EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	0000000	00000

Erdős-Ko-Rado problems in polar spaces

Frédéric Vanhove Ghent University (Belgium) fvanhove@cage.ugent.be, http://cage.ugent.be/~fvanhove (joint work with Valentina Pepe and Leo Storme)

26 April 2011, Banff

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	0000000	00000

Outline

- Introduction of EKR problem in polar spaces
- Approach using algebraic graph theory
- Exceptional cases
- Extras: Open problems & other ideas

EKR problem in polar spaces $\bullet \circ \circ$	Algebraic graph theory approach 00000000	Exceptional cases 0000000	Extra 00000
Polar spaces			

Constructing classical polar spaces

- Consider V(n,q) and a non-singular quadratic, alternating or Hermitian form f.
- A subspace is *totally isotropic* (t.i.) if f vanishes on it.
- Consider all totally isotropic subspaces, and let 2 be incident if one strictly includes the other.
- This incidence structure is a classical polar space,
 with rank = maximal dimension d of the t.i. subspaces.

Particular types of objects

- *points*: totally isotropic 1-spaces
- *lines*: totally isotropic 2-spaces
- *maximals*: totally isotropic *d*-spaces

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	0000000	00000
Polar spaces			

Types of classical finite polar spaces

Polar space has parameters $(s,t) = (s,s^e)$ if:

- every line contains s + 1 points
- every t.i. (d-1)-space is in exactly t+1 maximals

		(s,t)	e
$Q^+(2d-1,q)$	$D_d(q)$	(q,1)	0
$H(2d-1,q^2)$	${}^{2}A_{2d-1}(q)$	(q^2,q)	1/2
Q(2d,q)	$B_d(q)$	(q,q)	1
W(2d-1,q)	$C_d(q)$	(q,q)	1
$H(2d,q^2)$	$^{2}A_{2d}(q)$	(q^2, q^3)	3/2
$Q^{-}(2d+1,q)$	$^{2}D_{d+1}(q)$	(q,q^2)	2

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
00•	0000000	0000000	00000
The problem			

Erdős-Ko-Rado or EKR set of maximals =

set of maximal t.i. subspaces pairwise intersecting non-trivially

- 1 How large can an EKR set be?
- 2 If is that large, how is it constructed?

Good candidate

Point-pencil: set of maximals through fixed isotropic 1-space (=point) !

EKR problem in polar spaces 000	Algebraic graph theory approach	Exceptional cases	Extra 00000
Graph-theoretic approach			

Related graphs

- \blacksquare Original EKR problem for subsets \Longrightarrow Johnson graph
- EKR for subspaces \implies Grassmann graph
- EKR for polar spaces \implies dual polar graph!

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	0000000	00000
Graph-theoretic approach			

Dual polar graph

Consider polar space of rank d with parameters (q, q^e) :

- vertices: maximals (t.i. *d*-spaces)
- adjacency: when intersection is (d-1)-space

Some properties

- number of vertices: $(q^e + 1) \cdots (q^{d-1+e} + 1)$, valency: $q^e \left(\frac{q^d-1}{q-1}\right)$
- two d-spaces are at distance $i \iff \dim(\pi \cap \pi') = d i$
- Γ has diameter d and is distance-regular: if d(x, y) = kthen # z with d(x, z) = i, d(y, z) = j is constant p_{ij}^k :

EKR problem in polar spaces 000	Algebraic graph theory approach $000000000000000000000000000000000000$	Exceptional cases	Extra 00000
Graph-theoretic approach			

Some properties (continued)

Consider polar space of rank d with parameters (q, q^e) :

 ■ Maximal clique of dual polar graph = all q^e + 1 maximals through fixed (d − 1)-space

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	0000000	00000
Graph-theoretic approach			

Observations on maximal EKR set S

Consider polar space of rank d with parameters (q, q^e) :

- Each maximal clique has 0, 1 or all its $q^e + 1$ elements in S (external, tangent or secant (d-1)-spaces)
- Every π in S has s-dimensional subspace π_s , such that (d-1)-space μ in π is secant $\iff \pi_s \subseteq \mu$:

•
$$\pi \in S$$
 then has exactly $q^e(\frac{q^{d-s}-1}{q-1})$ neighbours in S .

