On the Finite Axiomatizability of Prenex R_{2}^{l}

Chris Pollett

Banff, Canada
Oct, 2011

Motivations

- S_{2}^{l} is a bounded arithmetic theory whose $\hat{\Sigma}_{1}^{b}$-definable function correspond to polynomial time computable functions, the class $F P$.
- R_{2}^{l} is a bounded arithmetic theory whose $\hat{\Sigma}_{1}^{b}$-definable function correspond to functions computable by polylog-depth polynomial-sized circuit families, the class FNC.
- Although not as great maybe as showing $\neq P$, proving a separation of R_{2}^{l} from S_{2}^{l} would imply new lower bounds on the provability of complexity problems. For instance, that R_{2}^{l} can't prove $=-$ or that R_{2}^{l} can't the collapse of polynomial hierarchy.
- Unfortunately, both these classes of functions and bounded arithmetic theories seem difficult to separate.
- However, if you look at the "prenex" version of R_{2}^{l} you get a theory whose $\hat{\Sigma}_{1}^{b}$-consequences seem a fair bit weaker than $F N C$, so there seems to be some hope to separate this theory from S_{2}^{l}.
- This talk is about trying to come up with a good way to describe the $\hat{\Sigma}_{1}^{b}$-consequences of prenex R_{2}^{l} that might lead to a separation result.

First-order Bounded Arithmetic

- The bounded arithmetic theories we will be looking at have BASIC axioms like:

$$
\begin{gathered}
y \leq x \supset y \leq S(x) \\
x+S y=S(x+y)
\end{gathered}
$$

for the symbols $0, S,+, \cdot, x \# y:=2^{|x||y|},|x|:=$ length of $x,-, \mathrm{L}_{\frac{x}{2^{i}}} \mathrm{~J}, \leq$

- We add to this base theory $L^{m} I N D_{A}$ induction axioms of the form:

$$
A(0) \wedge \forall x<\mid A_{m}[A(x) \supset A(S(x))] \supset A\left(\mid A_{m}\right)
$$

Here t is a term made of compositions of variables and our function symbols and where we are using the definition $|x|_{0}=x,|x|_{m}=\left||x|_{m-1}\right|$.

String Manipulation, Collection/Replacement axioms

- Because we have $\left\lfloor\frac{x}{2^{i}}\right\rfloor$ in the language, it is possible to define as a term $\beta_{a}(i, w)$, the function which projects out the λ th block of a bits out of w.
- We will also use later that we can define pairing and the function $\operatorname{BIT}(j, w)$ as a terms.
- Besides induction another scheme known as $B B_{A}$ or $R E P L_{A}$:
$(\forall x \leq|s|)(\exists y \leq t(x)) A(x, y) \supset\left(\exists w \leq b d\left(t^{+}, s\right)\right)(\forall x \leq|s|) \beta_{\mid t^{+}+}(x, w) \leq t(x) \wedge A\left(x, \beta_{l^{+} \mid}(x, w)\right)$
will also be considered in this talk as it allows us to do a limited amount of quantifier exchange. Here t^{+}is a monotone term derived from $t . b d\left(t^{+}, s\right)$ is a term used to a string of consisting of concatenating $|s|$ strings of length $\left|t^{+}\right|$.

Bounded Arithmetic Theories

- $\Sigma_{0}^{b}\left(\right.$ aka $\left.\Pi_{0}^{b}\right)$ are the bounded arithmetic formulas whose quantifiers are all of the form ($\forall x \leq 1 \pi)$ or $(\exists x \leq \mid A)$.
- For $i>0, \Sigma_{i}^{b}\left(\right.$ resp. $\left.\Pi_{i}^{b}\right)$ are the closure of the Π_{i-1}^{b} (resp. Σ_{i-1}^{b}) formulas under conjunctions, disjunctions, $(\exists x \leq t)$ and $(\forall x \leq|A|)$ (for $\Pi_{i}^{b},(\forall x \leq t)$ and $\left.(\exists x \leq \mid A)\right)$.
- The prenex variant of the Σ_{i}^{b} formulas, the $\hat{\Sigma}_{i}$-formulas, look like:

$$
\left(\exists x_{1} \leq t_{1}\right) \cdots\left(Q x_{i} \leq t_{i}\right)\left(Q x_{i+1} \leq\left|t_{i+1}\right|\right) A
$$

where A is an open formula. So we have $i+1$ alternations, innermost being length-bounded.

