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Outline

Introduction of EKR problem in polar spaces

Approach using algebraic graph theory

Exceptional cases

Extras: Open problems & other ideas
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Polar spaces

Constructing classical polar spaces

Consider V (n, q) and a non-singular quadratic, alternating or
Hermitian form f .

A subspace is totally isotropic (t.i.) if f vanishes on it.

Consider all totally isotropic subspaces,
and let 2 be incident if one strictly includes the other.

This incidence structure is a classical polar space,
with rank = maximal dimension d of the t.i. subspaces.

Particular types of objects

points: totally isotropic 1-spaces

lines: totally isotropic 2-spaces

maximals: totally isotropic d-spaces
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Polar spaces

Types of classical finite polar spaces

Polar space has parameters (s, t) = (s, se) if:

every line contains s+ 1 points

every t.i. (d− 1)-space is in exactly t+ 1 maximals

(s, t) e

Q+(2d− 1, q) Dd(q) (q, 1) 0

H(2d− 1, q2) 2A2d−1(q) (q2, q) 1/2

Q(2d, q) Bd(q) (q, q) 1

W (2d− 1, q) Cd(q) (q, q) 1

H(2d, q2) 2A2d(q) (q2, q3) 3/2

Q−(2d+ 1, q) 2Dd+1(q) (q, q2) 2
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The problem

Erdős-Ko-Rado or EKR set of maximals =
set of maximal t.i. subspaces pairwise intersecting non-trivially

1 How large can an EKR set be?

2 If is that large, how is it constructed?

Good candidate
Point-pencil: set of maximals through fixed isotropic 1-space (=point) !
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Graph-theoretic approach

Related graphs

Original EKR problem for subsets =⇒ Johnson graph

EKR for subspaces =⇒ Grassmann graph

EKR for polar spaces =⇒ dual polar graph!

Frédéric Vanhove (Ghent University) EKR problems in polar spaces 26 April 2011, Banff 6 / 25



EKR problem in polar spaces Algebraic graph theory approach Exceptional cases Extra

Graph-theoretic approach

Dual polar graph

Consider polar space of rank d with parameters (q, qe):

vertices: maximals (t.i. d-spaces)

adjacency: when intersection is (d− 1)-space

Some properties

number of vertices: (qe + 1) · · · (qd−1+e + 1), valency: qe
( qd−1
q−1

)
two d-spaces are at distance i ⇐⇒ dim(π ∩ π′) = d− i
Γ has diameter d and is distance-regular : if d(x, y) = k
then # z with d(x, z) = i, d(y, z) = j is constant pkij :

x

d(x,z)=i ??
??

??
??
d(x,y)=k

y

z
d(y,z)=j

�������
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Graph-theoretic approach

Some properties (continued)

Consider polar space of rank d with parameters (q, qe):

Maximal clique of dual polar graph =
all qe + 1 maximals through fixed (d− 1)-space
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Graph-theoretic approach

Observations on maximal EKR set S
Consider polar space of rank d with parameters (q, qe):

Each maximal clique has 0, 1 or all its qe + 1 elements in S
(external, tangent or secant (d− 1)-spaces)

Every π in S has s-dimensional subspace πs,
such that (d− 1)-space µ in π is secant ⇐⇒ πs ⊆ µ:

π ∈ S then has exactly qe
( qd−s−1

q−1

)
neighbours in S.
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Eigenspaces

Consider a polar space of rank d with parameters (q, qe) ,
with set of maximals Ω.

For every i ∈ {0, . . . , d}: adjacency matrix Ai is (0, 1)-matrix
with (Ai)π1,π2 = 1⇐⇒ d(π1, π2) = i, (Ai)π1,π2 = 0 if not.

There is a unique orthogonal decomposition

RΩ = V0 ⊥ · · · ⊥ Vd,

where Vj is an eigenspace for all Ai.

eigenvalues of dual polar graph = eigenvalues of A1 :

qe
(
qd−j − 1

q − 1

)
− qj − 1

q − 1
for Vj .

