Open Problems Concerning Automorphism Groups of Projective Planes

G. Eric Moorhouse

Department of Mathematics
University of Wyoming
BIRS 25 April 2011

Projective Planes

A projective plane is a point-line incidence structure such that

- every pair of distinct points lies on a common line;
- every pair of distinct lines meets in a common point;
- there exists a quadrangle (four points, no three of which are collinear).
There exists a cardinal number n (finite or infinite), called the order of the plane, such that
- every line has $n+1$ points;
- every point is on $n+1$ lines;
- there are $n^{2}+n+1$ points and the same number of lines.

An automornhism (i e collineation) of a projective plane is a
permutation of the points which preserves collinearity.

Projective Planes

A projective plane is a point-line incidence structure such that

- every pair of distinct points lies on a common line;
- every pair of distinct lines meets in a common point;
- there exists a quadrangle (four points, no three of which are collinear).
There exists a cardinal number n (finite or infinite), called the order of the plane, such that
- every line has $n+1$ points;
- every point is on $n+1$ lines;
- there are $n^{2}+n+1$ points and the same number of lines.

An automorphism (i.e. collineation) of a projective plane is a
permutation of the points which preserves collinearity.

Projective Planes

A projective plane is a point-line incidence structure such that

- every pair of distinct points lies on a common line;
- every pair of distinct lines meets in a common point;
- there exists a quadrangle (four points, no three of which are collinear).
There exists a cardinal number n (finite or infinite), called the order of the plane, such that
- every line has $n+1$ points;
- every point is on $n+1$ lines;
- there are $n^{2}+n+1$ points and the same number of lines.

An automorphism (i.e. collineation) of a projective plane is a permutation of the points which preserves collinearity.

Known planes of small order

Number of planes up to isomorphism (i.e. collineations):

n	number of planes of order n
2	1
3	1
4	1
5	1
7	1
8	1
9	4
11	$\geqslant 1$
13	$\geqslant 1$

n	number of planes of order n
16	$\geqslant 22$
17	$\geqslant 1$
19	$\geqslant 1$
23	$\geqslant 1$
25	$\geqslant 193$
27	$\geqslant 13$
29	$\geqslant 1$
\ldots	\ldots
49	$>280,000$

pzip: A compression utility for finite planes

Storage requirements for a projective plane of order n :

n	size of line sets	size of MOLS	gzipped MOLS	pzip
11	5 KB	1.3 KB	0.2 KB	0.06 KB
25	63 KB	15 KB	9 KB	0.9 KB
49	550 KB	110 KB	81 KB	6 KB

See http://www.uwyo.edu/moorhouse/pzip.html

The Classical Planes

> Let F be a field. Denote by F^{3} a 3-dimensional vector space over F.

The classical projective plane $P^{2}(F)$ has as its points and lines the subspaces of F^{3} of dimension 1 and 2 , respectively. Incidence is inclusion. The order of the plane is $|F|$, finite or infinite.

> The automorphism group of $P^{2}(F)$ is $P \Gamma L_{3}(F)$, which acts 2-transitively on points, and transitively on ordered quadrangles. No known planes have as much symmetry as the classical planes.

The Classical Planes

Let F be a field. Denote by F^{3} a 3-dimensional vector space over F.

The classical projective plane $P^{2}(F)$ has as its points and lines the subspaces of F^{3} of dimension 1 and 2 , respectively. Incidence is inclusion. The order of the plane is $|F|$, finite or infinite.

The automorphism group of $P^{2}(F)$ is $P \Gamma L_{3}(F)$, which acts 2-transitively on points, and transitively on ordered quadrangles. No known planes have as much symmetry as the classical planes.

Let Π be a projective plane, and let $G=\operatorname{Aut}(\Pi)$.

Theorem (Ostrom-Dembowski-Wagner)

In the finite case, Π is classical iff G is 2-transitive on points.

In the infinite case, there exist nonclassical planes whose automorphism group is 2-transitive on points (even transitive on ordered quadrangles).

Let Π be a projective plane, and let $G=\operatorname{Aut}(\Pi)$.

