Linear Programming Bounds and Partially Ordered Sets

William J. Martin
Department of Mathematical Sciences
and
Department of Computer Science
Worcester Polytechnic Institute
BIRS Workshop April 26, 2011

Outline

In the Usual Way
Bose-Mesner Algebra
LP for Codes
LP for Designs

Projection Approach
Anticodes

Magic Matrix Approach
Beyond Q-polynomial

The Two Standard Bases

We have a vector space of $v \times v$ symmetric matrices with rows and columns indexed by X
Basis of 01-matrices:

$$
\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}=\left\{A_{i}\right\}_{i \in \mathcal{I}}
$$

Basis of mutually orthogonal idempotents:

$$
\left\{E_{0}, E_{1}, \ldots, E_{d}\right\}=\left\{E_{j}\right\}_{j \in \mathcal{J}}
$$

Change-of-Basis Matrices

First Eigenmatrix: P ($i^{\text {th }}$ column gives eigenvalues of A_{i}) Second Eigenmatrix: Q ($j^{\text {th }}$ column gives the "dual eigenvalues")

$$
\begin{aligned}
A_{i}=\sum_{j \in \mathcal{J}} P_{j i} E_{j} & E_{j}=\frac{1}{v} \sum_{i \in \mathcal{I}} Q_{i j} A_{i} \\
P Q=v l & \frac{1}{v_{i}} P_{j i}=\frac{1}{m_{j}} Q_{i j}
\end{aligned}
$$

$\left(v_{i}=\right.$ rowsum of $\left.A_{i}, \quad m_{j}=\operatorname{rank} E_{j}\right)$

Basic Idea

If $C \subseteq X$ with characteristic vector x_{C}

- $x_{C}^{\top} E_{j} x_{C} \geq 0$

William J. Martin

Basic Idea

If $C \subseteq X$ with characteristic vector x_{C}

- $x_{C}^{\top} E_{j} x_{C} \geq 0$
- $x_{C}^{\top} A_{i} x_{C}$ is combinatorially meaningful

William J. Martin

Basic Idea

If $C \subseteq X$ with characteristic vector x_{C}

- $x_{C}^{\top} E_{j} x_{C} \geq 0$
- $x_{C}^{\top} A_{i} x_{C}$ is combinatorially meaningful
- these quantities are related by linear equations

Inner Distribution and Dual Distribution

We have an interesting subset $C \subseteq X$. We define

$$
a_{i}=\frac{1}{|C|} x_{C}^{\top} A_{i} x_{C} \quad(i \in \mathcal{I}) \quad a_{i}=\frac{\left|C \times C \cap R_{i}\right|}{|C|}
$$

and

$$
b_{j}=\frac{v}{|C|} x_{C}^{\top} E_{j} x_{C} \quad(j \in \mathcal{J})
$$

Vector $\mathbf{a}=\left[a_{0}, a_{1}, \ldots, a_{d}\right]$ is called the "inner distribution" of C.

Inner Distribution

$$
a_{i}=\frac{1}{|C|} \times{ }_{C}^{\top} A_{i} x_{C} \quad(i \in \mathcal{I})
$$

Observe

- $a_{i} \geq 0$ for all i

Inner Distribution

$$
a_{i}=\frac{1}{|C|} \times_{C}^{\top} A_{i} x_{C} \quad(i \in \mathcal{I})
$$

Observe

- $a_{i} \geq 0$ for all i
- $a_{0}=1$

Inner Distribution

$$
a_{i}=\frac{1}{|C|} \times_{C}^{\top} A_{i} x_{C} \quad(i \in \mathcal{I})
$$

Observe

- $a_{i} \geq 0$ for all i
- $a_{0}=1$
- $\sum_{i} a_{i}=|C|$

Inner Distribution

$$
a_{i}=\frac{1}{|C|} \times_{C}^{\top} A_{i} x_{C} \quad(i \in \mathcal{I})
$$

Observe

- $a_{i} \geq 0$ for all i
- $a_{0}=1$
- $\sum_{i} a_{i}=|C|$
- $a_{i}=0$ iff no edge of graph $\left(X, R_{i}\right)$ has both ends in C

