Complex spherical designs and nonsymmetric association schemes

Aidan Roy
Sho Suda

Association schemes from real spherical designs
For $X \subseteq S\left(\mathbb{R}^{d}\right)$, define

$$
A(X)=\left\{x^{T} y: x, y \in X, x \neq y\right\}
$$

If $A(X)=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$, define relations

$$
R_{i}=\left\{(x, y) \in X^{2}: x^{T} y=\alpha_{i}\right\}
$$

Theorem (Delsarte, Goethals, Seidel '75)
Let X be a t-design with $|A(X)|=s$. Then:
(i) $t \leq 2 s$.
(ii) If $t \geq 2(s-1)$, then $\left\{I, R_{1}, \ldots, R_{s}\right\}$ is an association scheme.

Association schemes from complex projective designs

For $X \subseteq S\left(\mathbb{C}^{d}\right)$, define

$$
A(X)=\left\{\left|x^{*} y\right|: x, y \in X, x \neq y\right\}
$$

Theorem (Delsarte, Goethals, Seidel '75)
Let X be a complex projective t-design with $|A(X)|=s$. Then:
(i) $t \leq 2 s$.
(ii) If $t \geq 2(s-1)$, then $\left\{I, R_{1}, \ldots, R_{s}\right\}$ is an association scheme.

Example [rotations of MUBs]

What about

$$
A(X)=\left\{x^{*} y: x, y \in X, x \neq y\right\}
$$

for $X \subseteq S\left(\mathbb{C}^{d}\right)$?

$$
\text { eg) } \begin{aligned}
\epsilon & =\frac{1+i}{2}, \\
L & =\left\{\binom{1}{0},\binom{0}{1}\right\} \cup\left\{\epsilon\binom{1}{1}, \epsilon\binom{1}{-1}\right\} \cup\left\{\epsilon\binom{1}{\mathrm{i}}, \epsilon\binom{1}{-\mathrm{i}}\right\}, \\
X & =L \cup \mathrm{i} L \cup-L \cup-\mathrm{i} L .
\end{aligned}
$$

$$
A(X)=\left\{-1, \pm \mathrm{i}, \frac{ \pm 1 \pm \mathrm{i}}{2}, 0\right\}
$$

8 -class nonsymmetric association scheme.

Designs from association schemes

- \mathcal{A} : symmetric association scheme, n vertices, s classes
- E_{1} : first idempotent, rank m
- $\frac{n}{m} E_{1}$: Gram matrix of unit vectors $\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathbb{R}^{m}

Theorem (Cameron, Goethals, Seidel '78)

Let \mathcal{A} be a symmetric association scheme and identify the points of \mathcal{A} with unit vectors X whose $G r a m$ matrix is a scalar multiple of E_{1}. Then:
(i) X is a real spherical 2-design.
(ii) X is a 3-design if and only if $q_{1,1}^{1}=0$.

Complex spherical designs

$\operatorname{Hom}(k, l)$: homogeneous polynomials on $z=\left(z_{1}, \ldots, z_{d}\right) \in S\left(\mathbb{C}^{d}\right)$ of degree k in z_{1}, \ldots, z_{d}, degree l in $\overline{z_{1}}, \ldots, \overline{z_{d}}$.
eg) $z_{1}^{2} \overline{z_{1}}+z_{1} z_{2} \overline{z_{3}} \in \operatorname{Hom}(2,1)$

Lower set: $\mathcal{T} \subseteq \mathbb{N}^{2}$ such that if $(k, l) \in \mathcal{T}$, so is (m, n) for all $0 \leq m \leq k, 0 \leq n \leq l$.
eg) $\mathcal{T}=\overline{\{(1,4),(3,2)\}}$

Complex spherical designs

Complex spherical \mathcal{T}-design: $X \subseteq S\left(\mathbb{C}^{d}\right)$ such that for every polynomial $f \in \operatorname{Hom}(k, l),(k, l) \in \mathcal{T}$,

$$
\begin{equation*}
\frac{1}{|X|} \sum_{z \in X} f(z)=\int_{S\left(\mathbb{C}^{d}\right)} f(z) \mathrm{d} z \tag{1}
\end{equation*}
$$

eg) $\mathcal{T}=\{(1,0)\}$:

$$
\frac{1}{|X|} \sum_{z \in X} z=0
$$

- $\overline{\{(t, t)\}}$-design in $S\left(\mathbb{C}^{d}\right) \Rightarrow$ projective t-design.
- $\{(k, l): k+l \leq t\}$-design in $S\left(\mathbb{C}^{d}\right) \Leftrightarrow t$-design in $S\left(\mathbb{R}^{2 d}\right)$.