Theorem (Ostrom-Dembowski-Wagner)

In the finite case, Π is classical iff G is 2-transitive on points.

In the infinite case, there exist nonclassical planes whose automorphism group is 2-transitive on points (even transitive on ordered quadrangles).

Subplanes

Consider a classical projective plane $\Pi=P^{2}(F)$.
Every quadrangle in Π generates a subplane isomorphic to $P^{2}(K)$ where K is the prime subfield of F (i.e. \mathbb{F}_{p} or \mathbb{Q}, according to the characteristic of F).

Such a subplane is proper iff $[F: K]>1$.

Subplanes

Open Question

Let Π be a finite projective plane in which every quadrangle generates a proper subplane. Must Π be classical? (necessarily of order p^{r} with $r \geqslant 2$)

The answer is known only in special cases:
If Π is a finite projective plane in which every quadrangle generates a subplane of order 2 , then $\Pi \cong P^{2}\left(\mathbb{F}_{2 r}\right)$ (Gleason, 1956).

If Π is a finite projective plane of order n^{2} in which every quadrangle generates a subplane of order n, then $n=p$ and $\Pi \cong P^{2}\left(\mathbb{F}_{p^{2}}\right)$ (Blokhuis and Sziklai, 2001 for n prime; Kantor and Penttila, 2010 in general)

Subplanes

Open Question

Let Π be a finite projective plane in which every quadrangle generates a proper subplane. Must Π be classical?

(necessarily of order p^{r} with $r \geqslant 2$)

The answer is known only in special cases:
If Π is a finite projective plane in which every quadrangle generates a subplane of order 2 , then $\Pi \cong P^{2}\left(\mathbb{F}_{2 r}\right)$ (Gleason, 1956).

If Π is a finite projective plane of order n^{2} in which every quadrangle generates a subplane of order n, then $n=p$ and $\Pi \cong P^{2}\left(\mathbb{F}_{p^{2}}\right)$ (Blokhuis and Sziklai, 2001 for n prime; Kantor and Penttila, 2010 in general)

Subplanes

Open Question

Let Π be a finite projective plane in which every quadrangle generates a proper subplane. Must Π be classical? (necessarily of order p^{r} with $r \geqslant 2$)

The answer is known only in special cases:
If Π is a finite projective plane in which every quadrangle generates a subplane of order 2 , then $\Pi \cong P^{2}\left(\mathbb{F}_{2 r}\right)$ (Gleason, 1956).

If Π is a finite projective plane of order n^{2} in which every quadrangle generates a subplane of order n, then $n=p$ and $\Pi \cong P^{2}\left(\mathbb{F}_{p^{2}}\right)$ (Blokhuis and Sziklai, 2001 for n prime; Kantor and Penttila, 2010 in general).

Point Orbits and Line Orbits

Consider a projective plane Π with automorphism group $G=\operatorname{Aut}(\Pi)$.

Theorem (Brauer, 1941)

In the finite case, G has equally many orbits on points and on lines.
\square
Open Problem (attributed to Kantor)
In the general case, must G have equally many orbits on points
and on lines?

Point Orbits and Line Orbits

Consider a projective plane Π with automorphism group $G=\operatorname{Aut}(\Pi)$.

Theorem (Brauer, 1941)

In the finite case, G has equally many orbits on points and on lines.

Open Problem (attributed to Kantor)

In the general case, must G have equally many orbits on points and on lines?

Orbits on n-tuples of Points

In the classical case $\Pi=P^{2}(F), G$ has

- 1 orbit on points;
- 1 orbit on ordered pairs of distinct points;
- 2 orbits on ordered triples of distinct points;
- $O(|F|)$ orbits on ordered 4 -tuples of distinct points. (In the case of collinear 4 -tuples, consider the cross-ratio.)

> Open Problem
> Does there exist an infinite plane with only finitely many orbits on k-tuples of distinct points for every $k \geqslant 1$?

[^0]
Orbits on n-tuples of Points

In the classical case $\Pi=P^{2}(F), G$ has

- 1 orbit on points;
- 1 orbit on ordered pairs of distinct points;
- 2 orbits on ordered triples of distinct points;
- $O(|F|)$ orbits on ordered 4-tuples of distinct points. (In the case of collinear 4-tuples, consider the cross-ratio.)