Dual Distribution

$$
b_{j}=\frac{v}{|C|} x_{C}^{\top} E_{j} x_{C} \quad(j \in \mathcal{J})
$$

Observe

- $b_{j} \geq 0$ for all j

Dual Distribution

$$
b_{j}=\frac{v}{|C|} x_{C}^{\top} E_{j} x_{C} \quad(j \in \mathcal{J})
$$

Observe

- $b_{j} \geq 0$ for all j
- $b_{0}=|C|$

Dual Distribution

$$
b_{j}=\frac{v}{|C|} x_{C}^{\top} E_{j} x_{C} \quad(j \in \mathcal{J})
$$

Observe

- $b_{j} \geq 0$ for all j
- $b_{0}=|C|$
- $\sum_{j} b_{j}=|X|(=v)$

Dual Distribution

$$
b_{j}=\frac{v}{|C|} x_{C}^{\top} E_{j} x_{C} \quad(j \in \mathcal{J})
$$

Observe

- $b_{j} \geq 0$ for all j
- $b_{0}=|C|$
- $\sum_{j} b_{j}=|X|(=v)$
- $b_{j}=0$ iff $x_{C} \perp V_{j}\left(\right.$ the $j^{\text {th }}$ eigenspace, col $\left.E_{j}\right)$

LP Formulation for \mathcal{A}-Codes

For $\mathcal{A} \subseteq \mathcal{I}$,
$\mathcal{C} \subseteq X$ is an " \mathcal{A}-code" provided $(C \times C) \cap R_{i}=\emptyset$ for $i \in \mathcal{A}$.

LP Formulation for \mathcal{A}-Codes

For $\mathcal{A} \subseteq \mathcal{I}$,
$C \subseteq X$ is an " \mathcal{A}-code" provided $(C \times C) \cap R_{i}=\emptyset$ for $i \in \mathcal{A}$.
The size of C is bounded above by the optimal objective value to:

$$
\begin{array}{rlr}
\max \sum_{i \in \mathcal{I}} a_{i} & & \\
\text { subject to } & & \\
\sum_{i \in \mathcal{I}} a_{i} Q_{i j} & \geq 0 & (j \in \mathcal{J}) \\
a_{0}=1, a_{i} & =0 & (i \in \mathcal{A}) \\
a_{i} & \geq 0 & (i \in \mathcal{I})
\end{array}
$$

Why do we Prefer the Dual?

Note that every \mathcal{A}-code gives us a feasible solution but
Only the optimal solution gives us a true upper bound

What if we don't want to (i.e., can't) solve to optimality?

LP Duality

For simplicity, I'm going to transform this LP into standard form and take its dual.

The dual of the LP

$$
\max c^{\top} x, \quad \text { s.t. } \quad A x \leq b, \quad x \geq 0
$$

is

$$
\min y^{\top} b, \quad \text { s.t. } \quad y^{\top} A \geq c^{\top}, \quad y \geq 0
$$

LP Formulation for \mathcal{A}-Codes

Same LP, in standard form ($\left.a_{0}=1, Q_{0 j}=m_{j}\right)$:

$$
\begin{array}{rr}
1+\max \sum_{i \notin \mathcal{A}} a_{i} \\
\text { subject to } \\
\sum_{i \notin \mathcal{A}}\left(-Q_{i j}\right) a_{i} \leq m_{j} & (j \in \mathcal{J}, j \neq 0) \\
a_{i} \geq 0 & (i \notin \mathcal{A})
\end{array}
$$

