Lifting Lower Bounds for Tree-Like Proofs

Alexis Maciel Clarkson University

Phuong Nguyen University of Montréal

Toniann Pitassi University of Toronto

Introduction

General goal: Prove that some tautology requires very large \mathcal{P} proofs, for increasingly more general \mathcal{P} .

Famous example: Resolution

Virtually all propositional theorem provers attempt to construct Resolution proofs.

Theorem [Haken 85] Resolution proofs of the Pigeonhole Principle have exponential size.

Next: Extensions of Resolution...

The Sequent Calculus

Lines in a proof: $(A_1 \wedge \cdots \wedge A_n) \rightarrow (B_1 \vee \cdots \vee B_m)$

Sequents: $A_1, \ldots, A_n \to B_1, \ldots, B_m$

Axiom: $A \rightarrow A$

Some inference rules:

NEG-left: From $\Gamma \to A, \Delta$, derive $\neg A, \Gamma \to \Delta$.

AND-right: From $\Gamma \to A, \Delta$ and $\Gamma \to \wedge(F), \Delta$, derive $\Gamma \to \wedge(A, F), \Delta$.

Cut rule: From $\Gamma, A \to \Delta$ and $\Gamma \to A, \Delta$, derive $\Gamma \to \Delta$.

Constant-Depth Frege

Constant-depth Frege: The depth of all formulas is bounded by some constant d.

Depth 0: Resolution.

Theorem [PBI 93, KPW 95] Constant-depth Frege proofs of the Pigeonhole Principle have exponential size.

Constant-depth Frege = AC^0 -Frege.

Next: $ACC^0[r]$ -Frege.

$ACC^0[r]$ -Frege

Modular connectives: $\bigoplus_{r=0}^{b} (F)$ is true if $\sum_{A \in F} A \equiv b \pmod{r}$.

Additional rules:

Mod-left: From $A, \oplus_r^{b-1}(F), \Gamma \to \Delta$ and $\oplus_r^b(F), \Gamma \to A, \Delta$, derive $\oplus_r^b(A, F), \Gamma \to \Delta$.

Idea: Adapt circuit lower bound technique.

 $AC^0 \subset ACC^0[q] \subset ACC^0[r]$, if q is prime and r is divisible by q and some other prime p. [Håstad 86, Smolensky 87]

Idea: Use circuit lower bound directly.

Example: Cutting planes, interpolation.

Problem: AC^0 -Frege and all of its extensions probably do not have the interpolation property. [BDGMT 04]

In fact: No lower bound result known for $ACC^0[r]$ -Frege (or any other extension of AC^0 -Frege).

Alternative Extensions of Resolution

Idea: Restrict only cut formulas.

ACC
$$^0[r]$$
-Frege ACC $^0[r]$ -PK * ACC $^0[r]$ -PK * AC 0 -Frege AC 0 -PK * AC 0 -PK * AC 0 -PK

Complete for all tautologies, not just constant-depth formulas.

Conservative extensions of AC^0 -Frege and $ACC^0[r]$ -Frege.

Corollary AC⁰-PK proofs of PHP have exponential size.

Theorem $ACC_d^0[r]$ -PK* proofs of PHP(MOD₂) have exponential size, assuming a plausible circuit complexity conjecture.

ACC
$$^0[r]$$
-Frege ACC $^0[r]$ -PK * ACC $^0[r]$ -PK * ACC 0 -PK * AC 0 -PK * AC 0 -PK * Resolution

Note: Size-s ACC $_d^0[r]$ -PK* proofs of PHP(MOD $_2$) imply size-s ACC $_d^0[r]$ -Frege* proofs of PHP.

General Strategy

C-PK*	$AC^0_d ext{-PK}^*$	$ACC^0_d[r] ext{-}PK^*$
PK* proofs with cuts limited to circuit class \mathcal{C} .	$C = AC_d^0$	$C = ACC_d^0$
Cut-free PK^* proofs of S have exponential size.	S = Statman or PHP	
${\cal C}$ circuits of subexponential size cannot approximate ${\it f}$.	$f = MOD_2$ [Håstad 86]	f = MAJ?

"Lifted" lower bound: $\mathcal{C}\text{-PK}^*$ proofs of S(f) have exp size.

Main Result

Theorem $\mathcal{C}\text{-PK}^*$ proofs of S(f) have exponential size if

 \mathcal{C} is a set of formulas that is closed with respect to subformulas and restrictions,

f, as a function, is balanced and hard to approximate by ${\cal C}$ formulas, and

S has the Statman property of order n.

Definition S has the Statman property of order n if the following hold:

S is of the form $\rightarrow \Gamma$ where Γ is not empty and consists of nonempty conjunctions.

Removing from S every occurrence of any of these conjunctions results in an invalid sequent.

If $n \geq 2$, let S' be obtained from S by replacing a conjunction $\wedge(A, F)$ by either A or $\wedge(F)$. Then there is a partial assignment ρ such that $S'|\rho$ has the Statman property of order n-1, modulo a possible renaming of the variables.

Examples: Statman and PHP.

Theorem If S has the Statman property of order n, then any cut-free PK^* proof of S requires size 2^n .

Proof Overview

Suppose that S has the Statman property of order n and suppose that C and f satisfy the conditions of the theorem.

S has the form $\rightarrow \Gamma$.

Suppose that π is a \mathcal{C} -PK* proof of $\to \Gamma(f)$.

