Dual polar graphs and the quantum algebra $U_q(\mathfrak{sl}_2)$

Chalermpong Worawannotai (Boyd) worawann@math.wisc.edu

University of Wisconsin-Madison

BIRS, April 28, 2011

- The quantum algebra $U_q(\mathfrak{sl}_2)$
- Oistance-regular graphs
- Near polygons
- Oual polar graphs
- A $U_q(\mathfrak{sl}_2)$ -module structure for dual polar graphs

Let $q \in \mathbb{C}$ such that q is not a root of 1.

Definition

Let $U_q(\mathfrak{sl}_2)$ denote the unital associative \mathbb{C} -algebra with generators $k^{\pm 1}$, e, f and the following relations:

$$kk^{-1} = k^{-1}k = 1$$

$$ke = q^{2}ek$$

$$kf = q^{-2}fk$$

$$ef - fe = \frac{k - k^{-1}}{q - q^{-1}}$$

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges. Let D denote the diameter of Γ . Γ is called **distance-regular** whenever for all integers $h, i, j(0 \le h, i, j \le D)$ and for all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\{z \in X | \partial(x, z) = i, \partial(z, y) = j\}|$$

is independent of x and y. The p_{ij}^h are called the **intersection** numbers of Γ .

Let $V = \mathbb{C}^X$. Observe $Mat_X(\mathbb{C})$ acts on V by left multiplication. We call V the **standard module**. For $y \in X$, let \hat{y} denote the element of V with 1 in the y-coordinate and 0 in all other coordinates. For $0 \le i \le D$ let A_i denote the *i*th distance matrix of Γ . We abbreviate $A = A_1$.

Observe

a $A_0 = I$ **b** $\sum_{i=0}^{D} A_i = J$ **c** $\bar{A}_i = A_i$ ($0 \le i \le D$) **a** $A_i^t = A_i$ ($0 \le i \le D$) **a** $A_i^t = A_i$ ($0 \le i \le D$) **b** $A_iA_j = \sum_{h=0}^{D} p_{ij}^hA_h$ ($0 \le i, j \le D$)
Using these facts $\{A_i\}_{i=0}^{D}$ form a basis for a commutative

subalgebra M of $Mat_X(\mathbb{C})$, called the **Bose-Mesner algebra** of Γ . It turns out A generates M. *M* has a second basis $\{E_i\}_{i=0}^D$ such that

$$E_{0} = |X|^{-1}J$$

$$\sum_{i=0}^{D} E_{i} = I$$

$$\overline{E}_{i} = E_{i} \quad (0 \le i \le D)$$

$$E_{i}^{t} = E_{i} \quad (0 \le i \le D)$$

$$E_{i}E_{j} = \delta_{ij}E_{i} \quad (0 \le i, j \le D)$$
We call $\{E_{i}\}_{i=0}^{D}$ the primitive idempotents of

Γ.

Since $\{E_i\}_{i=0}^{D}$ form a basis for M there exists complex scalars $\{\theta_i\}_{i=0}^{D}$ such that $A = \sum_{i=0}^{D} \theta_i E_i$. Observe $AE_i = E_i A = \theta_i E_i$ for $0 \le i \le D$. The scalars $\{\theta_i\}_{i=0}^{D}$ are mutually distinct since A generates M. We call θ_i the **eigenvalue** of Γ associated with E_i . Since $A_i \circ A_j = \delta_{ij}A_i$ for $0 \le i, j \le D$, M is closed under \circ . There exists complex scalars q_{ij}^h $(0 \le h, i, j \le D)$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{ij}^h E_h \qquad (0 \le i, j \le D)$$

We call q_{ij}^h the **Krein parameters** of Γ .

The graph Γ is said to be *Q*-polynomial (with respect to given ordering $\{E_i\}_{i=0}^{D}$ of the primitive idempotents) whenever for $0 \le h, i, j \le D$, $q_{ij}^{h} = 0$ (resp. $q_{ij}^{h} \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two.

Assume Γ is Q-polynomial with respect to $\{E_i\}_{i=0}^{D}$. Fix a vertex $x \in X$. For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1, & \text{if } \partial(x,y) = i \\ 0, & \text{if } \partial(x,y) \neq i \end{cases} \quad (y \in X).$$

We call $\{E_i^*\}_{i=0}^D$ the **dual primitive idempotents** of Γ with respect to *x*.