Dual LP for \mathcal{A}-Codes

$$
\begin{array}{rrr}
1+\max \sum_{i \notin \mathcal{A}} a_{i} & \text { subject to } \\
\sum_{i \notin \mathcal{A}}\left(-Q_{i j}\right) a_{i} \leq m_{j} & \left(j \in \mathcal{J}^{*}\right) \\
a_{i} \geq 0 & (i \notin \mathcal{A})
\end{array}
$$

with dual:

$$
\begin{array}{rlr}
1+\min \sum_{j \in \mathcal{J}^{*}} m_{j} y_{j} & \text { subject to } \\
\sum_{j \in \mathcal{J}^{*}}\left(-Q_{i j}\right) y_{j} \geq 1 & (i \notin \mathcal{A}) \\
y_{j} \geq 0 & \left(j \in \mathcal{J}^{*}\right)
\end{array}
$$

$\left(\mathcal{J}^{*}\right.$ means omit 0$)$.

Rewriting the Dual

Dual:

$$
\begin{aligned}
& 1+\min \sum_{j \in \mathcal{J}^{*}} m_{j} y_{j} \\
& \text { subject to } \\
& \sum_{j \in \mathcal{J}^{*}}\left(-Q_{i j}\right) y_{j} \geq 1 \\
& y_{j} \geq 0
\end{aligned}(i \notin \mathcal{A})
$$

Routine trickery:

$$
b_{j}:=m_{j} y_{j}, \quad b_{0}:=1, \quad \frac{P_{j i}}{v_{i}}=\frac{Q_{i j}}{m_{j}}
$$

(\mathcal{J}^{*} means omit 0$)$.

William J. Martin

Rewriting the Dual

New Dual:

Easy Special Case

Suppose $\mathcal{A}=\{2, \ldots, d\}$. Write $P_{j 1}=\lambda_{j}$.

$$
\min b_{0}+b_{1}+\cdots+b_{d}
$$

subject to

$$
\begin{aligned}
b_{0} \lambda_{0}+b_{1} \lambda_{1}+\cdots+b_{d} \lambda_{d} & \leq 0 \\
b_{0}=1, & b_{1}, b_{2}, \ldots, b_{d} \geq 0
\end{aligned}
$$

Easy Special Case

Suppose $\mathcal{A}=\{2, \ldots, d\}$. Write $P_{j 1}=\lambda_{j}$.

$$
\min b_{0}+b_{1}+\cdots+b_{d}
$$

subject to

$$
\begin{aligned}
b_{0} \lambda_{0}+b_{1} \lambda_{1}+\cdots+b_{d} \lambda_{d} & \leq 0 \\
b_{0}=1, & b_{1}, b_{2}, \ldots, b_{d}
\end{aligned}
$$

Easy Special Case

Suppose $\mathcal{A}=\{2, \ldots, d\}$. Write $P_{j 1}=\lambda_{j}$.

$$
\min b_{0}+b_{1}+\cdots+b_{d}
$$

subject to

$$
\begin{aligned}
b_{0} \lambda_{0}+b_{1} \lambda_{1}+\cdots+b_{d} \lambda_{d} & \leq 0 \\
b_{0}=1, & b_{1}, b_{2}, \ldots, b_{d}
\end{aligned}
$$

- $b_{0}=1, \quad \lambda_{0}=k \quad$ (say)

Easy Special Case

Suppose $\mathcal{A}=\{2, \ldots, d\}$. Write $P_{j 1}=\lambda_{j}$.

$$
\min b_{0}+b_{1}+\cdots+b_{d}
$$

subject to

$$
\begin{aligned}
b_{0} \lambda_{0}+b_{1} \lambda_{1}+\cdots+b_{d} \lambda_{d} & \leq 0 \\
b_{0}=1, & b_{1}, b_{2}, \ldots, b_{d}
\end{aligned}
$$

- $b_{0}=1, \quad \lambda_{0}=k \quad$ (say)
- $b_{d}=-k / \lambda_{d} \quad$ (assuming λ_{d} is smallest)

Easy Special Case

Suppose $\mathcal{A}=\{2, \ldots, d\}$. Write $P_{j 1}=\lambda_{j}$.