Open Problem

Does there exist an infinite plane with only finitely many orbits on k-tuples of distinct points for every $k \geqslant 1$?

Even for $k=4$ this is open.

Orbits on n-tuples of Points

In the classical case $\Pi=P^{2}(F), G$ has

- 1 orbit on points;
- 1 orbit on ordered pairs of distinct points;
- 2 orbits on ordered triples of distinct points;
- $O(|F|)$ orbits on ordered 4-tuples of distinct points. (In the case of collinear 4-tuples, consider the cross-ratio.)

Open Problem

Does there exist an infinite plane with only finitely many orbits on k-tuples of distinct points for every $k \geqslant 1$?

Even for $k=4$ this is open.

\aleph_{0}-categorical planes

A permutation group G on X is oligomorphic if G has finitely many orbits on X^{k} for each $k \geqslant 1$. See Cameron (1990).
(Taking k-tuples of points in X, or k-tuples of distinct points, doesn't matter.)

Open Question
 Does there exist an infinite projective plane Π admitting a group $G \leqslant \operatorname{Aut}(\Pi)$ which is oligomorphic on points? (equivalently, on lines)

If such a plane exists, we may assume (by the Löwenheim-Skolem Theorem) that its order is \aleph_{0} (countably infinite). Such a plane is called \aleph_{0}-categorical

\aleph_{0}-categorical planes

A permutation group G on X is oligomorphic if G has finitely many orbits on X^{k} for each $k \geqslant 1$. See Cameron (1990).
(Taking k-tuples of points in X, or k-tuples of distinct points, doesn't matter.)

Open Question

Does there exist an infinite projective plane Π admitting a group $G \leqslant \operatorname{Aut}(\Pi)$ which is oligomorphic on points? (equivalently, on lines).

> If such a plane exists, we may assume (by the Löwenheim-Skolem Theorem) that its order is \aleph_{0} (countably infinite). Such a plane is called \aleph_{0}-categorical.

\aleph_{0}-categorical planes

A permutation group G on X is oligomorphic if G has finitely many orbits on X^{k} for each $k \geqslant 1$. See Cameron (1990).
(Taking k-tuples of points in X, or k-tuples of distinct points, doesn't matter.)

Open Question

Does there exist an infinite projective plane Π admitting a group $G \leqslant \operatorname{Aut}(\Pi)$ which is oligomorphic on points? (equivalently, on lines).

If such a plane exists, we may assume (by the Löwenheim-Skolem Theorem) that its order is \aleph_{0} (countably infinite). Such a plane is called \aleph_{0}-categorical.

\aleph_{0}-categorical planes

From now on, assume Π is an \aleph_{0}-categorical projective plane, and let $G \leqslant \operatorname{Aut}(\Pi)$ be oligomorphic on points.

Useful fact: In an oligomorphic group G, the stabilizer of any finite point set is also oligomorphic.

Lemma
 Every finite substructure S © Π lies in a finite subplane.

> Proof.
> Let $G_{(S)} \leqslant G$ be the pointwise stabilizer of S. Then $G_{(S)}$ fixes pointwise the substructure $\langle S\rangle$ generated by S. This subsiruciure must be finite, otherwise $G_{(S)}$ has infinitely many fixed points, hence infinitely many orbits.

\aleph_{0}-categorical planes

From now on, assume Π is an \aleph_{0}-categorical projective plane, and let $G \leqslant \operatorname{Aut}(\Pi)$ be oligomorphic on points.

Useful fact: In an oligomorphic group G, the stabilizer of any finite point set is also oligomorphic.

Lemma

Every finite substructure $S \subset \Pi$ lies in a finite subplane.

Proof.

Let $G_{(S)} \leqslant G$ be the pointwise stabilizer of S. Then $G_{(S)}$ fixes pointwise the substructure $\langle S\rangle$ generated by S. This substructure must be finite, otherwise $G_{(S)}$ has infinitely many fixed points, hence infinitely many orbits.