Observe $E_i^* V = \mathbb{C}$ -span $\{\hat{z} | \partial(x, z) = i\}$.

Observe

•
$$\sum_{i=0}^{D} E_i^* = I$$
 • $\bar{E}_i^* = E_i^*$ $(0 \le i \le D)$
 • $E_i^{*t} = E_i^*$ $(0 \le i \le D)$
 • $E_i^* E_j^* = \delta_{ij} E_i^*$ $(0 \le i, j \le D)$
 From these facts $\{E_i^*\}_{i=0}^{D}$ form a basis for a commutative

subalgebra $M^* = M^*(x)$ of $Mat_X(\mathbb{C})$. Call M^* the **dual Bose-Mesner algebra** of Γ with respect to x. For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(A_i^*)_{yy} = |X|(E_i)_{xy}, \qquad y \in X.$$

Then $\{A_i^*\}_{i=0}^D$ is a basis for M^* such that

•
$$A_0^* = I$$

• $\overline{A}_i^* = A_i^*$ $(0 \le i \le D)$
• $A_i^{*t} = A_i^*$ $(0 \le i \le D)$
• $A_i^* A_j^* = \sum_{h=0}^{D} q_{ij}^h A_h^*$ $(0 \le i, j \le D)$
Abbreviate $A^* = A_1^*$ and call it the **dual adjacency matrix** of Γ
with respect to x .
It turns out A^* generates M^* .

Since $\{E_i^*\}_{i=0}^D$ form a basis for M^* , there exists complex scalars $\{\theta_i^*\}_{i=0}^D$ such that $A^* = \sum_{i=0}^D \theta_i^* E_i^*$. Observe $A^* E_i^* = E_i^* A^* = \theta_i^* E_i^*$ for $0 \le i \le D$. The scalars $\{\theta_i^*\}_{i=0}^D$ are mutually distinct since A^* generates M^* . We call θ_i^* the **dual eigenvalue** of Γ associated with E_i^* . Let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by M and M^* . We call T the **subconstituent algebra** or **Terwilliger algebra** of Γ with respect to x. Observe that A, A^* generate T. Fact: V is a direct sum of irreducible T-modules. Let *W* denote an irreducible *T*-module. Observe $W = \sum_{i=0}^{D} E_i^* W = \sum_{i=0}^{D} E_i W$ (d.s.). Define

•
$$r = min\{i|0 \le i \le D, E_i^*W \ne 0\},$$

• $t = min\{i|0 \le i \le D, E_iW \ne 0\},$

endpoint of *W* dual endpoint of *W* diameter of *W*

•
$$d = |\{i|0 \le i \le D, E_i^*W \ne 0\}| - 1,$$

• $d' = |\{i|0 \le i \le D, E_iW \ne 0\}| - 1$

It turns out that
$$d = d'$$
.

Definition

A connected graph $\Gamma = (X, R)$ of diameter $D \ge 2$ is called a **near** polygon if the following two axioms hold.

(NP1) There are no induced subgraphs of shape K_{1,2,1}.
(NP2) If y ∈ X and M is a maximal clique of Γ with ∂(y, M) < D, then there exists a unique vertex in M nearest to y.

A distance-regular graph Γ is a near polygon if and only if the axiom (NP1) holds and $a_i = a_1c_i$ for $1 \le i \le D$.

In this case we call Γ a **regular near polygon**.

Definition

Let $\Gamma = (X, R)$ denote a regular near polygon. A subgraph G of Γ is called **weak-geodetically closed** whenever for all vertices x, y in G and for all vertices z in X

$$\partial(x,z) + \partial(z,y) \leq \partial(x,y) + 1 \quad \rightarrow \quad z \in G.$$

Definition

Let Γ denote a regular near polygon. A subgraph Q of Γ is called a **quad** whenever Q has diameter 2 and Q is weak-geodetically closed.

- Let *b* denote a prime power.
- Let \mathbb{F}_b denote a finite field of order *b*.
- Let U denote a finite dimensional vector space over \mathbb{F}_b endowed with a symplectic form, a quadratic form, or a Hermitean form.
- A subspace *W* of *U* is called **isotropic** whenever the form vanishes completely on *W*.
- Each maximal isotropic subspace of *U* has same dimension, say *D*.