$$
\min b_{0}+b_{1}+\cdots+b_{d}
$$

subject to

$$
\begin{aligned}
b_{0} \lambda_{0}+b_{1} \lambda_{1}+\cdots+b_{d} \lambda_{d} & \leq 0 \\
b_{0}=1, & b_{1}, b_{2}, \ldots, b_{d}
\end{aligned}
$$

- $b_{0}=1, \quad \lambda_{0}=k \quad$ (say)
- $b_{d}=-k / \lambda_{d} \quad$ (assuming λ_{d} is smallest)
- $|C| \leq 1-\frac{k}{\lambda_{d}}$

LP Formulation for \mathcal{T}-Designs

For $\mathcal{T} \subseteq \mathcal{J}$,
$D \subseteq X$ is a " T-design" provided $x_{D} \perp V_{j}$ for $j \in \mathcal{T}$.
The size of D is bounded below by the optimal objective value to:

$$
\begin{array}{rlr}
\min \sum_{i \in \mathcal{I}} a_{i} & & \\
\text { subject to } & & \\
\sum_{i \in \mathcal{I}} a_{i} Q_{i j} & \geq 0 & \left(j \in \mathcal{J}^{*}\right) \\
\sum_{i \in \mathcal{I}} a_{i} Q_{i j} & =0 & (j \in \mathcal{T}) \\
a_{0}=1, \quad a_{i} & \geq 0 & \left(i \in \mathcal{I}^{*}\right)
\end{array}
$$

Dual LP for \mathcal{T}-Designs

$$
\begin{array}{rlr}
\min \sum_{i \in \mathcal{I}} a_{i} & & \\
\text { subject to } & & \\
\sum_{i \in \mathcal{I}} a_{i} Q_{i j} & \geq 0 & \left(j \in \mathcal{J}^{*}\right) \\
\sum_{i \in \mathcal{I}} a_{i} Q_{i j} & =0 & (j \in \mathcal{T}) \\
a_{0}=1, \quad a_{i} & \geq 0 & \left(i \in \mathcal{I}^{*}\right)
\end{array}
$$

with dual (now using $b_{j}=-m_{j} y_{j}$):

$$
\max \sum_{j \in \mathcal{J}} b_{j}
$$

subject to

$$
\begin{array}{rr}
\sum_{j \in \mathcal{J}} P_{j i} b_{j} \geq 0 & \left(i \in \mathcal{I}^{*}\right) \\
b_{0}=1, \quad b_{j} \leq 0 & \left(j \in \mathcal{J}^{*}-\mathcal{T}\right)
\end{array}
$$

Dual width one

Assume we are working in a Q-polynomial scheme. What subsets D satisfy $x_{D} \in V_{0} \oplus V_{1}$?
What is the smallest cardinality of D ?

Dual width one

Assume we are working in a Q-polynomial scheme.
What subsets D satisfy $x_{D} \in V_{0} \oplus V_{1}$?
What is the smallest cardinality of D ?

$$
\max b_{0}+b_{1}
$$

subject to

$$
\begin{array}{rlr}
P_{0 i} b_{0}+P_{1 i} b_{1} & \geq 0 & (i \neq 0) \\
b_{0} & =1 & \left(b_{1} \text { unrestr. }\right)
\end{array}
$$

We get

$$
|D| \geq \frac{v}{1-\frac{m_{1}}{Q_{d 1}}}
$$

where we assume

$$
m_{1}=Q_{01}>Q_{11}>\cdots>Q_{d 1}
$$

Subsets of Dual Width One

Assume we are working in a Q-polynomial scheme.
What subsets D satisfy $x_{D} \in V_{0} \oplus V_{1}$?
Ratio Bound:

$$
|D| \geq \frac{v}{1-\frac{m_{1}}{Q_{d 1}}}
$$

where we assume

$$
m_{1}=Q_{01}>Q_{11}>\cdots>Q_{d 1}
$$

Hamming scheme: For $H(n, q)$, we get $|D| \geq q^{n-1}$
Johnson scheme: For $J(n, k)$, we get $|D| \geq\binom{ v-1}{k-1}$