- A $\hat{\Pi}_{i}$-formula is defined similarly but with the outer quantifier being universal.
- T_{2}^{i} is the theory BASIC $+\sum_{i}^{b}-I N D$.
S_{2}^{d} is the theory BASIC+ $\sum_{i-}^{b}-L I N D$.
R_{2}^{i} is the theory BASIC $+\sum_{i}^{b}$-LLIND.

Prenex Theories

- It seems natural to ask if it makes any difference to define T_{2}^{i}, S_{2}^{i}, or R_{2}^{i} using $\hat{\Sigma}_{i}-L^{m} I N D$ rather than $\Sigma_{i}^{b}-L^{m} I N D$.
- For T_{2}^{i} and S_{2}^{i} it makes no difference as the prenex theory can prove $B B \Sigma_{i}^{b}$ and so can convert between prenex and non-prenex formulas. For R_{2}^{i}, it is not known.
- We denote the prenex version of R_{2}^{i} by \hat{R}_{2}^{i}.
- We write $\hat{T}_{2}^{\left.i \mid l i d_{m}\right\}}$ for the theories BASIC+ $\hat{\Sigma}_{i}-L^{m} I N D$.

Definability

- Let Ψ be a class of formulas, we say a theory T can Ψ-define a function f if there is a Ψ formula A_{f} such that

$$
T \vdash \forall x \exists!y A_{f}(x, y)
$$

and

$$
\mathbb{N} \vDash \forall x A_{f}(x, f(x))
$$

Recapping + What's Known

- As we said earlier, the $\hat{\Sigma}_{l}$-definable function of S_{2}^{l} and R_{2}^{l} are (Buss) and FNC (Allen, Clote, Takeuti) respectively.
- Multifunction algebras for the $\hat{\Sigma}_{1}$-definable multifunctions of \hat{R}_{2}^{l} and $\hat{T}_{2}^{,\left\{\mid i d_{m\}}\right\}}$ are known from Pollett (2000).
- That paper also used a Johannsen-style block counting argument to show for $m \geq 4$ the multifunction algebra one gets cannot define $\left\lfloor\frac{x}{3}\right\rfloor$.
- Boughattas and Ressayre (2009) using a model theoretic technique then separated $\hat{T}_{2}^{1,\left(\mid i d_{3}\right\}}$ from S_{2}^{l}.

One Possible Separation Approach...

- Jerabek (2006) showed S_{2}^{l} was Σ_{1}^{b}-convervative over T_{2}^{0}.
- For $i \geq 1$, Pollett (1999) had a result that $T_{2}^{i,\left\{2^{p 1 i d i d)}\right\}} \leq_{\forall \hat{\Sigma}_{i+1}} R_{2}^{i+1}$.
- Here the $\left\{2^{p(\|i d\|)}\right\}$ indicates the bound on induction.
- So it was natural to conjecture Jerabek's techniques could be used to show that $T_{2}^{0,\left\{2^{p l(i d i d)}\right)} \leq_{\forall \hat{\Sigma}_{l}} \hat{R}_{2}^{l}$.
- The hope would be then that some weaker notion of definability might then be used to separate $T_{2}^{0,\left\{2^{\left.\left.p\right|^{1 / \lambda d} d\right)}\right\}}$ from T_{2}^{θ}, and hence separating \hat{R}_{2}^{l} from S_{2}^{l}.

That doesn't seem to work.

