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Motivations
 is a bounded arithmetic theory whose -definable function correspond to polynomial

time computable functions, the class .
 is a bounded arithmetic theory whose -definable function correspond to functions

computable by polylog-depth polynomial-sized circuit families, the class .
Although not as great maybe as showing , proving a separation of  from  would
imply new lower bounds on the provability of complexity problems. For instance, that 
can't prove  or that  can't the collapse of polynomial hierarchy.
Unfortunately, both these classes of functions and bounded arithmetic theories seem difficult
to separate.
However, if you look at the "prenex" version of  you get a theory whose -consequences
seem a fair bit weaker than , so there seems to be some hope to separate this theory from

.
This talk is about trying to come up with a good way to describe the -consequences of
prenex  that might lead to a separation result.
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First-order Bounded Arithmetic
The bounded arithmetic theories we will be looking at have BASIC axioms like:

for the symbols , , , , ,  length of , , , 
We add to this base theory  induction axioms of the form:

Here  is a term made of compositions of variables and our function symbols and where we
are using the definition , .
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String Manipulation,
Collection/Replacement axioms

Because we have  in the language, it is possible to define as a term , the
function which projects out the th block of  bits out of .
We will also use later that we can define pairing and the function  as a terms.
Besides induction another scheme known as  or :

will also be considered in this talk as it allows us to do a limited amount of quantifier
exchange. Here  is a monotone term derived from .  is a term used to a string of
consisting of concatenating  strings of length .
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Bounded Arithmetic Theories
 (aka ) are the bounded arithmetic formulas whose quantifiers are all of the form 

 or .
For ,  (resp. ) are the closure of the  (resp. ) formulas under conjunctions,
disjunctions,  and  (for ,  and ).
The prenex variant of the  formulas, the -formulas, look like:

where  is an open formula. So we have  alternations, innermost being length-bounded.
A -formula is defined similarly but with the outer quantifier being universal.

 is the theory - .
 is the theory - .
 is the theory - .

Σb
0 Πb

0
(∀x ≤ t )∣∣ ∣∣ (∃x ≤ t )∣∣ ∣∣

i > 0 Σb
i Πb

i Πb
i−1 Σb

i−1
(∃x ≤ t) (∀x ≤ t )∣∣ ∣∣ Πb

i (∀x ≤ t) (∃x ≤ t )∣∣ ∣∣
Σb

i Σ̂ �
i

(∃ ≤ )� (Q ≤ )(Q ≤ )Ax1 t1 xi ti xi+1 ∣∣ti+1 ∣∣

A i + 1
Π̂�

i
Ti

2 BASIC+Σb
i IND

Si
2 BASIC+Σb

i LIND
Ri

2 BASIC+Σb
i LLIND



Prenex Theories
It seems natural to ask if it makes any difference to define , , or  using -
rather than - .
For  and  it makes no difference as the prenex theory can prove  and so can
convert between prenex and non-prenex formulas. For , it is not known.
We denote the prenex version of  by .
We write  for the theories - .
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Definability
Let  be a class of formulas, we say a theory  can -define a function  if there is a -
formula  such that 

and

Ψ T Ψ f Ψ
Af

T ⊢ ∀x∃!y (x, y)Af

ℕ ⊨ ∀x (x, f(x))Af



Recapping + What's Known
As we said earlier, the -definable function of  and  are  (Buss) and  (Allen,
Clote, Takeuti) respectively.
Multifunction algebras for the -definable multifunctions of  and  are known
from Pollett (2000).
That paper also used a Johannsen-style block counting argument to show for  the
multifunction algebra one gets cannot define .
Boughattas and Ressayre (2009) using a model theoretic technique then separated 
from .
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One Possible Separation Approach...
Jerabek (2006) showed  was -convervative over .
For , Pollett (1999) had a result that .
Here the  indicates the bound on induction.
So it was natural to conjecture Jerabek's techniques could be used to show that 

.
The hope would be then that some weaker notion of definability might then be used to
separate  from , and hence separating  from .
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... That doesn't seem to work.
Pollett (2011) shows , again by a block counting argument, can't define .
It is unknown if  can define . Certainly, , which can define all functions in ,
can.
However, if you look take an  induction axiom and prenexify it, it has an outer
existential that is of size  which is too small to be able to express a string that codes
the steps of a computation of the kind of functions  can -define. So it is at least unlikely
that  is conservative under .
Pollett (2011) formulates a messy variant of a comprehension axiom called -

 (will describe in a moment) which when added to  ( - )
suffice to carry out Jerabek's method and give a -conservative subtheory of .
There were earlier  theories for the functions in . For example,  of Clote Takeuti and
RSUV isomorphisms of  of Cook Nguyen. The point here was to be able to carry out a
modified Jerabek's construction. A later hope was that this could be modified to  with the
goal to come up with as simple and breakable an axiomatization of  as possible.
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A New Strategy on  and  versus 
The function algebra for the -definable functions of  consists of initial functions of the
language, the functions  for some term in the language (use -  to
get), closure under composition and under the following kinds of recursion:

To get the -definable functions, , of  switch  to . For , one adds to this
closure under another kind of recursion called .
Expressed as a function algebra it seems hard to do things like diagonalization to separate
these algebras.
So ideally we want to get a normal form for the functions in these classes.
Even if we can't separate the classes, and hence the original theories, the normal form will at
least tell us something about finite axiomatization in the theories.
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Axiomatisations for , , and 

We begin with . To this we add the following  axiom 
 

where  is:

This axiom can be proven in  using - , on the other hand it give us the sharply
bounded -operator for terms.
Next we add for each term  a bounded dependent choice axiom,  

where  is  if we want  or of the form  if we want .
For  you need in addition to add to  another clause to handle .
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Remarks
These are  axioms and can be proven in the theory they correspond to by a
straightforward induction argument.
Let  the formula inside the  in a . Let 
be a function, we say  is -choice defined if 

for some terms  not involving , and for some term .
To show the conservativity result, you need to show the class of - (resp. -)choice
defined functions have the necessary closure properties to carry out a witnessing argument.
This gives that the -definable functions of , ,  are just projections of these kind of
choice strings.
The main difference in the above and my 2011 Archive paper is that there I was working
with open formulas rather than terms. This meant I had to define in an inductive fashion the
open-formulas that would be suitable for the computation of a choice string.
The set-up above looks very promising for diagonalization provided we could come with a
nice universal predicate for choice strings.
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Finite Axiomatizations
Pairing, etc can be defined as terms in our language and using this we can give an encoding
for terms as numbers.
You could imagine adding a parameter  and modify our  so that instead of
having 

we say that after ,  codes a string which computes the operations according to the
term coded by  until we get to what would have been .
Writing this down, one would get a single -formula  which for different
codes  would imply . This gives an alternative proof to Cook-Kolokolova (2003)
that  is finitely axiomatized.
In the case of  and  you get a sequence of formulas  for different values
of  in 
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Conclusion
I conjecture that the theory, which over the base theory has the axiom , is strictly
stronger than the theory with . I.e.,  and  are not finitely axiomatised.
For  these formulas probably correspond to hard problems at various levels of the 
hierarchy, so are likely hard to separate.
The  parameter in  would typically be of the form  and bounds the
intermediate terms occuring in the choice string computation. Since it depends on  we can't
immediately do diagonalization.
However, maybe in  there is some clever way to compress the intermediate steps (as they
are just given by terms) to within some  for fixed ??? I end my talk with that open
problem.
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