Frédéric Vanhove (Ghent University)

EKR problems in polar spaces

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	00000000	0000000	00000
D'			

Eigenspaces

Consider a polar space of rank d with parameters (q,q^e) , with set of maximals $\Omega.$

- For every $i \in \{0, \ldots, d\}$: adjacency matrix A_i is (0, 1)-matrix with $(A_i)_{\pi_1,\pi_2} = 1 \iff d(\pi_1, \pi_2) = i, (A_i)_{\pi_1,\pi_2} = 0$ if not.
- There is a unique orthogonal decomposition

$$\mathbb{R}^{\Omega} = V_0 \perp \cdots \perp V_d,$$

where V_j is an eigenspace for all A_i .

• eigenvalues of dual polar graph = eigenvalues of A_1 :

$$q^e\left(\frac{q^{d-j}-1}{q-1}\right) - \frac{q^j-1}{q-1} \text{ for } V_j.$$

For a subset $S \subseteq \Omega$: characteristic vector χ_S :

$$\chi_S = (1, 1, 0, \dots, 1, 0, 1)^T,$$

with $(\chi_S)_{\omega} = 1$ if $\omega \in S$, $(\chi_S)_{\omega} = 0$ if $\omega \notin S$.

EKR problem in polar spaces 000	Algebraic graph theory approach 00000000	Exceptional cases	Extra 00000
Upper bound			

In polar space of rank d:

- EKR set of maximals ${\cal S}$
- = set of pairwise non-trivially intersecting maximals
- = set of vertices in dual polar graph Γ , no two at distance d
- = cocliques of maximum distance relation w.r.t Γ

Stanton (1980) used Hoffman's eigenvalue bound for |S|Equality $\implies \chi_S$ is in the span of few eigenspaces!

For most types of polar spaces:

- Upper bound = size of point-pencil EKR set
- Equality $\Longrightarrow \chi_S \in (V_0 \perp V_1)$

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	00000000	0000000	00000
General theory			

Consider a non-empty subset S in any distance-regular graph Γ .

Width w

w: maximal distance between elements of S

Dual width w^*

If there is a *Q*-polynomial ("meaningful") ordering of eigenspaces for Γ .

$$\mathbb{R}^{\Omega} = V_0 \perp \cdots \perp V_d$$

 w^* : minimal index for which:

$$\chi_S \in V_0 \perp \cdots \perp V_{w^*}.$$

EKR sets of maximals = subsets in dual polar graph with w < d !

EKR problem in polar spaces 000	Algebraic graph theory approach 0000000	Exceptional cases	Extra 00000
General theory			

Known results

- Brouwer-Godsil-Koolen-Martin (2003): subsets with $w + w^* = d$ yield induced subschemes
- Tanaka (2006): classification of all sets with $w + w^* = d$ in dual polar graphs

Some immediate consequences

In most polar spaces, if S has width $w \leq d - 1$:

- $|S| \leq$ size point-pencil construction,
- equality $\implies \chi_S \in V_0 \perp V_1$ (i.e. dual width $w^* = 1$),
- \implies EKR sets of maximum size = point-pencils !

ces	Algebraic graph theory approach	Exceptional cases	Extra
	0000000	0 00000	00000

Hyperbolic quadric

EKR problem in polar space

Hyperbolic quadric $D_d(q)/Q^+(2d-1,q)$ for even d

- Upper bound for EKR set $S = 2(q+1)\cdots(q^{d-2}+1)$ = size point-pencil construction
- equality $\Longrightarrow \chi_S \in V_0 \perp V_1 \perp V_{d-1}$
- but here the dual polar graph is bipartite!

Solution: use half dual polar graph

- set of vertices: one half
- adjacency: when at distance 2 in original graph
- \blacksquare distance-regular with diameter $d^\prime=d/2$

New approach

• We look for EKR sets of size $(q+1)\cdots(q^{d-2}+1)$ in each half.

• Here they satisfy $w + w^* = d'$ with w = 1 and $w^* = d' - 1$.