Projecting onto the Bose-Mesner algebra

With respect to the inner product $\langle M, N\rangle=\operatorname{tr}\left(M N^{\top}\right)$,

$$
\left\{\left.\sqrt{\frac{1}{v v_{i}}} A_{i} \right\rvert\, i \in \mathcal{I}\right\} \quad \text { and } \quad\left\{\left.\sqrt{\frac{1}{m_{j}}} E_{j} \right\rvert\, j \in \mathcal{J}\right\}
$$

form orthonormal bases for \mathbb{A}.

Projecting onto the Bose-Mesner algebra

With respect to the inner product $\langle M, N\rangle=\operatorname{tr}\left(M N^{\top}\right)$,

$$
\left\{\left.\sqrt{\frac{1}{v v_{i}}} A_{i} \right\rvert\, i \in \mathcal{I}\right\} \quad \text { and } \quad\left\{\left.\sqrt{\frac{1}{m_{j}}} E_{j} \right\rvert\, j \in \mathcal{J}\right\}
$$

form orthonormal bases for \mathbb{A}.

So, for any matrix M of size $v \times v$

$$
\sum_{i} \frac{\left\langle M, A_{i}\right\rangle}{v v_{i}} A_{i}=\sum_{j} \frac{\left\langle M, E_{j}\right\rangle}{m_{j}} E_{j}
$$

Projecting onto the Bose-Mesner algebra

So take $M=x x^{\top}$ to find, for any vector x of length v,

$$
\sum_{i} \frac{x^{\top} A_{i} x}{v v_{i}} A_{i}=\sum_{j} \frac{x^{\top} E_{j} x}{m_{j}} E_{j}
$$

Anticode Condition (Godsil-Meagher proof)

Suppose code C has characteristic vector x and anticode A has characteristic vector y.

Anticode Condition (Godsil-Meagher proof)

Suppose code C has characteristic vector x and anticode A has characteristic vector y. If, for all $i \neq 0, x^{\top} A_{i} x=0$ or $y^{\top} A_{i} y=0$, then

$$
\sum_{i} \frac{x^{\top} A_{i} x}{v v_{i}} y^{\top} A_{i} y=\sum_{j} \frac{x^{\top} E_{j} x}{m_{j}} y^{\top} E_{j} y
$$

Anticode Condition (Godsil-Meagher proof)

Suppose code C has characteristic vector x and anticode A has characteristic vector y. If, for all $i \neq 0, x^{\top} A_{i} x=0$ or $y^{\top} A_{i} y=0$, then

$$
\begin{gathered}
\sum_{i} \frac{x^{\top} A_{i} x}{v v_{i}} y^{\top} A_{i} y=\sum_{j} \frac{x^{\top} E_{j} x}{m_{j}} y^{\top} E_{j} y \\
\frac{|C| \cdot|A|}{v}=\sum_{j} \frac{1}{m_{j}}\left(x^{\top} E_{j} x\right)\left(y^{\top} E_{j} y\right) \geq\left(x^{\top} E_{0} x\right)\left(y^{\top} E_{0} y\right)=\frac{|C|^{2} \cdot|A|^{2}}{v^{2}}
\end{gathered}
$$

Anticode Condition (Godsil-Meagher proof)

