p(n) =0(n*) and pa,| = O(n°), where sn**~'logn = o(1) as n — . Moreover, suppose
that there exists v > 0 such that for alln € N and alli € V, Var (X,.T\X{; ‘”*‘) > v and there exists
8 >0 and some & > b such that for every i € V and for every j € pa,, |m;| > 6n~(1=5)/2, where m; is
the partial correlation between X; and X; after removing the effect of the remaining variables.
Assume that A = dn~(1=%)/2 for some b < { < & and d > 0, and the initial weights are found using
lasso estimates with a penalty parameter A° that satisfies A° = 0(\/logp/n). Also, for some large

positive number g, let W' = gexp (nl{|AU"~V||o < p*B/(T —1)}) (i.e. M = ge"). Then if true causal
effects diminish over time,

(i) With probability asymptotically larger than 1 — 3, true Granger-causal effects and the order
of the VAR model are correctly determined.

(i) With probability converging to 1, no additional causal effects are included in the model and
the signs of causal effects are correctly estimated.
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Example I: Gene Regulatory Networks of Yeast
d=2

Known Regulatory Network

5 Transcription Factors, 37 genes (p = 42), 8 time points

Alasso

P=0.71, R=0.22, F1=0.34
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Example Il: Gene Network of HeLa Cells
9 genes, 47 time points

d=3

Known Regulatory Network

CNET
P=0.36, R=0.44, F1= 0.4




An Adaptive Thresholding Estimation Strategy

The decay assumption for the truncating lasso plays a crucial role.

What if it is violated?

An alternative strategy is based on adaptive thresholding.




Adaptive Thresholding Algorithm

@ Obtain through the regular lasso, estimates of the adjacency matrices
A(A).

@ Define W' = exp(MI(||A!||o < p*B/(T — 1)).
@ Set A} =AjI(|A;| > T¢").
@ Estimate & — max,{||'||o > p*B/(T 1)}

Guidelines for tuning parameters:
D L=ciok
@ =0l

where Ay = /2log(p) /n.




Asymptotic Properties: Preliminaries

@ Let X be the n x p(T — 1) matrix of past observations

@ Au(m) — mi [1Xv]l5
Inm(m) = mlnv¢07\|v|\0§m "HVH%

>0

@ s = max;|pa;| maximum number of parents for any node
@ ap = min|<<gming<ij<pa,20 A

@ Restricted Eigenvalue Condition: Define

R - %vils
K(s,k)™" = minycy <o M0y, |, <kliv 1y Zav, 5 > O
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Asymptotic Properties: Main Result

Theorem

In a VAR(d) with independent Gaussian noise with variance ¢2, suppose
RE(X) holds with K (s,3) and that 4, > 20+/1+ 62, for some 6 > 0. Also,

assume ay > cA,+/s for some constant ¢ depending on Amin(2s) and K (s, 3)
and further for0 < & < 1, we have

|E| <&p*/(T—1)

then with prob at least 1 — (\/mlogpp®)~! the following hold with thresholding
parameter B < &:

(i) False positive rate < (bs)/(p—s) for some constant b (control of Type-I
error)

(iiy Forany e > 0, False negative rate< € (control of Type-Il error)
(i) Order consistency: d — d.
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Numerical lllustration |
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An Application to T-cell Activation
58 genes, 5 time points, n=44, d ~4—5

Alasso: edges= 96

TAlasso: edges= 101

(a) Adaptive Lasso

(b) Truncating Lasso

¢

Thresholded Lasso
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An Application to T-cell Activation
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NGC with Group Sparsity

Q@ Incorporate grouping structure into the NGC problem
e.g. pathway information

@ The node set Ng is partitioned into G non-overlapping groups 4,...,%;
with |4, | = k, and ko = max <g<c k.

o Nodes from same group have either all zero or all non-zero effect on
other nodes (signs of effects may vary)

Q@ Last condition can be relaxed with the application of a thresholding step
(allows for small misspecifications at the group level)

Sr «Fr «ErE> B

RN Ge




Group NGC estimates

Q@ Fori=1,...,p,

T—1
AT = g min 52T - el
T—1 G
+An Z b4 Z \/]{»gwﬁ,g”A;g”Z
=1 g=1
d =

. At

]SrtnsaTxil{t.A #0,.} (2)
@ 2" : nx p design matrix corresponding to z-th time point
@ wj,: weigths for adaptive version

Q@ ¥: truncating/thresholding factors
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Variants of NGC estimates

@ Regular: W' =1, w;g =1

o Truncating: &' = 1, wfﬁg =1, for some very large A,

G
q”::aqﬂAnI{}%IHM§4%>O}<:G2B/(T——0}Lt;22
f

© Adaptive: w{, = min{1,[|AL,|;'} where A" are the estimates from
Regular GGC.