- Pollett (2011) shows $T_{2}^{0,\left\{2^{\| l(i d)}\right)}$, again by a block counting argument, can't define $\left.\mathrm{L}_{\frac{x}{3}}\right\lrcorner$.
- It is unknown if \hat{R}_{2}^{l} can define $\left\lfloor\frac{x}{3}\right\lrcorner$. Certainly, R_{2}^{l}, which can define all functions in $F N C$, can.
 existential that is of size $2^{p(\|i d\|)^{2}}$ which is too small to be able to express a string that codes the steps of a computation of the kind of functions \hat{R}_{2}^{l} can $\hat{\Sigma}_{1}$-define. So it is at least unlikely that $T_{2}^{0,\left\{2^{\left.p p^{1 / d} d\right)}\right\}}$ is conservative under \hat{R}_{2}^{l}.
- Pollett (2011) formulates a messy variant of a comprehension axiom called open \{\|idl\} $^{-}$ COMP (will describe in a moment) which when added to LIOpen (BASIC + open-LIND) suffice to carry out Jerabek's method and give a $\hat{\Sigma}_{1}$-conservative subtheory of R_{2}^{l}.
- There were earlier $\hat{\Sigma}_{l}$ theories for the functions in .For example, TNC of Clote Takeuti and RSUV isomorphisms of $V N C$ of Cook Nguyen. The point here was to be able to carry out a modified Jerabek's construction. A later hope was that this could be modified to \hat{R}_{2}^{l} with the goal to come up with as simple and breakable an axiomatization of $\forall \hat{\Sigma}_{l}\left(\hat{R}_{2}^{l}\right)$ as possible.

A New Strategy on \hat{R}_{2}^{l} and R_{2}^{l} versus S_{2}^{l}

- The function algebra for the $\hat{\Sigma}_{1}$-definable functions of \hat{R}_{2}^{l} consists of initial functions of the language, the functions $\mu i \leq|a| t(i, a, \vec{b})=0$ for some term in the language (use $\hat{\Pi}_{0}$-LIND to get), closure under composition and under the following kinds of recursion:
$F(0, x)=g(x)$

$$
\begin{aligned}
F(n+1, x) & =\min (h(n, x, F(n, x)), n(n, x)) \\
f(n, x) & =F(\|A(n, x)\|, x)
\end{aligned}
$$

- To get the $\hat{\Sigma}_{1}$-definable functions, $F P$, of S_{2}^{l} switch \| • \| to । • ।. For R_{2}^{l}, one adds to this closure under another kind of recursion called $C R N$.
- Expressed as a function algebra it seems hard to do things like diagonalization to separate these algebras.
- So ideally we want to get a normal form for the functions in these classes.
- Even if we can't separate the classes, and hence the original theories, the normal form will at least tell us something about finite axiomatization in the theories.

Axiomatisations for $\forall \hat{\Sigma}_{l}\left(\hat{R}_{2}^{l}\right), \forall \hat{\Sigma}_{l}\left(R_{2}^{l}\right)$, and $\forall \hat{\Sigma}_{l}\left(S_{2}^{l}\right)$

- We begin with BASIC. To this we add the following BITMINaxiom
($\exists i \leq|a|$)LEASTON (i, a)
where $\operatorname{LEASTON}(i, a)$ is:
$(\forall j<i)[(i<|a| \supset B I T(i, a)=1 \wedge B I T(j, a)=0) \wedge$

$$
(i=|a| \supset(\forall k<|a|) B I T(k, a)=0)]
$$

- This axiom can be proven in \hat{R}_{2}^{l} using $\hat{\Pi}_{0}$-LIND, on the other hand it give us the sharply bounded μ-operator for terms.
- Next we add for each term t a bounded dependent choice axiom, $B D C_{\ell, t}$

$$
(\exists w \leq b d(d, b))(\forall i<\ell(b))\left[\beta_{\mid d}(0, w)=\min (a, d) \wedge\right.
$$

$$
\begin{array}{r}
t>0 \supset \beta_{|d|}(i+1, w)=\min \left(t\left(\beta_{|d|}(i, w), i, a, b, c\right)-1, d\right) \wedge \\
\left.t=0 \supset \operatorname{LEASTON}\left(\beta_{|d|}(i+1, w), \beta_{|d|}(i, w)\right)\right] .
\end{array}
$$

where ℓ is $|x|$ if we want $\forall \hat{\Sigma}_{l}\left(S_{2}^{l}\right)$ or of the form $\|\left. x\right|^{k}$ if we want $\forall \hat{\Sigma}_{l}\left(\hat{R}_{2}^{l}\right)$.