Suppose code C has characteristic vector x and anticode A has characteristic vector y. If, for all $i \neq 0, x^{\top} A_{i} x=0$ or $y^{\top} A_{i} y=0$, then

$$
\begin{gathered}
\sum_{i} \frac{x^{\top} A_{i} x}{v v_{i}} y^{\top} A_{i} y=\sum_{j} \frac{x^{\top} E_{j} x}{m_{j}} y^{\top} E_{j} y \\
\frac{|C| \cdot|A|}{v}=\sum_{j} \frac{1}{m_{j}}\left(x^{\top} E_{j} x\right)\left(y^{\top} E_{j} y\right) \geq\left(x^{\top} E_{0} x\right)\left(y^{\top} E_{0} y\right)=\frac{|C|^{2} \cdot|A|^{2}}{v^{2}}
\end{gathered}
$$

$$
\ldots \text { giving }|C| \cdot|A| \leq v .
$$

Working Without Polynomials

In this next part, we extend two well-known bounds of Delsarte to the setting of association schemes with many vanishing Krein parameters.
Originally, these results were proved by Delsarte for cometric association schemes.
Here, we replace the cometric property with certain vanishing conditions for Krein parameters with reference to a partial order \unlhd on the set \mathcal{J} of eigenspaces of the association scheme.

Big and Small Eigenspaces

For \mathcal{E} and \mathcal{F}, subsets of \mathcal{J}, define

$$
\mathcal{E} \star \mathcal{F}=\left\{k \in \mathcal{J}: \sum_{i \in \mathcal{E}} \sum_{j \in \mathcal{F}} q_{i j}^{k}>0\right\} .
$$

Krein conditions imply

$$
k \in \mathcal{E} \star \mathcal{F}
$$

whenever

$$
q_{i j}^{k} \neq 0 \text { for some } i \in \mathcal{E} \text { and some } j \in \mathcal{F}
$$

Example: In a cometric scheme, if we take $\mathcal{E}=\{0, \ldots, e\}$ and $\mathcal{F}=\{0, \ldots, f\}$, then

$$
\mathcal{E} \star \mathcal{F} \subseteq\{0, \ldots, e+f\}
$$

"Fisher-Type" Inequality

Theorem
Let $\mathcal{T} \subseteq \mathcal{J}$. Assume $\mathcal{E} \subseteq \mathcal{J}$ satisfies $\mathcal{E} \star \mathcal{E} \subseteq \mathcal{T}$. Then, for any Delsarte \mathcal{T}-design $D \subseteq X$, we have

$$
|D| \geq \sum_{j \in \mathcal{E}} m_{j}
$$

Moreover, if equality holds, then, for $\ell \neq 0$ in \mathcal{J},

$$
\sum_{j \in \mathcal{E}} Q_{\ell j}=0
$$

whenever D contains a pair of ℓ-related elements.

LP inside Bose-Mesner Algebra

Proof:

Any matrix $M \in \mathbb{A}$ can be expanded in the form

$$
M=v \sum_{j \in \mathcal{J}} \beta_{j} E_{j}
$$

and also as

$$
M=\sum_{i \in \mathcal{I}} \alpha_{i} A_{i}
$$

where $\alpha_{i}=\sum_{j} Q_{i j} \beta_{j}$ for each $i \in \mathcal{I}$.

LP inside Bose-Mesner Algebra

Restrict to non-negative matrices $M \in \mathbb{A}$ which satisfy the following two conditions:
(a) $\beta_{j} \leq 0$ for all $j \notin \mathcal{T}$; and
(b) $\beta_{0}=1$.

WOLOG, assume $0 \in \mathcal{T}$.
Let $D \subseteq X$ be a \mathcal{T}-design. Abbreviate x_{D} to x.

LP inside Bose-Mesner Algebra

Expand $x^{\top} M x$ in two ways:

$$
\begin{aligned}
|D| \alpha_{0} & =\alpha_{0} x^{\top} A_{0} x \\
& \leq \sum_{\mathcal{I}} \alpha_{i} x^{\top} A_{i} x=v \sum_{\mathcal{J}} \beta_{j} x^{\top} E_{j} x \\
& =v x^{\top} E_{0} x+v \sum_{\mathcal{T}-\{0\}} \beta_{j} x^{\top} E_{j} x+v \sum_{j \notin \mathcal{T}} \beta_{j} x^{\top} E_{j} x \\
& \leq v x^{\top} E_{0} x=|D|^{2} .
\end{aligned}
$$

This gives us the bound $|D| \geq \alpha_{0}$.