We define a graph $\Gamma = (X, R)$ where

• X is the set of all maximal isotropic subspaces of U

•
$$R = \{yz \in X^2 | dim(y \cap z) = D - 1\}$$

Γ is distance-transitive so Γ is distance-regular. For $y, z \in X$, $\partial(y, z) = i$ if the only if $dim(y \cap z) = D - i$.

We call Γ a **dual polar graph**.

From now on, fix a dual polar graph $\Gamma = (X, R)$. Fix a vertex x and T = T(x).

Dual polar graphs

 Γ is a *Q*-polynomial with respect to the ordering $\theta_0 > \theta_1 > \ldots > \theta_D$ of eigenvalues. Moreover, the dual eigenvalues are given by

$$heta_i^* = \zeta + \xi b^{-i}$$
 for $0 \le i \le D$,

where

$$\begin{aligned} \zeta &= -\frac{b(b^{D+e-2}+1)}{b-1}, \\ \xi &= \frac{b^2(b^{D+e-2}+1)(b^{D+e-1}+1)}{(b-1)(b^e+b)}. \end{aligned}$$

Raising, flattening and lowering maps

Definition

$$R = \sum_{i=0}^{D-1} E_{i+1}^* A E_i^*$$
raising map
$$F = \sum_{i=0}^{D} E_i^* A E_i^*$$
flattening map
$$L = \sum_{i=1}^{D} E_{i-1}^* A E_i^*$$
lowering map

Observe $F^t = F$ and $R^t = L$.

Raising, flattening and lowering maps

Let $y \in X$ such that $\partial(x, y) = i$.

$$R\hat{y} = \sum_{z \in \Gamma_{i+1}(x) \cap \Gamma(y)} \hat{z}$$
$$F\hat{y} = \sum_{z \in \Gamma_{i}(x) \cap \Gamma(y)} \hat{z}$$
$$L\hat{y} = \sum_{z \in \Gamma_{i-1}(x) \cap \Gamma(y)} \hat{z}$$

Observe that A = R + F + L.

Pick $q \in \mathbb{C}$ such that $b = q^2$.

Definition

$$K = \sum_{i=0}^{D} q^{-2i} E_i^*.$$

Observe K is invertible and

$$A^* = \zeta I + \xi K.$$

R, F, L, K together generate T.

- $I KR = q^{-2}RK.$
- I KF = FK.

$$I KL = q^2 LK.$$

Reminiscent of the defining relations of $U_q(\mathfrak{sl}_2)$. It's almost as $k \approx K, e \approx L, f \approx R$ but not quite.

Pf: Γ is regular near polygon, its quads are classical, has constant line size $a_1 + 2$.

Relations involving R, L

Lemma

$$-\frac{q^4}{q^2+1}RL^2 + LRL - \frac{q^{-2}}{q^2+1}L^2R = q^{2e+2D-2}L, -\frac{q^4}{q^2+1}R^2L + RLR - \frac{q^{-2}}{q^2+1}LR^2 = q^{2e+2D-2}R.$$

Pf: A, A^* satisfy the tridiagonal relation

$$[A, A^2A^* - \beta AA^*A + A^*A^2 - \gamma(AA^* + A^*A) - \varrho A^*] = 0.$$

Summary of relations in T

Chalermpong Worawannotai (Boyd) worawann@math.wisc.edu Dual polar graphs and the quantum algebra $U_q(\mathfrak{sl}_2)$

The central elements C_0 , C_1 , C_2 of T

Definition

Theorem

 C_0, C_1, C_2 generate the center of T.

Let W denote an irreducible T-module with diameter d, endpoint r and dual endpoint t. Then on W

There exist central elements Φ, Ψ of T with the following property. For all irreducible T-module W with endpoint r, dual endpoint tand diameter d, Φ, Ψ act on W as follows:

$$\Phi = q^{r+t+d-D} 1$$
$$\Psi = q^{r-t} 1$$

$$C_2 = \frac{q^{2e-2}}{q^4 - 1} (\Phi \Psi)^{-2}$$

$U_q(\mathfrak{sl}_2)$ -module structure on the standard T-module V

Recall the standard *T*-module $V = \mathbb{C}^X$.

Theorem

There exists a unique $U_q(\mathfrak{sl}_2)$ -module structure on V such that on V

$$k = q^{D} \Phi \Psi K,$$

$$k^{-1} = q^{-D} (\Phi \Psi K)^{-1},$$

$$e = \Phi \Psi KL,$$

$$f = q^{1-2e-D} R.$$