Complex spherical codes

For $X \subseteq S\left(\mathbb{C}^{d}\right)$,

$$
A(X):=\left\{x^{*} y: x, y \in X, x \neq y\right\}
$$

Complex spherical code of degree $s:|A(X)|=s$. Annihilator polynomial F of $X: F(\alpha)=0$ for all $\alpha \in A(X)$. \mathcal{S}-code: annihilator polynomial in $\operatorname{span}\left\{x^{k} \bar{x}^{l}:(k, l) \in \mathcal{S}\right\}$.
eg) If $|\alpha|=c$ for all $\alpha \in A(X): F(x)=x \bar{x}-c^{2}, S=\overline{\{(1,1)\}}$.

- degree $s \Rightarrow \overline{\{(s, 0)\}}$-code.
- degree s in $S\left(\mathbb{C}^{d}\right) \Rightarrow$ degree $\leq s$ in $S\left(\mathbb{R}^{2 d}\right)$.
- degree s in $S\left(\mathbb{C}^{d}\right) \Rightarrow$ degree $\leq s$ in $\mathbb{C} P^{d-1}$.

Harmonic polynomials

$\operatorname{Harm}(k, l)$: irreducible $U(d)$-module such that

$$
\operatorname{Hom}(k, l)=\operatorname{Harm}(k, l) \bigoplus \operatorname{Hom}(k-1, l-1)
$$

$$
\begin{aligned}
\operatorname{dim}(\operatorname{Hom}(k, l)) & =\binom{d+k-1}{d-1}\binom{d+l-1}{d-1} \\
\operatorname{dim}(\operatorname{Harm}(k, l)) & =\binom{d+k-1}{d-1}\binom{d+l-1}{d-1}-\binom{d+k-2}{d-1}\binom{d+l-2}{d-1} .
\end{aligned}
$$

Absolute bounds

$$
\mathcal{E} * \mathcal{E}:=\left\{\left(k_{1}+l_{2}, k_{2}+l_{1}\right):\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right) \in \mathcal{E}\right\} .
$$

Theorem

If X is a \mathcal{T}-design with $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$, then

$$
|X| \geq \sum_{(k, l) \in \mathcal{E}} \operatorname{dim}(\operatorname{Harm}(k, l)) .
$$

If X is an \mathcal{S}-code, then

$$
|X| \leq \sum_{(k, l) \in \mathcal{S}} \operatorname{dim}(\operatorname{Harm}(k, l))
$$

where $\operatorname{dim}(\operatorname{Harm}(k, l))=\binom{d+k-1}{d-1}\binom{d+l-1}{d-1}-\binom{d+k-2}{d-1}\binom{d+l-2}{d-1}$.

Tightness equivalence

Tight \mathcal{S}-code:

$$
|X|=\sum_{(k, l) \in \mathcal{S}} \operatorname{dim}(\operatorname{Harm}(k, l)) .
$$

Tight design with respect to $\mathcal{E}: \mathcal{T}$-design with $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$,

$$
|X|=\sum_{(k, l) \in \mathcal{E}} \operatorname{dim}(\operatorname{Harm}(k, l))
$$

Theorem

The following are equivalent:
(i) X is an \mathcal{S}-code and a \mathcal{T}-design with $\mathcal{S} * \mathcal{S} \subseteq \mathcal{T}$.
(ii) X is a tight \mathcal{S}-code.
(iii) X is a tight design with respect to \mathcal{S}.

