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Two decades of PTASes

•mid ’90s: 
PTASes for “local” planar graph problems [Baker]
(vertex cover, independent set, etc)

•’97-’03: 
PTASes for low-d geometric problems [Arora + others]
(TSP, Steiner tree, etc)

•late ’00s:
PTASes for planar connectivity problems [BKM + others]
(TSP, Steiner tree, etc)



Baker’s Technique
PTAS for max independent set, min vertex cover, etc. in planar graphs

Partition the planar graph into k-outerplanar graphs.
Solve the problem optimally in each k-outerplanar graph.

(k-outerplanar graphs have treewidth < 3k;
many NP-hard problems are easy in bounded-treewidth graphs.)

Argue that the union of these solutions is a near-optimal 
solution for the original graph.

 = 2 outerplanar



Baker’s Technique

Partition the vertices into breadth-
first search levels from the boundary.

PTAS for max independent set, min vertex cover, etc. in planar graphs
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Baker’s Technique

Partition the vertices into breadth-
first search levels from the boundary.
Delete levels congruent to i mod k.
Resulting components are 
(k-1)-outerplanar.
Find the optimal solution in each 
component.
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Baker’s Technique

Partition the vertices into breadth-
first search levels from the boundary.
Delete levels congruent to i mod k.
Resulting components are 
(k-1)-outerplanar.
Find the optimal solution in each 
component.
OPT∩{congruence class} < OPT/k 
for some i.
The union of solutions in each 
component is within (1±1/k) OPT.

PTAS for max independent set, min vertex cover, etc. in planar graphs



Arora’s Technique
PTAS for connectivity problems in low-d geometric space

Example: Steiner tree.
Bound terminals with a box.
Decompose space with a quad tree.
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Example: Steiner tree.
Bound terminals with a box.
Decompose space with a quad tree.
Structure Theorem: There is a 
near-OPT solution that crosses each grid 
cell O(1) times.
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Example: Steiner tree.
Bound terminals with a box.
Decompose space with a quad tree.
Structure Theorem: There is a 
near-OPT solution that crosses each grid 
cell O(1) times.
Limit solution to cross between cells at 
portals.  
(Bound sum of detours by ϵOPT).
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Example: Steiner tree.
Bound terminals with a box.
Decompose space with a quad tree.
Structure Theorem: There is a 
near-OPT solution that crosses each grid 
cell O(1) times.
Limit solution to cross between cells at 
portals.  
(Bound sum of detours by ϵOPT).
Find the best portal-respecting solution 
using dynamic programming.

Arora’s Technique
PTAS for connectivity problems in low-d geometric space



Brick Technique
PTAS for TSP, Steiner tree, etc. in planar graphs

1. Find a special grid-like subgraph.
Structure Theorem: There is a (1+ϵ) OPT solution 
that crosses the boundary of each face of the grid 
O(1) times.

2. Restrict solution to use few portals (as Arora).
3. Break grid into k-outerplanar pieces (as Baker).
4. Find the optimal portal-respecting solution in each 

piece.



Grid subgraph:
• spans terminals
• w(grid) is O(OPT)
• each face is a brick

[made of shortest paths]

Brick Decomposition



Grid subgraph:
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• w(grid) is O(OPT)
• each face is a bricka brick

Steiner-Tree Structure Theorem
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Grid subgraph:
• spans terminals
• w(grid) is O(OPT)
• each face is a brick

Steiner-Tree Structure Theorem: 
• w(green) < (1+ ϵ) w(red)
• O(1) green leaves 
• green achieves red’s connectivity

Steiner-Tree Structure Theorem



The PTAS

1. Find the grid subgraph. 
2. Group the faces into narrow 

annuli.
3. Break the annuli apart.
4. Introduce new terminals.
5. Solve the problem in each 

annuli.
6. Union these solutions 

together.

weight(grid graph) is O(OPT)
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Since then ...

Applied to [Bateni et al.s]:

Steiner forest [’10]
prize collecting problems [’11]
multi-way cut [’12]

and extended to bounded-genus graphs [BDT ’09]

using a preprocessing step and then following much 
as brick technique.



What makes it all possible?

to get from here 

to hereyou must cross here


