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Introduction

General goal: Prove that some tautology requires very large P
proofs, for increasingly more general P.

Famous example: Resolution

Virtually all propositional theorem provers attempt to construct

Resolution proofs.

Theorem [Haken 85] Resolution proofs of the Pigeonhole Prin-

ciple have exponential size.

Next: Extensions of Resolution. . .
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The Sequent Calculus

Lines in a proof: (A1 ∧ · · · ∧An)→ (B1 ∨ · · · ∨Bm)

Sequents: A1, . . . , An → B1, . . . , Bm

Axiom: A→ A

Some inference rules:

NEG-left: From Γ→ A,∆, derive ¬A,Γ→∆.

AND-right: From Γ → A,∆ and Γ → ∧(F ),∆, derive

Γ→ ∧(A,F ),∆.

Cut rule: From Γ, A→∆ and Γ→ A,∆, derive Γ→∆.
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Constant-Depth Frege

Constant-depth Frege: The depth of all formulas is bounded by

some constant d.

Depth 0: Resolution.

Theorem [PBI 93, KPW 95] Constant-depth Frege proofs of the

Pigeonhole Principle have exponential size.

Constant-depth Frege = AC0-Frege.

Next: ACC0[r]-Frege.
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ACC0[r]-Frege

Modular connectives: ⊕br(F ) is true if
∑
A∈F A ≡ b (mod r).

Additional rules:

Mod-left: From A,⊕b−1
r (F ),Γ→∆ and ⊕br(F ),Γ→ A,∆,

derive ⊕br(A,F ),Γ→∆.

4



Idea: Adapt circuit lower bound technique.

AC0 ⊂ ACC0[q] ⊂ ACC0[r], if q is prime and r is divisible by q

and some other prime p. [Håstad 86, Smolensky 87]

Idea: Use circuit lower bound directly.

Example: Cutting planes, interpolation.

Problem: AC0-Frege and all of its extensions probably do not

have the interpolation property. [BDGMT 04]

In fact: No lower bound result known for ACC0[r]-Frege (or any

other extension of AC0-Frege).
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Alternative Extensions of Resolution

Idea: Restrict only cut formulas.

ACC0[r]-Frege ACC0[r]-PK∗ ACC0[r]-PK

AC0-Frege AC0-PK∗ AC0-PK

Resolution

Complete for all tautologies, not just constant-depth formulas.

Conservative extensions of AC0-Frege and ACC0[r]-Frege.

Corollary AC0-PK proofs of PHP have exponential size.
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Theorem ACC0
d[r]-PK∗ proofs of PHP(MOD2) have exponential

size, assuming a plausible circuit complexity conjecture.

ACC0[r]-Frege ACC0[r]-PK∗ ACC0[r]-PK

AC0-Frege AC0-PK∗ AC0-PK

Resolution

Note: Size-s ACC0
d[r]-PK∗ proofs of PHP(MOD2) imply size-s

ACC0
d[r]-Frege∗ proofs of PHP.
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General Strategy

C-PK∗ AC0
d-PK∗ ACC0

d[r]-PK∗

PK∗ proofs with cuts lim-

ited to circuit class C.

C = AC0
d C = ACC0

d

Cut-free PK∗ proofs of S

have exponential size.

S = Statman or PHP

C circuits of subexponen-

tial size cannot approxi-

mate f .

f = MOD2

[Håstad 86]

f = MAJ ?

“Lifted” lower bound: C-PK∗ proofs of S(f) have exp size.
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Main Result

Theorem C-PK∗ proofs of S(f) have exponential size if

C is a set of formulas that is closed with respect to sub-

formulas and restrictions,

f , as a function, is balanced and hard to approximate by

C formulas, and

S has the Statman property of order n.
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Definition S has the Statman property of order n if the following

hold:

S is of the form → Γ where Γ is not empty and consists

of nonempty conjunctions.

Removing from S every occurrence of any of these con-

junctions results in an invalid sequent.

If n ≥ 2, let S′ be obtained from S by replacing a conjunc-

tion ∧(A,F ) by either A or ∧(F ). Then there is a partial

assignment ρ such that S′|ρ has the Statman property of

order n−1, modulo a possible renaming of the variables.

Examples: Statman and PHP.

Theorem If S has the Statman property of order n, then any

cut-free PK∗ proof of S requires size 2n.
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Proof Overview

Suppose that S has the Statman property of order n and suppose

that C and f satisfy the conditions of the theorem.

S has the form → Γ.

Suppose that π is a C-PK∗ proof of → Γ(f).