O Thresholded: Foreveryr=1,....T—1,if j€ 4,,
AZ:AM{

At At
Ai:g Ai:g

L22)
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Group NGC estimation as a convex optimization
problem

@ Foreveryi=1,...,p, regular GGC estimate solves a group lasso

problem
le - Xﬁxpﬁ/;lxl +¢€", g~ H(O,Gzlan)
{L"'?p}:Unglggv ‘gg|:kg
. 1 o
B" = argmin J|IY" = X"B|3+ 2 Y v/kellBell2 (3)
BeRrr 2 =
with Y' = 2,7, X" = [27! ..o 27T, B = vec(A}::(T_l)),p +— (T-1)p,

G+ (T-1)G.




Main Results

@ Norm consistency of regression estimates f3;

@ Directional consistency of the group lasso estimates
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Restricted Eigenvalue Condition for Group Lasso
Estimates

RE condition for Group Lasso (Lounici et al., 2011)

In the regression framework of (3), RE(q, L) is satisfied if there exists a
postitive number ¢rg = ¢re(gq) > 0 which equals

IX"All2
min Vkel|A8[l2 S L ) \/kgl| A%l
JcNG{\fAJHz 3 L

geJe geJ
| <gq

A e R\ {0}
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Norm consistency

¢, consistency for Group Lasso

In the regression framework of (3), suppose (B") is contained in a set of
groups J(B™) with at most q groups and RE(2q,3) holds. Then for any solution
B of (3) with suitably chosen A the following holds with high probability:

‘ - 410 AXgespm ke
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A Sufficient Condition for RE in Group NGC

Raskutti et al. (2010) show that if the sample size is “large enough" and
Amin(X) > 0 then RE holds.

Consider a stationary VAR(d) model with spectral matrix operator

£(8), 6 € [~x,7]. Let £ = cov(X"T). If the minimum eigenvalue u(6) and a
corresponding eigenvector v(0) of f(0) are continuous functions of 6, then
the minimum eigenvalue of X satisfies

-1
Amin(z) > (1 + %Vin + %V(mt) >0

 Vour = mangZlA

where v;,, = max Z Z |A

<pt

ij
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Direction Consistency for Group Lasso Solutions

@ Consider a generic group lasso estimate as in (3). Let S ={1,...,q} ,
without loss of generality, denote the group indices in support(p"), i.e.,

ﬁn:[ﬁlnv"'v ;707"'a0}7 ﬁgn#ongSZ{l,,q}

@ For a vector T € R™\{0} define D(7) = W and D(0) =0

@ D(By) indicates the direction of influence of B; at a group level as it
reflects the relative importance of the influential group members

@ Generalizes the notion of sign consistency
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Direction Consistency for Group Lasso Solutions

@ An estimate " is direction consistent at a rate r, if there exists a
sequence of positive real numbers 5, — 0 such that §, < r, and

P (|ID(B) -

(B2 < 6. VgeS)—>1asnp—>oo
@ Define S”—{]eg

By
Hﬁ”ll

> 9, } - collection of influential group members
within a group ¥, WhICh are detectable with a sample size of n
9 If B" is direction consistent then

P(D(B") = D(B}), Vj €5,

VgeS)—lasn,p— oo
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Directional Consistency in Group NGC

Under a group irrepresentable condition and some other regularity ones, we
have

@ The index set of the groups for which 3; =0 is correctly specified with
high probability

@ Directional consistency holds with high probability
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Selected Numerical Results

Setup:

Nodes: p =120 nodes partitioned into G = 15 groups of size 8 each
Structure of VAR: ¢ =2, T =10

Network strength: 7P = 1680 edges from first two lag
Signal Strength: SNR = 1

(o)

Q

@ Sample Size: n =150

o

o

@ Performance Criteria: FPR, FNR, MCC

[m] = =
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False Positives and False Negatives
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False Negative Rate

FNR
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Matthews Correlation Coefficient
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Sample Output: Adjacency Matrices

TRUE

LASSO

GROUP
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Application to Stock Returns

@ Daily stock prices (P;) of p = 41 firms from G = 4 different
categories (Banking, IT, Energy, Retail)
observed for T =4 days (Sep 21 - Sep 24, 2010) every 5 minutes
from 11 am to 3 pm

@ Daily log returns log(R;) = log(P,/P,—) are calculated to reduce
non-stationarity issues

@ Stocks at different times of the day (n = 48) treated as replicates
for that day

@ Lasso and group lasso based NGC estimators are used to
estimate the network structure of graphical Granger model

@ A chosen by ten-fold cross-validation

Data from http://wrds-web.wharton.upenn.edu/wrds/




Adjacency Matrices
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Estimated Network: Lasso
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Estimated Network: Thresholded Group Lasso
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Concluding Remarks

o Network Granger Causality can be useful for discovering temporal
regulatory mechanisms

@ Grouping structure of variables can be beneficial, especially if
coupled with a thresholding step

@ Need for correctly estimating the lag of the model

@ Truncating (group) lasso performs well, when Granger causal
effects decay over time, at the cost of solving a non-convex
problem

@ Thresholding (group) lasso a worthy alternative
@ Asymptotics of pure time series model (no replicates) challenging
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