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Projective Planes

A projective plane is a point-line incidence structure such that

every pair of distinct points lies on a common line;

every pair of distinct lines meets in a common point;

there exists a quadrangle (four points, no three of which

are collinear).

There exists a cardinal number n (�nite or in�nite), called the

order of the plane, such that

every line has n + 1 points;

every point is on n + 1 lines;

there are n2 + n + 1 points and the same number of lines.

An automorphism (i.e. collineation) of a projective plane is a

permutation of the points which preserves collinearity.
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Known planes of small order

Number of planes up to isomorphism (i.e. collineations):

n
number of
planes of
order n

2 1

3 1

4 1

5 1

7 1

8 1

9 4

11 > 1

13 > 1

n
number of
planes of
order n

16 > 22

17 > 1

19 > 1

23 > 1

25 > 193

27 > 13

29 > 1

� � � � � �

49 > 280,000
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pzip: A compression utility for �nite planes

Storage requirements for a projective plane of order n:

n
size of

line sets
size of
MOLS

gzipped

MOLS
pzip

11 5 KB 1:3 KB 0:2 KB 0:06 KB

25 63 KB 15 KB 9 KB 0:9 KB

49 550 KB 110 KB 81 KB 6 KB

See http://www.uwyo.edu/moorhouse/pzip.html
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The Classical Planes

Let F be a �eld. Denote by F 3 a 3-dimensional vector space

over F .

The classical projective plane P2(F ) has as its points and lines

the subspaces of F 3 of dimension 1 and 2, respectively.

Incidence is inclusion. The order of the plane is jF j, �nite or

in�nite.

The automorphism group of P2(F ) is P�L3(F ), which acts

2-transitively on points, and transitively on ordered

quadrangles. No known planes have as much symmetry as the

classical planes.
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Let � be a projective plane, and let G = Aut(�).

Theorem (Ostrom-Dembowski-Wagner)

In the �nite case, � is classical iff G is 2-transitive on points.

In the in�nite case, there exist nonclassical planes whose

automorphism group is 2-transitive on points (even transitive on

ordered quadrangles).
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Subplanes

Consider a classical projective plane � = P2(F ).

Every quadrangle in � generates a subplane isomorphic to

P2(K ) where K is the prime sub�eld of F (i.e. Fp or Q,

according to the characteristic of F ).

Such a subplane is proper iff [F : K ] > 1.
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Subplanes

Open Question

Let � be a �nite projective plane in which every quadrangle

generates a proper subplane. Must � be classical?

(necessarily of order pr with r > 2)

The answer is known only in special cases:

If � is a �nite projective plane in which every quadrangle

generates a subplane of order 2, then � �= P2(F2r ) (Gleason,

1956).

If � is a �nite projective plane of order n2 in which every

quadrangle generates a subplane of order n, then n = p and

� �= P2(Fp2) (Blokhuis and Sziklai, 2001 for n prime; Kantor and

Penttila, 2010 in general).
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@0-categorical planes

Point Orbits and Line Orbits

Consider a projective plane � with automorphism group

G = Aut(�).

Theorem (Brauer, 1941)

In the �nite case, G has equally many orbits on points and on

lines.

Open Problem (attributed to Kantor)

In the general case, must G have equally many orbits on points

and on lines?
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@0-categorical planes

Orbits on n-tuples of Points

In the classical case � = P2(F ), G has

1 orbit on points;

1 orbit on ordered pairs of distinct points;

2 orbits on ordered triples of distinct points;

O(jF j) orbits on ordered 4-tuples of distinct points. (In the

case of collinear 4-tuples, consider the cross-ratio.)

Open Problem

Does there exist an in�nite plane with only �nitely many orbits

on k -tuples of distinct points for every k > 1?

Even for k = 4 this is open.
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@0-categorical planes

A permutation group G on X is oligomorphic if G has �nitely

many orbits on X k for each k > 1. See Cameron (1990).

(Taking k -tuples of points in X , or k -tuples of distinct points,

doesn’t matter.)

Open Question

Does there exist an in�nite projective plane � admitting a group

G 6 Aut(�) which is oligomorphic on points? (equivalently, on

lines).

If such a plane exists, we may assume (by the

Löwenheim-Skolem Theorem) that its order is @0 (countably

in�nite). Such a plane is called @0-categorical.
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@0-categorical planes

From now on, assume � is an @0-categorical projective plane,

and let G 6 Aut(�) be oligomorphic on points.

