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Motivations

a b
J Sé 1s a bounded arithmetic theory whose 2'; -definable function correspond to polynomial
time computable functions, the class /Z7.

J Ré is a bounded arithmetic theory whose ﬁf-definable function correspond to functions
computable by polylog-depth polynomial-sized circuit families, the class ZNVC.

e Although not as great maybe as showing # /2, proving a separation of A’é from Sé would
imply new lower bounds on the provability of complexity problems. For instance, that A’é
can't prove = — or that Aﬂz can't the collapse of polynomial hierarchy.

e Unfortunately, both these classes of functions and bounded arithmetic theories seem difficult
to separate.

ab
e However, if you look at the "prenex" version of Ré you get a theory whose 2, -consequences
seem a fair bit weaker than ZAVC, so there seems to be some hope to separate this theory from
S3.
. . . . . 80
e This talk is about trying to come up with a good way to describe the X; -consequences of
prenex A’é that might lead to a separation result.



First-order Bounded Arithmetic

e The bounded arithmetic theories we will be looking at have BASIC axioms like:

y=<x>y=<JSwx
X+ 38y = Sx+y

for the symbols 0, S, +, -, #y ;= 2 , 1.1 := length of x, —, LﬁJ , <

e We add to this base theory Z” /VD 4 induction axioms of the form:
AO) Avx<14,,[A(x) D A(S(x)] > A(14,,)

Here 7is a term made of compositions of variables and our function symbols and where we
are using the definition Ity = x, 1M, = lld,,_;|.



String Manipulation,
Collection/Replacement axioms

o Because we have “£ in the language, it is possible to define as a term 2, (Z w), the

function which projects out the #h block of & bits out of w.
e We will also use later that we can define pairing and the function BIT(/, w) as a terms.
e Besides induction another scheme known as B84 or REPL,:

(Vx < 1s1)(3y < Ax)A(x, y) > (Aw < bd(F, 5))(Vx S 1SS (4 w) < Ax) AA(x S (x w)

will also be considered in this talk as it allows us to do a limited amount of quantifier
exchange. Here 7 is a monotone term derived from 7 bd(7", ) is a term used to a string of
consisting of concatenating sl strings of length |77 ].



Bounded Arithmetic Theories

o Zé’ (aka I1 /0’ ) are the bounded arithmetic formulas whose quantifiers are all of the form
(Vx < |4)or (3x < 14).

o For 7> 0,X% (resp. I17) are the closure of the I12_, (resp. X%_,) formulas under conjunctions,
disjunctions, (3x < 7) and (V¥ < |4) (for H (Vx < 7 and (Ix < 14)).

e The prenex variant of the Zf-’ formulas, the s ~formulas, look like:

(Fx; < 71) (O S L)(Oxp1 S 12i411)A

where A is an open formula. So we have 7+ [ alternations, innermost being length-bounded.

e A IY -formula is defined similarly but with the outer quantifier being universal.
o 7, is the theory BAS/C+X7-IND.

J" is the theory BAS[C+Zb -LIND.

A” is the theory 5AS/C+25-LL//V0



Prenex Theories

o It seems natural to ask if it makes any difference to define 7, .55, or & using Z L7 IND
rather than X7-2" IND.

e For ]’ and S’ it makes no difference as the prenex theory can prove BBZ and so can
convert between prenex and non-prenex formulas. For R’ , it is not known.

* We denote the dprenex version of A” by A’Z
o We write T for the theories BAS[C+Z L7 IND.



Definability

e Let ¥ be a class of formulas, we say a theory 7Z’can ¥-define a function /fif there is a V-
formula A ssuch that

7'+ Va3alyAqx, y)
and

NE VaAAx Ax))



Recapping + What's Known

e As we said earlier, the b3 ; -definable function of Sé and A’é are (Buss) and AVC (Allen,

Clote, Takeuti) respectively. »
- A] o], {\id ,,
e Multifunction algebras for the 2; -definable multifunctions of £, and 7, () are known

from Pollett (2000).
e That paper also used a Johannsen-style block counting argument to show for 7z = 4 the

multifunction algebra one gets cannot define LgJ :
A1, {lidh
e Boughattas and Ressayre (2009) using a model theoretic technique then separated 7, sl

from .53.



One Possible Separation Approach...

e Jerabek (2006) showed Sé was Zf -convervative over 72 .
o/ ) ) <

e For 7> I, Pollett (1999) had a result that 77 3 < . R
2 vs,, 12

e Here the {27 1) } indicates the bound on induction.
e So it was natural to conjecture Jerabek's techniques could be used to show that
700270y g

2 Tz, 02
e The hope would be then that some weaker notion of definability might then be used to

i) LAl
separate 7‘2)”, " from 7‘2), and hence separating £, from Sé.