Association schemes

Let $X \subseteq S\left(\mathbb{C}^{d}\right)$ have inner product set $A(X)=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$.
For $x, y \in X$, define

$$
\left(A_{i}\right)_{x, y}= \begin{cases}1, & x^{*} y=\alpha_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Theorem

Let X be a \mathcal{T}-design with $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$ and degree s. Then:
(i) $|\mathcal{E}| \leq s+1$.
(ii) If $|\mathcal{E}| \geq s$, then X carries an association scheme.
(iii) If $|\mathcal{E}|=s+1$, then X is a tight design with respect to \mathcal{E}.

Example [Coxeter]

Let $w^{3}=1, X=$

$$
\frac{1}{\sqrt{2}}\left\{\left(0, w^{i},-w^{j}\right),\left(-w^{i}, 0, w^{j}\right),\left(w^{i},-w^{j}, 0\right): i, j \in\{0,1,2\}\right\} .
$$

Example [Coxeter]

$$
\begin{aligned}
& \text { Let } w^{3}=1, X= \\
& \qquad \frac{1}{\sqrt{2}}\left\{\left(0, w^{i},-w^{j}\right),\left(-w^{i}, 0, w^{j}\right),\left(w^{i},-w^{j}, 0\right): i, j \in\{0,1,2\}\right\} .
\end{aligned}
$$

Then $|X|=27,|A(X)|=5$ and X is \mathcal{T}-design where

$$
\mathcal{T}=\overline{\{(5,0),(3,2),(2,3),(0,5)\}}
$$

\Rightarrow tight design with respect to

$$
\mathcal{E}=\overline{\{(2,0),(1,1),(0,2)\}}
$$

- Absolute bound $\Rightarrow 5$-class nonsymmetric scheme.

Symmetrization

Define $R_{i}^{T}=\left\{(y, x):(x, y) \in R_{i}\right\}$.

- If $\mathcal{A}=\left\{R_{0}, \ldots, R_{s}\right\}$ is a commutative association scheme, then $\left\{R_{i} \cup R_{i}^{T}: R_{i} \in \mathcal{A}\right\}$ is a symmetric association scheme.

Real designs from complex designs

Define

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, x_{d}\right)=\left(\operatorname{Re}\left(x_{1}\right), \operatorname{Im}\left(x_{1}\right), \ldots, \operatorname{Re}\left(x_{d}\right), \operatorname{Im}\left(x_{d}\right)\right) . \tag{2}
\end{equation*}
$$

Then

$$
\phi(x)^{T} \phi(y)=\operatorname{Re}\left(x^{*} y\right) .
$$

Theorem

If X is a tight design with respect to $\mathcal{E}=\{(k, l): k+l \leq t\}$ in \mathbb{C}^{d}, then:

- $\phi(X)$ is a tight t-design in $S^{2 d-1}$.
- The inner product scheme of $\phi(X)$ is a fusion scheme of the inner product scheme of X.

Projective designs from complex designs

X is n-antipodal if $X=L \cup \omega L \cup \ldots \cup \omega^{n-1} L$, where $\omega^{n}=1$.

Define

$$
P(X)=\left\{x x^{*}: x \in X\right\} .
$$

Theorem

Let X be an n-antipodal \mathcal{T}-design with degree s. If some \mathcal{E} satisfies $\mathcal{E} * \mathcal{E} \subseteq \mathcal{T}$ and $|\mathcal{E}| \geq s$, then:

- $P(L)$ is a projective t-design, where t is the largest integer with $(t, t) \in \mathcal{T}, t \leq n$.
- The inner product scheme of $P(L)$ is a quotient scheme of the inner product scheme of X.

Designs from nonsymmetric association schemes

$$
\text { Let } E_{\widehat{i}}=E_{i}^{T} \text {. }
$$

Theorem

Let \mathcal{A} be a commutative association scheme and identify the points of \mathcal{A} with unit vectors X whose Gram matrix is a scalar multiple of E_{1}. Then:
(i) X is a $\{(1,1)\}$-design.
(ii) X is a $\overline{\{(2,0)\}}$-design if and only if $\widehat{1} \neq 1$.
(iii) X is a $\overline{\{(2,1)\}}$-design if and only if $q_{1,1}^{1}=0$.
(iv) X is a $\overline{\{(3,0)\}}$-design if and only if $q_{1,1}^{\widehat{1}}=0$.

Reference

"Complex spherical designs and codes" arxiv.org:1104.4692