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Without loss of generality, G fixes pointwise a finite subplane $\Pi_{0} \subset \Pi$. (Otherwise replace G by the oligomorphic subgroup $G_{(S)}$ where S is a quadrangle.)
Consider a point $P \in \Pi$. We say

Dually classify lines of П as type I, II or III.

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Without loss of generality, G fixes pointwise a finite subplane $\Pi_{0} \subset \Pi$. (Otherwise replace G by the oligomorphic subgroup $G_{(S)}$ where S is a quadrangle.)
Consider a point $P \in \Pi$. We say

- P is of type I if $P \in \Pi_{0}$;
- P is of type II if $P \notin \Pi_{0}$ but P lies on a line of Π_{0};
- P is of type III if P lies on no line of Π_{0}.

Dually classify lines of Π as type I, II or III.

The Burnside Ring $\mathfrak{B}(G)$

Two G-sets X and Y are equivalent if there exists a G-equivariant bijection $\theta: X \rightarrow Y$, i.e. $\theta\left(x^{g}\right)=\theta(x)^{g}$ for all $x \in X, g \in G$.

The equivalence class of a G-set X is denoted $[X]$.
Given G-sets X and Y, the disjoint union $X \uplus Y$ and Cartesian product $X \times Y$ are G-sets.

The Burnside ring $\mathfrak{B}(G)$ is the \mathbb{Z}-algebra consisting of formal sums $\sum_{[X]} c_{[X]}[X], c_{[X]} \in \mathbb{Z}$ (almost all zero), where

The Burnside Ring $\mathfrak{B}(G)$

Two G-sets X and Y are equivalent if there exists a G-equivariant bijection $\theta: X \rightarrow Y$, i.e. $\theta\left(x^{g}\right)=\theta(x)^{g}$ for all $x \in X, g \in G$.

The equivalence class of a G-set X is denoted $[X]$.
Given G-sets X and Y, the disjoint union $X \uplus Y$ and Cartesian product $X \times Y$ are G-sets.

The Burnside ring $\mathfrak{B}(G)$ is the \mathbb{Z}-algebra consisting of formal sums $\sum_{[X]} c_{[X]}[X], c_{[X]} \in \mathbb{Z}$ (almost all zero), where $[X]+[Y]=[X \uplus Y], \quad[X][Y]=[X \times Y]$

The Burnside Ring $\mathfrak{B}(G)$

Two G-sets X and Y are equivalent if there exists a G-equivariant bijection $\theta: X \rightarrow Y$, i.e. $\theta\left(x^{g}\right)=\theta(x)^{g}$ for all $x \in X, g \in G$.

The equivalence class of a G-set X is denoted $[X]$.
Given G-sets X and Y, the disjoint union $X \uplus Y$ and Cartesian product $X \times Y$ are G-sets.

The Burnside ring $\mathfrak{B}(G)$ is the \mathbb{Z}-algebra consisting of formal sums $\sum_{[X]} c_{[X]}[X], c_{[X]} \in \mathbb{Z}$ (almost all zero), where

$$
[X]+[Y]=[X \uplus Y], \quad[X][Y]=[X \times Y]
$$

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Let P and ℓ be a point and line of Π_{0}.
The set I_{ℓ} of type II points of ℓ is a G-set; as is the set I_{P} of type II lines through P.

Lemma
$\left[I I_{D}\right]=\left[I I_{\ell}\right]$, independent of the choice of point P and line l

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Let P and ℓ be a point and line of Π_{0}.
The set I_{ℓ} of type II points of ℓ is a G-set; as is the set I_{P} of type II lines through P.

Lemma

$\left[I I_{P}\right]=\left[I I_{\ell}\right]$, independent of the choice of point P and line ℓ of Π_{0}.

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Denote by III the G-set consisting of all type III points. Dually, III is the G-set consisting of all type III lines.