- For $\forall \hat{\Sigma}_{l}\left(R_{2}^{l}\right)$ you need in addition to add to $B D C_{\ell, t}$ another clause to handle $C R N$.

Remarks

- These are $\forall \hat{\Sigma}_{1}$ axioms and can be proven in the theory they correspond to by a straightforward induction argument.
- Let ChoiceStr $_{\ell}(w, a, b, c, d)$ the formula inside the $(\exists w \leq b d(d, b))$ in a $B D C_{\ell, t}$. Let $f(x, z)$ be a function, we say $f(x, z)$ is ℓ-choice defined if

$$
f(x, z)=y \Leftrightarrow\left(\exists w \leq b d\left(2^{|s|}, t\right)\right)\left[\text { ChoiceStr }\left(w, x, t, z, 2^{|s|}\right) \wedge \operatorname{OUT}_{f}(w, x, z)=y\right]
$$

for some terms t, s not involving w, and for some term $O U T_{f}$.

- To show the conservativity result, you need to show the class of \| $\left\|\|^{k}\right.$ - (resp.। $\cdot \mid$-)choice defined functions have the necessary closure properties to carry out a witnessing argument.
- This gives that the $\hat{\Sigma}_{1}$-definable functions of $\hat{R}_{2}^{l}, R_{2}^{l}, S_{2}^{l}$ are just projections of these kind of choice strings.
- The main difference in the above and my 2011 Archive paper is that there I was working with open formulas rather than terms. This meant I had to define in an inductive fashion the open-formulas that would be suitable for the computation of a choice string.
- The set-up above looks very promising for diagonalization provided we could come with a nice universal predicate for choice strings.

Finite Axiomatizations

- Pairing, etc can be defined as terms in our language and using this we can give an encoding for terms as numbers.
- You could imagine adding a parameter e and modify our ChoiceStr $_{\ell}$ so that instead of having

$$
\beta_{|d|}(i+1, w)=\min \left(t\left(\beta_{|d|}(i, w), i, a, b, c\right) \dot{-} 1, d\right)
$$

we say that after $\beta_{l d}(i, w), w$ codes a string which computes the operations according to the term coded by e_{t} until we get to what would have been $\beta_{|d|}(i+1, w)$.

- Writing this down, one would get a single $\hat{\Sigma}_{l}$-formula $U\left(e_{t}, a, b, c, d\right)$ which for different codes e_{t} would imply $B D C_{\text {idd }, t}$. This gives an alternative proof to Cook-Kolokolova (2003) that $\forall \hat{\Sigma}_{l}\left(S_{2}^{l}\right)$ is finitely axiomatized.
- In the case of \hat{R}_{2}^{l} and R_{2}^{l} you get a sequence of formulas $U_{k}\left(e_{t}, a, b, c, d\right)$ for different values of k in $\|\cdot\| \|^{k}$.

Conclusion

- I conjecture that the theory, which over the base theory has the axiom U_{k+1}, is strictly stronger than the theory with U_{k}. I.e., $\forall \hat{\Sigma}_{l}\left(\hat{R}_{2}^{l}\right)$ and $\forall \hat{\Sigma}_{l}\left(R_{2}^{l}\right)$ are not finitely axiomatised.
- For R_{2}^{l} these formulas probably correspond to hard problems at various levels of the $N C^{k}$ hierarchy, so are likely hard to separate.
- The d parameter in $U_{k}\left(e_{t}, a, b, c, d\right)$ would typically be of the form $2^{|x|^{e}}$ and bounds the intermediate terms occuring in the choice string computation. Since it depends on e we can't immediately do diagonalization.
- However, maybe in \hat{R}_{2}^{l} there is some clever way to compress the intermediate steps (as they are just given by terms) to within some $2^{|x|^{c}}$ for fixed ??? I end my talk with that open problem.