Useful fact: In an oligomorphic group G, the stabilizer of any

�nite point set is also oligomorphic.

Lemma

Every �nite substructure S � � lies in a �nite subplane.

Proof.

Let G(S) 6 G be the pointwise stabilizer of S. Then G(S) �xes

pointwise the substructure hSi generated by S. This

substructure must be �nite, otherwise G(S) has in�nitely many

�xed points, hence in�nitely many orbits.
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� an @0-categorical projective plane,

G � Aut(�) oligomorphic

Without loss of generality, G �xes pointwise a �nite subplane

�0 � �. (Otherwise replace G by the oligomorphic subgroup

G(S) where S is a quadrangle.)

Consider a point P 2 �. We say

P is of type I if P 2 �0;

P is of type II if P =2 �0 but P lies on a line of �0;

P is of type III if P lies on no line of �0.

Dually classify lines of � as type I, II or III.
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@0-categorical planes

The Burnside Ring B(G)

Two G-sets X and Y are equivalent if there exists a

G-equivariant bijection � : X ! Y , i.e. �(xg) = �(x)g for all

x 2 X , g 2 G.

The equivalence class of a G-set X is denoted [X ].

Given G-sets X and Y , the disjoint union X ] Y and Cartesian

product X � Y are G-sets.

The Burnside ring B(G) is the Z-algebra consisting of formal

sums
P

[X ] c[X ][X ], c[X ] 2 Z (almost all zero), where

[X ] + [Y ] = [X ] Y ]; [X ][Y ] = [X � Y ]:
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� an @0-categorical projective plane,

G � Aut(�) oligomorphic

Let P and ‘ be a point and line of �0.

The set II‘ of type II points of ‘ is a G-set; as is the set IIP of

type II lines through P.

Lemma

[IIP] = [II‘], independent of the choice of point P and line ‘
of �0.
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� an @0-categorical projective plane,

G � Aut(�) oligomorphic

Denote by III the G-set consisting of all type III points. Dually,
eIII is the G-set consisting of all type III lines.

Lemma

Let ‘ be a line of �0. Then [II‘]
2 = [ eIII] + c[II‘]

where c = n0(n0 � 1), n0 = order of �0.

(R; S) 7! RS

II‘ � II‘0 ! eIII ]
� U

O2�0;
O =2‘[‘0

IIO

�
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� an @0-categorical projective plane,

G � Aut(�) oligomorphic

Lemma

Let ‘ be a line of �0. Then [II‘]
2 = [ eIII] + c[II‘]

where c = n0(n0 � 1), n0 = order of �0.

Corollary

[ eIII] = [III] and [II‘]
2 = [III] + c[II‘]

Proof.

Dualising the previous lemma,

[III] + c[II‘] = [II‘]
2 = [ eIII] + c[II‘]:

Cancellation of the c[II‘] terms is justi�ed in B(G).
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� an @0-categorical projective plane,

G � Aut(�) oligomorphic

Let �m;n = number of G-orbits on IIm
‘ � IIIn.

Lemma

For all m; n > 0, we have �m+2;n = �m;n+1 + c�m+1;n .

Proof.

[II‘]
m+2[III]n = [II‘]

m
�
[III] + c[II‘]

�
[III]n

= [II‘]
m[III]n+1 + c[II‘]

m+1[III]n:
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� an @0-categorical projective plane,

G � Aut(�) oligomorphic

The previous recurrence for

�m;n = number of G-orbits on IIm
‘ � IIIn

is rephrased in terms of the generating function

F (s; t) =
X

m;n>0

�m;nsmtn

as follows.

Lemma

F (s; t) =
P
k>0

(ak + bks)Fk (s; t) where

Fk (s; t) =
1

(1 � cs)t � s2

�
tk+1 �

s2(k+1)

(1 � cs)k+1

�
:
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� an @0-categorical projective plane,

G � Aut(�) oligomorphic

Theorem

Under our assumption (existence of an @0-categorical

projective plane), there exist (in�nitely many) �nite nonclassical

projective planes, in which every quadrangle generates a

proper subplane.

Proof (Sketch).

Without loss of generality, the subplane �0 � � is nonclassical.

Let M be the maximum order of a subplane of the form

h�0; P; Q; R; Si where (P; Q; R; S) is a quadrangle of �. Any

subplane of � containing �0 of order exceeding M , has the

required property.
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