... That doesn't seem to work.

by : L
e Pollett (2011) shows ]g , again by a block counting argument, can't define -5 .
]
e [t is unknown if A, can define Lg_l . Certainly, A’é , which can define all functions in ZNVC,

can.
. Ay . . o .
* However, if you look take an 7)? induction axiom and prenexify it, it has an outer
existential that is of size 27" which is too small to be able to express a string that codes
. . . Al 2 . .- .
the steps of a computation of the kind of functions A, can 2, -define. So it is at least unlikely

Ay . A]
that ]g 1s conservative under 4, .
e Pollett (2011) formulates a messy variant of a comprehension axiom called opezz 4, -
COMP (will describe in a moment) which when added to Z/Open (BASICH opern-LIND)

suffice to carry out Jerabek's method and give a b)) ;-conservative subtheory of A’é .

e There were earlier 3 ; theories for the functions in . For example, 7V of Clote Takeuti and
RSUV isomorphisms of VAVC of Cook Nguyen. The point here was to be able to carry out a

A]
modified Jerabek's construction. A later hope was that this could be modified to A2, with the
Y
goal to come up with as simple and breakable an axiomatization of VX, (4, ) as possible.



A]
A New Strategy on /£, and A’é versus é

A A]
e The function algebra for the 2, -definable functions of /£, consists of initial functions of the

language, the functions 47/ < |al47, a, ) = O for some term in the language (use 11 o-LINDto
get), closure under composition and under the following kinds of recursion:

10, x) = (1)
Fln+ 1, x) = mun(/n x, Flnx) (nx)

A, x) = FI\A 7, 1), x)

e To get the s ; -definable functions, /7, of Sg switch || - Ito | - |. For A’é , one adds to this
closure under another kind of recursion called CAZ/V.

o Expressed as a function algebra it seems hard to do things like diagonalization to separate
these algebras.

e Soideally we want to get a normal form for the functions in these classes.

e Even if we can't separate the classes, and hence the original theories, the normal form will at
least tell us something about finite axiomatization in the theories.



A Al ~
Axiomatisations for v, (AR, ), v, ( A’é ), and
v, (53)

e We begin with BAS/C. To this we add the following A/7M/Naxiom
(37 < |lal)LEASTOM:, a)
where LEASTOM i, a) is:
(Vi< )[(i<l|al > BIT(;;a) = 1 A BIT(}, a) = 0) A
(/=ld > (‘v%<] la|)BIT(4, a) = 0)].
e This axiom can be proven in /132 using I o-LLNVD, on the other hand it give us the sharply
bounded z-operator for terms.
e Next we add for each term 7a bounded dependent choice axiom, BDC,

(Aw < bd(d, D))(Vi < AD)[f4(0, w) = min(a, d) A
t>05 B u(i+ 1, w) = min({B (i w), i a b c)—1,d) A

1=0> LEASTOMpP (7 + 1, w), p (5 w))].
A A /‘]
where Zis 1.d if we want V.2, (55 ) or of the form I111% if we want VX, (&, ).
e ForvX i ( /\’é ) you need in addition to add to £2C s, another clause to handle CAV.



Remarks

e These are V3 ; axioms and can be proven in the theory they correspond to by a
straightforward induction argument.

o Let ChoiceStro(w, a, b, ¢, &) the formula inside the (Iw < bd(d, b)) in a BDCy,. Let Ax, 2)
be a function, we say A, z) is Z~choice defined if

A% 2) =ye (3w =< bd(2Y, 9)[ ChoiceStro(w, x, 12,2 ) A OUTYw, % 2) = y]

for some terms 7 s not involving w, and for some term OU7 .
e To show the conservativity result, you need to show the class of | - I1%- (resp. | - I-)choice
defined functions have the necessary closure properties to carry out a witnessing argument.

e This gives that the b ;-definable functions of AA’é , A’é , Sé are just projections of these kind of
choice strings.

e The main difference in the above and my 2011 Archive paper is that there I was working
with open formulas rather than terms. This meant I had to define in an inductive fashion the
open-formulas that would be suitable for the computation of a choice string.

e The set-up above looks very promising for diagonalization provided we could come with a
nice universal predicate for choice strings.



Finite Axiomatizations

e Pairing, etc can be defined as terms in our language and using this we can give an encoding
for terms as numbers.

¢ You could imagine adding a parameter ¢ and modify our C/oiceStr, so that instead of
having

Pai+ 1, w) = min({p 407, w), , a, b, c);l, d)

we say that after 4 4 (7 w), w codes a string which computes the operations according to the
term coded by e, until we get to what would have been 4 (7 + 1, w).

e Writing this down, one would get a single s ;-formula A e,, a, b, ¢, d) which for different
codes e, would imply BDCi ;4 ,. This gives an alternative proof to Cook-Kolokolova (2003)
that V.2 1 (85 ) is finitely axiomatized.

¢ In the case of /132 and A’é you get a sequence of formulas (e, a, b, ¢, &) for different values

of £in
- %,



Conclusion

e [ conjecture that the theory, which over the base theory has the axiom ¢/, is strictly

stronger than the theory with /. 1e., \2) 1 ( /\A’; )and V2 1 ( Ré ) are not finitely axiomatised.

e For A’é these formulas probably correspond to hard problems at various levels of the VC¥
hierarchy, so are likely hard to separate.

e The Zparameter in /;(¢,, a, b, ¢, &) would typically be of the form 2" and bounds the
intermediate terms occuring in the choice string computation. Since it depends on ¢ we can't
immediately do diagonalization.

e However, maybe in /132 there is some clever way to compress the intermediate steps (as they
are just given by terms) to within some 2" for fixed 222 1 end my talk with that open
problem.