An Easy Feasible Solution

Let

$$
F=\sum_{j \in \mathcal{E}} E_{j} .
$$

Then $F \circ F$ is a non-negative matrix with spectral decomposition

$$
\begin{equation*}
F \circ F=\sum_{k \in \mathcal{J}}\left(\frac{1}{v} \sum_{i \in \mathcal{E}} \sum_{j \in \mathcal{E}} q_{i j}^{k}\right) E_{k} . \tag{1}
\end{equation*}
$$

Now, by choice of \mathcal{E}, we have $q_{i j}^{k}=0$ whenever $i, j \in \mathcal{E}$ and $k \notin \mathcal{T}$.

An Easy Feasible Solution

So condition (a) is satisfied by any non-negative multiple of $F \circ F$. We scale by

$$
\gamma=\frac{v^{2}}{\sum_{j \in \mathcal{E}} m_{j}}
$$

to obtain a non-negative matrix $M=\gamma(F \circ F)$ which satisfies conditions (a) and (b),
It is straightforward to check that the diagonal entries of M are all equal to

$$
\alpha_{0}=\sum_{j \in \mathcal{E}} m_{j}
$$

What does that Prove?

Theorem
Let $\mathcal{T} \subseteq \mathcal{J}$. Assume $\mathcal{E} \subseteq \mathcal{J}$ satisfies $\mathcal{E} \star \mathcal{E} \subseteq \mathcal{T}$. Then, for any Delsarte \mathcal{T}-design $D \subseteq X$, we have

$$
|D| \geq \sum_{j \in \mathcal{E}} m_{j}
$$

What if Equality Holds?

Now if $|D|=\alpha_{0}$, we return to the above string of equations and inequalities to discover that, for each $\ell \neq 0$,

$$
\alpha_{\ell}\left(x^{\top} A_{\ell} x\right)=0
$$

must hold.

Complementary Slackness Conditions

Thus, if D contains a pair of ℓ-related elements, we are forced to have

$$
\alpha_{\ell}=\sum_{k \in \mathcal{J}} \beta_{k} Q_{\ell k}=0
$$

Now we find

$$
\beta_{k}=\frac{\gamma}{v} \sum_{i \in \mathcal{E}} \sum_{j \in \mathcal{E}} q_{i j}^{k}
$$

so that

$$
\alpha_{\ell}=\frac{\gamma}{v} \sum_{i \in \mathcal{E}} \sum_{j \in \mathcal{E}} \sum_{k \in \mathcal{J}} q_{i j}^{k} Q_{\ell k}
$$

which gives us

$$
\alpha_{\ell}=\gamma\left(\sum_{j \in \mathcal{E}} Q_{\ell j}\right)^{2}=0 \quad \text { as desired. }
$$

$\overline{\text { WPI }}$

Tight Designs Give Subschemes

Theorem
Let $\mathcal{T} \subseteq \mathcal{J}$ and assume $\mathcal{E} \subseteq \mathcal{J}$ satisfies $\mathcal{E} \star \mathcal{E} \subseteq \mathcal{T}$.
(a) if D is any Delsarte \mathcal{T}-design in our scheme with degree s, then $s+1 \geq|\mathcal{E}|$;
(b) if $|\mathcal{E}|=s+1$, then D is a tight design and D is a subscheme;
(c) if $|\mathcal{E}|=s$, then either D is a tight design or D is a subscheme.

Recap Magic Matrix Approach

Designs: Find M in the Bose-Mesner algebra

$$
\sum_{i \in \mathcal{I}} \alpha_{i} A_{i}=M=v \sum_{j \in \mathcal{J}} \beta_{j} E_{j}
$$

with $M \geq 0, \beta_{0}=1, \beta_{j} \leq 0$ for $j \notin \mathcal{T}$.
Then $|D| \geq \alpha_{0}$ for any \mathcal{T}-design D.