For a subset S ⊆ Ω: characteristic vector χS :

χS = (1, 1, 0, . . . , 1, 0, 1)T ,

with (χS)ω = 1 if ω ∈ S, (χS)ω = 0 if ω /∈ S.
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Upper bound

In polar space of rank d:
EKR set of maximals S
= set of pairwise non-trivially intersecting maximals
= set of vertices in dual polar graph Γ, no two at distance d
= cocliques of maximum distance relation w.r.t Γ

Stanton (1980) used Hoffman’s eigenvalue bound for |S|
Equality =⇒ χS is in the span of few eigenspaces!

For most types of polar spaces:

Upper bound = size of point-pencil EKR set

Equality =⇒ χS ∈ (V0 ⊥ V1)
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General theory

Consider a non-empty subset S in any distance-regular graph Γ.

Width w
w: maximal distance between elements of S

Dual width w∗

If there is a Q-polynomial (“meaningful”) ordering of eigenspaces for Γ.

RΩ = V0 ⊥ · · · ⊥ Vd

w∗: minimal index for which:

χS ∈ V0 ⊥ · · · ⊥ Vw∗ .

EKR sets of maximals = subsets in dual polar graph with w < d !
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General theory

Known results

Brouwer-Godsil-Koolen-Martin (2003):
subsets with w + w∗ = d yield induced subschemes

Tanaka (2006):
classification of all sets with w + w∗ = d in dual polar graphs

Some immediate consequences

In most polar spaces, if S has width w ≤ d− 1:

|S| ≤ size point-pencil construction,

equality =⇒ χS ∈ V0 ⊥ V1 (i.e. dual width w∗ = 1),

=⇒ EKR sets of maximum size = point-pencils !
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Hyperbolic quadric

Hyperbolic quadric Dd(q)/Q
+(2d− 1, q) for even d

Upper bound for EKR set S = 2(q + 1) · · · (qd−2 + 1)
= size point-pencil construction

equality =⇒ χS ∈ V0 ⊥ V1 ⊥ Vd−1

but here the dual polar graph is bipartite!

Solution: use half dual polar graph

set of vertices: one half

adjacency: when at distance 2 in original graph

distance-regular with diameter d′ = d/2

New approach

We look for EKR sets of size (q + 1) · · · (qd−2 + 1) in each half.

Here they satisfy w + w∗ = d′ with w = 1 and w∗ = d′ − 1.
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Hyperbolic quadric

EKR sets of maximum size in one half of Dd(q)/Q
+(2d− 1, q)

∀π ∈ S: we can count those in S intersecting π in a 2-space (=line)

Using w + w∗ = diameter =⇒ the 2-spaces intersect non-trivially,

and there are at least (qd−1−1)(qd−2−1)
(q2−1)(q−1)

such lines:

Erdős-Ko-Rado for vector space V (d, q):
for d ≥ 6: they are the lines through fixed 1-space (=point)

Frédéric Vanhove (Ghent University) EKR problems in polar spaces 26 April 2011, Banff 15 / 25



EKR problem in polar spaces Algebraic graph theory approach Exceptional cases Extra

Symplectic space

The symplectic space Cd(q)/W (2d− 1, q) for odd d

Upper bound for |S|: size of a point-pencil but...

equality =⇒ χS ∈ V0 ⊥ V1 ⊥ Vd
Same parameters as parabolic quadric Bd(q)/Q(2d, q),
but not isomorphic for odd q....

Approach

Eigenspace Vd =
kernel incidence matrix between (d− 1)-spaces and d-spaces

=⇒ counting elements in S w.r.t (d− 1)-spaces is easier

similar ideas by Calderbank-Delsarte (1993) and Delsarte (2004)
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Symplectic space

The symplectic space Cd(q)/W (2d− 1, q) for odd d

Recall: every (d− 1)-space has 0, 1 or q + 1 of the d-spaces
through it in the maximal EKR set (external, tangent or secant)

∀π ∈ S: there is an s-space πs in all secant (d− 1)-spaces in π.
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Symplectic space

The symplectic space Cd(q)/W (2d− 1, q) for odd d

Recall: every (d− 1)-space has 0, 1 or q + 1 of the d-spaces
through it in the maximal EKR set (external, tangent or secant)

∀π ∈ S: there is an s-space πs in all secant (d− 1)-spaces in π.