From the root of π, follow all paths until: an axiom, a sequent

where a formula of Γ(f) is introduced by weakening, or a sequent

where a formula of Γ(f) is introduced by an AND-right rule.

Result: a subtree π′ of π in which all sequents are of the form

Λ→∆,Γ(f) with all the formulas in Λ and ∆ belonging to C.

Goal: Show that little progress is made in π′.
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In Λ→∆,Γ(f), the formulas in Λ and ∆ are side formulas.

An assignment is critical if is satisfies Λ and falsifies ∆.

All assignments are critical for the root sequent → Γ(f).

Critical assignments are preserved as we travel from the root to

the leaves of π′.

If π′ is of size 2n, done.

Otherwise, a 1/2n fraction of all assignments is critical for some

leaf L of π′.

L is of the form Λ→∆,Γ(f).

Goal: Show that L is just as hard to prove as → Γ(f).
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L = Λ→∆,Γ(f) cannot be an axiom.

Suppose that L is derived from L′ and L′′ by an application of

the AND-right rule that introduces a formula of Γ(f).

L′ is of the form Λ→∆,Γ′(f) where Γ′ contains all the formulas

of Γ but with some ∧(A,F ) replaced by either A or ∧(F ).

There is a partial assignment ρ to the variables of → Γ such that

(→ Γ′)|ρ has the Statman property of order n− 1.

Goal: Achieve ρ with a large number of critical assignments to

the variables of L′.
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All the assignments that are critical for L = Λ→∆,Γ(f) are also
critical for L′ = Λ→∆,Γ′(f).

Since f is hard for the side formulas, at least 1/4 of the critical
assignments satisfy f and at least 1/4 falsify f .

Therefore, ρ can be achieved with a large number of critical
assignments to the variables of L′.

There is a partial assignment τ to the variables of L′ that is
consistent with ρ and such that L′|τ = Λ|τ →∆|τ ,Γ′|ρ(f) still has
a large number of critical assignments.

By induction, L′|τ , and therefore L′, requires a proof of size 2n−1.

Same for L′′. Therefore, π has size at least 2n. ut

Missing: Weakening. Contractions. Numbers of critical assign-
ments. Arity of f .
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Lower Bounds

ACC0[r]-Frege ACC0[r]-PK∗ ACC0[r]-PK

AC0-Frege AC0-PK∗ AC0-PK

Resolution

Theorem If f is balanced and hard for ACC0
d[r], then PHP(f)

requires ACC0
d[r]-PK∗ proofs of exponential size.

Theorem PHP(MOD2) requires AC0
d-PK∗ proofs of exponential

size.
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Tree-Like Versus Dag-Like Proofs

ACC0[r]-Frege ACC0[r]-PK∗ ACC0[r]-PK

AC0-Frege AC0-PK∗ AC0-PK

Resolution

Theorem If f is balanced and hard for ACC0
d[r], then Statman(f)

has polynomial-size cut-free PK proofs but requires ACC0
d[r]-PK∗

proofs of exponential size.

Theorem Statman(MOD2) has polynomial-size cut-free PK

proofs but requires AC0
d-PK∗ proofs of exponential size.

Key: Statman has polynomial-size cut-free PK proofs.
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Separation Results

Theorem Statman(MOD2) has polynomial-size ACC0
3[2]-PK∗

proofs but requires AC0
d-PK∗ proofs of exponential size.

Theorem If p is a prime that does not divide r and if f ∈
ACC0[p] is balanced and hard for ACC0

d[r], then Statman(f) has

polynomial-size ACC0[p]-PK∗ proofs but requires ACC0
d[r]-PK∗

proofs of exponential size.

Key: Statman has polynomial-size AC0
1-PK∗ proofs.
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Other Results

Hierarchy theorems for AC0-PK∗ and ACC0[r]-PK∗.

Similar results for TC0-PK∗.

New proof of the non-finite axiomatizability of the theory of

bounded arithmetic I∆0(R).

The hierarchy G∗i of quantified propositional proof systems does

not collapse, assuming a plausible hardness conjecture concern-

ing the polynomial-time hierarchy.
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Summary

ACC0[r]-Frege ACC0[r]-PK∗ ACC0[r]-PK

AC0-Frege AC0-PK∗ AC0-PK

Resolution

Lower bounds.

Separation of tree-like and dag-like.

Separation of various MOD’s.

Hierarchy theorems.
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Some Open Problems

ACC0[r]-Frege ACC0[r]-PK∗ ACC0[r]-PK

AC0-Frege AC0-PK∗ AC0-PK

Resolution

Lower bound for ACC0
d[r]-PK.

Lower bound for ACC0
d[r]-Frege.

Strong hardness result for ACC0[r].

20