Recap Magic Matrix Approach

Designs: Find M in the Bose-Mesner algebra

$$
\sum_{i \in \mathcal{I}} \alpha_{i} A_{i}=M=v \sum_{j \in \mathcal{J}} \beta_{j} E_{j}
$$

with $M \geq 0, \beta_{0}=1, \beta_{j} \leq 0$ for $j \notin \mathcal{T}$.
Then $|D| \geq \alpha_{0}$ for any \mathcal{T}-design D.
Codes: Find M in the Bose-Mesner algebra

$$
\sum_{i \in \mathcal{I}} \alpha_{i} A_{i}=M=v \sum_{j \in \mathcal{J}} \beta_{j} E_{j}
$$

with $M \succeq 0, \beta_{0}=1, \alpha_{i} \leq 0$ for $i \notin \mathcal{A}$.
Then $|C| \leq \alpha_{0}$ for any \mathcal{A}-code C.

A bound on minimum distance

We used a partial order on the eigenspaces. This poset is often the image of a larger poset of anticodes.

These anticodes gives 01-bases for sums of eigenspaces. These have been used to characterize tight designs. But we can sometimes do much more with the anticodes/antidesigns.

A bound on minimum distance

We used a partial order on the eigenspaces. This poset is often the image of a larger poset of anticodes.

These anticodes gives 01-bases for sums of eigenspaces. These have been used to characterize tight designs. But we can sometimes do much more with the anticodes/antidesigns.

Theorem (WJM, 2000)
For any code C in the Hamming graph with $|C|>1, \delta \leq t+s^{*}$ unless C is isomorphic to a binary repetition code.
$\delta=\min$. distance, $\quad t=$ strength,$\quad s^{*}=$ dual degree $=\left|S^{*}(C)\right|$.

The CGS Lemma

Cameron, Goethals and Seidel: If $u \in V_{i}$ and $v \in V_{j}$ and $q_{i j}^{k}=0$, then $u \circ v \perp V_{k}$.

Dual degree set $S^{*}(C)=\left\{j \neq 0 \mid E_{j} x_{C} \neq 0\right\}$.
$S^{*}(C \cap D) \subseteq S^{*}(C) \star S^{*}(D)$.
Applications: Roos, WJM, Vanhove.

Posets for Schemes

- regular semilattices
- quantum matroids
- design systems
- width and dual width
- Tanaka's classification of descendants in the classical families

Tanaka's Theorem

In a P - and Q-polynomial scheme, we can define both the width and dual width of a subset

$$
w=\max \left\{i: x^{\top} A_{i} x \neq 0\right\} \quad w^{*}=\max \left\{j: x^{\top} E_{j} x \neq 0\right\}
$$

Brouwer, Godsil, Koolen, WJM (2003): $w+w^{*} \geq d$. Equality (usually) gives a Q-polynomial subscheme which is also a completely regular code.

Examples: subcubes in n-cubes, all k-sets on a t-set in Johnson graphs.

Tanaka (arXiv, Nov. 2010) recently completed the classification of all sets with $w+w^{*}=d$ in the 15 classical families.

Tanaka's Theorem

Brief sketch of a big result:

- $H(m, q)$ inside $H(n, q)$
- $J(n-t, k-t)$ inside $J(n, k)$
- the q-analogues of these (Grassmann and bilinear forms)
- classical polar spaces: $\left[C_{d}(q)\right],\left[B_{d}(q)\right],\left[D_{d}(q)\right],\left[{ }^{2} D_{d+1}(q)\right]$, $\left[{ }^{2} A_{2 d}(\sqrt{q})\right],\left[{ }^{2} A_{2 d-1}(\sqrt{q})\right]$
- twisted Grassmann graphs: what you'd expect
- for Hermitian forms graphs, unitary dual polar graphs (2nd Q-pol. ordering), NONE
- for Alternating forms, Quadratic forms, Half dual polar spaces, halved cubes, Ustimenko: $w=1$ or $w=d-1$

The End

Thank you.