From the root of π , follow all paths until: an axiom, a sequent where a formula of $\Gamma(f)$ is introduced by weakening, or a sequent where a formula of $\Gamma(f)$ is introduced by an AND-right rule.

Result: a subtree π' of π in which all sequents are of the form $\Lambda \to \Delta$, $\Gamma(f)$ with all the formulas in Λ and Δ belonging to \mathcal{C} .

Goal: Show that little progress is made in π' .

In $\Lambda \to \Delta$, $\Gamma(f)$, the formulas in Λ and Δ are side formulas.

An assignment is critical if is satisfies Λ and falsifies Δ .

All assignments are critical for the root sequent $\rightarrow \Gamma(f)$.

Critical assignments are preserved as we travel from the root to the leaves of π' .

If π' is of size 2^n , done.

Otherwise, a $1/2^n$ fraction of all assignments is critical for some leaf L of π' .

L is of the form $\Lambda \to \Delta$, $\Gamma(f)$.

Goal: Show that L is just as hard to prove as $\to \Gamma(f)$.

 $L = \Lambda \to \Delta, \Gamma(f)$ cannot be an axiom.

Suppose that L is derived from L' and L'' by an application of the AND-right rule that introduces a formula of $\Gamma(f)$.

L' is of the form $\Lambda \to \Delta$, $\Gamma'(f)$ where Γ' contains all the formulas of Γ but with some $\Lambda(A,F)$ replaced by either A or $\Lambda(F)$.

There is a partial assignment ρ to the variables of $\to \Gamma$ such that $(\to \Gamma')|_{\rho}$ has the Statman property of order n-1.

Goal: Achieve ρ with a large number of critical assignments to the variables of L'.

All the assignments that are critical for $L = \Lambda \to \Delta$, $\Gamma(f)$ are also critical for $L' = \Lambda \to \Delta$, $\Gamma'(f)$.

Since f is hard for the side formulas, at least 1/4 of the critical assignments satisfy f and at least 1/4 falsify f.

Therefore, ρ can be achieved with a large number of critical assignments to the variables of L'.

There is a partial assignment τ to the variables of L' that is consistent with ρ and such that $L'|_{\tau} = \Lambda|_{\tau} \to \Delta|_{\tau}, \Gamma'|_{\rho}(f)$ still has a large number of critical assignments.

By induction, $L'|_{\tau}$, and therefore L', requires a proof of size 2^{n-1} .

Same for L''. Therefore, π has size at least 2^n .

Missing: Weakening. Contractions. Numbers of critical assignments. Arity of f.

Lower Bounds

$$ACC^{0}[r]$$
-Frege $ACC^{0}[r]$ -PK* $ACC^{0}[r]$ -PK AC^{0} -Frege AC^{0} -PK* AC^{0} -PK

Resolution

Theorem If f is balanced and hard for $ACC_d^0[r]$, then PHP(f) requires $ACC_d^0[r]-PK^*$ proofs of exponential size.

Theorem PHP(MOD₂) requires AC_d^0 -PK* proofs of exponential size.

Tree-Like Versus Dag-Like Proofs

ACC
$$^0[r]$$
-Frege ACC $^0[r]$ -PK * ACC $^0[r]$ -PK * ACC 0 -PK * AC 0 -PK * AC 0 -PK * Resolution

Theorem If f is balanced and hard for $ACC_d^0[r]$, then Statman(f) has polynomial-size cut-free PK proofs but requires $ACC_d^0[r]$ -PK* proofs of exponential size.

Theorem Statman(MOD₂) has polynomial-size cut-free PK proofs but requires AC_d^0 -PK* proofs of exponential size.

Key: Statman has polynomial-size cut-free PK proofs.

Separation Results

Theorem Statman(MOD₂) has polynomial-size $ACC_3^0[2]-PK^*$ proofs but requires $AC_d^0-PK^*$ proofs of exponential size.

Theorem If p is a prime that does not divide r and if $f \in ACC^0[p]$ is balanced and hard for $ACC^0_d[r]$, then $\operatorname{Statman}(f)$ has polynomial-size $ACC^0[p]$ -PK* proofs but requires $ACC^0_d[r]$ -PK* proofs of exponential size.

Key: Statman has polynomial-size AC_1^0 -PK* proofs.

Other Results

Hierarchy theorems for AC^0-PK^* and $ACC^0[r]-PK^*$.

Similar results for TC⁰-PK*.

New proof of the non-finite axiomatizability of the theory of bounded arithmetic $I\Delta_0(R)$.

The hierarchy G_i^* of quantified propositional proof systems does not collapse, assuming a plausible hardness conjecture concerning the polynomial-time hierarchy.

Summary

$$ACC^{0}[r]$$
-Frege $ACC^{0}[r]$ -PK* $ACC^{0}[r]$ -PK

$$AC^0$$
-Frege AC^0 -PK* AC^0 -PK

Resolution

Lower bounds.

Separation of tree-like and dag-like.

Separation of various MOD's.

Hierarchy theorems.

Some Open Problems

$$ACC^{0}[r]$$
-Frege $ACC^{0}[r]$ -PK* $ACC^{0}[r]$ -PK

$$AC^0$$
-Frege AC^0 -PK* AC^0 -PK

Resolution

Lower bound for $ACC_d^0[r]$ -PK.

Lower bound for $ACC_d^0[r]$ -Frege.

Strong hardness result for $ACC^0[r]$.