Lemma

Let ℓ be a line of Π_{0}. Then $\left[I I_{\ell}\right]^{2}=[\tilde{I I}]+c\left[I I_{\ell}\right]$ where $c=n_{0}\left(n_{0}-1\right), n_{0}=$ order of Π_{0}.

$$
\begin{aligned}
& (R, S) \mapsto R S \\
& \left\|_{\ell} \times\right\|_{\ell^{\prime}} \rightarrow \widetilde{I I} \uplus\left(\underset{\substack{O \in 0_{0} ; \\
O \notin \cup \cup \ell^{\prime}}}{\biguplus} \|_{O}\right)
\end{aligned}
$$

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Lemma

Let ℓ be a line of Π_{0}. Then $\left[I I_{\ell}\right]^{2}=[\tilde{I I}]+c\left[I I_{\ell}\right]$ where $c=n_{0}\left(n_{0}-1\right), n_{0}=$ order of Π_{0}.

Corollary

$[\widetilde{I I I}]=[I I I]$ and $\left[I I_{\ell}\right]^{2}=[I I I]+c\left[I_{\ell}\right]$

Proof.

Dualising the previous lemma,

$$
[I I I]+c\left[I I_{\ell}\right]=[I I \ell]^{2}=[\widetilde{I I I}]+c\left[I I_{\ell}\right] .
$$

Cancellation of the $c\left[I_{\ell}\right]$ terms is justified in $\mathfrak{B}(G)$.

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Let $\nu_{m, n}=$ number of G-orbits on $I I_{\ell}^{m} \times I I I^{n}$.

Lemma

For all $m, n \geqslant 0$, we have $\nu_{m+2, n}=\nu_{m, n+1}+c \nu_{m+1, n}$.

Proof.

$$
\begin{aligned}
{\left[I I_{\ell}\right]^{m+2}[I I]^{n} } & =[I I]^{m}\left([I I]^{2}+c\left[I I_{\ell}\right]\right)[I I]^{n} \\
& =\left[I I_{\ell}\right]^{m}[I I]^{n+1}+c\left[I I_{\ell}\right]^{m+1}[I I]^{n}
\end{aligned}
$$

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

The previous recurrence for

$$
\nu_{m, n}=\text { number of } G \text {-orbits on }\left\|I_{\ell}^{m} \times\right\| I^{n}
$$

is rephrased in terms of the generating function

$$
F(s, t)=\sum_{m, n \geqslant 0} \nu_{m, n} s^{m} t^{n}
$$

as follows.
Lemma

$$
\begin{aligned}
& F(s, t)=\sum_{k \geqslant 0}\left(a_{k}+b_{k} s\right) F_{k}(s, t) \text { where } \\
& \quad F_{k}(s, t)=\frac{1}{(1-c s) t-s^{2}}\left[t^{k+1}-\frac{s^{2(k+1)}}{(1-c s)^{k+1}}\right] .
\end{aligned}
$$

Π an \aleph_{0}-categorical projective plane, $G \leq \operatorname{Aut}(\Pi)$ oligomorphic

Theorem

Under our assumption (existence of an \aleph_{0}-categorical projective plane), there exist (infinitely many) finite nonclassical projective planes, in which every quadrangle generates a proper subplane.

Proof (Sketch).

Without loss of generality, the subplane $\Pi_{0} \subset \Pi$ is nonclassical. Let M be the maximum order of a subplane of the form $\left\langle\Pi_{0}, P, Q, R, S\right\rangle$ where (P, Q, R, S) is a quadrangle of Π. Any subplane of Π containing Π_{0} of order exceeding M, has the required property.

Subplanes of known planes

In all known cases of a finite projective plane of order n with a subplane of order n_{0}, we have

- $n=n_{0}^{r}$ for some $r \geqslant 1$; or
- $n_{0} \in\{2,3\}$.

Moreover, subplanes of order 3 are rare unless $n=3^{r}$.
Hopes for an \aleph_{0}-categorical plane do not look bright!

Subplanes of known planes

In all known cases of a finite projective plane of order n with a subplane of order n_{0}, we have

- $n=n_{0}^{r}$ for some $r \geqslant 1$; or
- $n_{0} \in\{2,3\}$.

Moreover, subplanes of order 3 are rare unless $n=3^{r}$.
Hopes for an \aleph_{0}-categorical plane do not look bright!

Thank You!

Questions?

[^0]: Even for $k=4$ this is open.