counting w.r.t. to (d− 1)-spaces µ: secant (d− 1)-space intersects
exactly (q + 1)q(d−2)(d+1)/2 element of S in just a 1-space

algebraic property of χS =⇒ π itself intersects
exactly qd(d−1)/2−s+1

( qs−1
q−1

)
elements of S in just a 1-space

if 0 ≤ s ≤ d− 1, then a (d− 1)-space µ with πs ⊆ µ ⊂ π is secant,
and every element of S intersecting π in 1-space
also intersects µ in 1-space:
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Symplectic space

The symplectic space Cd(q)/W (2d− 1, q) for odd d

Recall: every (d− 1)-space has 0, 1 or q + 1 of the d-spaces
through it in the maximal EKR set (external, tangent or secant)

∀π ∈ S: there is an s-space πs in all secant (d− 1)-spaces in π.

counting w.r.t. to (d− 1)-spaces µ: secant (d− 1)-space intersects
exactly (q + 1)q(d−2)(d+1)/2 element of S in just a 1-space

algebraic property of χS =⇒ π itself intersects
exactly qd(d−1)/2−s+1

( qs−1
q−1

)
elements of S in just a 1-space

if 0 ≤ s ≤ d− 1, then a (d− 1)-space µ with πs ⊆ µ ⊂ π is secant,
and every element of S intersecting π in 1-space
also intersects µ in 1-space:

qd(d−1)/2−s+1
(qs − 1

q − 1

)
≤ (q + 1)q(d−2)(d+1)/2

... or: 0 ≤ s ≤ 2.
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Conclusion

Classification of EKR sets
(i.e. subsets of maximal totally isotropic subspaces,

pairwise intersecting non-trivially)
of maximum size in all polar spaces...

...except for 2A2d−1(q)/H(2d− 1, q2) for odd d ≥ 5.
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Remaining open case

2A2d−1(q)/H(2d− 1, q2) for odd d

size point-pencil construction: |Ω|/(q2d−1 + 1)

Hoffman bound: EKR set S satisfies |S| ≤ |Ω|/(qd + 1),
with equality iff χS ∈ V0 ⊥ Vd

Small rank d

d = 3: EKR set of maximum size:
one 3-space + all those intersecting it in line (1-sphere in graph)

d = 5:
size point-pencil ∼ q16,
Delsarte’s linear programming bound: ∼ q17,
Hoffman bound: ∼ q20
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Other approaches

Alternative approach to symplectic Cd(q)/W (2d− 1, q) for odd d

Here EKR set S of maximum size satisfies: χS ∈ V0 ⊥ V1 ⊥ Vd
Ustimenko graph:
same vertices as dual polar graph Cd(q)/W (2d− 1, q),
adjacency: when at distance 1 or 2 in dual polar graph

EKR set S of maximum size:
sets with w∗ = 1 and w + w∗ = diameter in Ustimenko graph

Tanaka (2010): classified all sets with w + w∗ = diameter
in 15 families of graphs, including Ustimenko graphs
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Other approaches

Alternative approach to symplectic Cd(q)/W (2d− 1, q) for odd d?

From parameters Bd(q)/Q(2d, q) or Cd(q)/W (2d− 1, q):
EKR set S of maximum size with no adjacent vertices
all elements of S at even distance

Construction exists for Bd(q)/Q(2d, q) with d odd,
but how to prove that for odd q there is no analog in
Cd(q)/W (2d− 1, q)?

Suda (2010): “dual zero intervals” =⇒ S induces a scheme

...?
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Other problems

More general problem

Instead of demanding every two elements intersect non-trivially....
t-intersecting : any two intersect in at least a t-space

t-intersecting set of maximal totally isotropic subspaces =
set with no two at distance more than d− t in dual polar graph

Linear programming bound

Usually much higher than known constructions!

In some cases only integer for few q!
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Other problems

Thank you for your attention!
Slides (and more) on http://cage.ugent.be/~fvanhove

Frédéric Vanhove (Ghent University) EKR problems in polar spaces 26 April 2011, Banff 25 / 25

http://cage.ugent.be/~fvanhove

	EKR problem in polar spaces
	Polar spaces
	The problem

	Algebraic graph theory approach
	Graph-theoretic approach
	Eigenspaces
	Upper bound
	General theory

	Exceptional cases
	Hyperbolic quadric
	Symplectic space
	Conclusion

	Extra
	Remaining open case
	Other approaches
	Other problems