Frédéric Vanhove (Ghent University) EKR problems in polar spaces 26 April 2011, Banff 14 / 25

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	000000	00000
Hyperbolic quadric			

EKR sets of maximum size in one half of $D_d(q)/Q^+(2d-1,q)$

- $\forall \pi \in S$: we can count those in S intersecting π in a 2-space (=line)
- Using $w + w^* = \text{diameter} \implies$ the 2-spaces intersect non-trivially, and there are at least $\frac{(q^{d-1}-1)(q^{d-2}-1)}{(q^2-1)(q-1)}$ such lines:

• Erdős-Ko-Rado for vector space V(d, q): for $d \ge 6$: they are the lines through fixed 1-space (=point)

EKR problem in polar spaces	Algebraic graph theory approach 00000000	Exceptional cases $\circ\circ\bullet\circ\circ\circ\circ$	Extra 00000
Symplectic space			

- Upper bound for |S|: size of a point-pencil but...
- equality $\Longrightarrow \chi_S \in V_0 \perp V_1 \perp V_d$
- Same parameters as parabolic quadric $B_d(q)/Q(2d,q)$, but not isomorphic for odd q....

Approach

- Eigenspace $V_d =$ kernel incidence matrix between (d-1)-spaces and d-spaces
- \implies counting elements in S w.r.t (d-1)-spaces is easier
- similar ideas by Calderbank-Delsarte (1993) and Delsarte (2004)

EKR problem in polar spaces 000	Algebraic graph theory approach 00000000	Exceptional cases 0000000	Extra 00000
Symplectic space			

- Recall: every (d-1)-space has 0, 1 or q+1 of the *d*-spaces through it in the maximal EKR set (external, tangent or secant)
- $\forall \pi \in S$: there is an s-space π_s in all secant (d-1)-spaces in π .

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	000000	00000
Symplectic space			

- Recall: every (d-1)-space has 0, 1 or q+1 of the *d*-spaces through it in the maximal EKR set (external, tangent or secant)
- $\forall \pi \in S$: there is an s-space π_s in all secant (d-1)-spaces in π .
- counting w.r.t. to (d-1)-spaces μ : secant (d-1)-space intersects exactly $(q+1)q^{(d-2)(d+1)/2}$ element of S in just a 1-space
- algebraic property of $\chi_S \Longrightarrow \pi$ itself intersects exactly $q^{d(d-1)/2-s+1}\left(\frac{q^s-1}{q-1}\right)$ elements of S in just a 1-space
- if $0 \le s \le d-1$, then a (d-1)-space μ with $\pi_s \subseteq \mu \subset \pi$ is secant, and every element of S intersecting π in 1-space also intersects μ in 1-space:

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	0000000	00000
Symplectic space			

- Recall: every (d-1)-space has 0, 1 or q+1 of the *d*-spaces through it in the maximal EKR set (external, tangent or secant)
- $\forall \pi \in S$: there is an s-space π_s in all secant (d-1)-spaces in π .
- counting w.r.t. to (d-1)-spaces μ : secant (d-1)-space intersects exactly $(q+1)q^{(d-2)(d+1)/2}$ element of S in just a 1-space
- algebraic property of $\chi_S \Longrightarrow \pi$ itself intersects exactly $q^{d(d-1)/2-s+1}\left(\frac{q^s-1}{q-1}\right)$ elements of S in just a 1-space
- if $0 \le s \le d-1$, then a (d-1)-space μ with $\pi_s \subseteq \mu \subset \pi$ is secant, and every element of S intersecting π in 1-space also intersects μ in 1-space:

$$q^{d(d-1)/2-s+1}\left(\frac{q^s-1}{q-1}\right) \le (q+1)q^{(d-2)(d+1)/2}$$

... or: $0 \le s \le 2$.

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra
000	0000000	000000	00000
Conclusion			

Classification of EKR sets (i.e. subsets of maximal totally isotropic subspaces, pairwise intersecting non-trivially) of maximum size in all polar spaces... ...except for ${}^{2}\!A_{2d-1}(q)/H(2d-1,q^{2})$ for odd $d \geq 5$.

EKR problem in polar spaces 000	Algebraic graph theory approach 00000000	Exceptional cases	Extra $\bullet 0000$
Remaining open case			

$^2\!A_{2d-1}(q)/H(2d-1,q^2)$ for odd d

- size point-pencil construction: $|\Omega|/(q^{2d-1}+1)$
- Hoffman bound: EKR set S satisfies $|S| \le |\Omega|/(q^d + 1)$, with equality iff $\chi_S \in V_0 \perp V_d$

Small rank d

 ■ d = 3: EKR set of maximum size: one 3-space + all those intersecting it in line (1-sphere in graph)

■
$$d = 5$$
:
size point-pencil ~ q^{16} ,
Delsarte's linear programming bound: ~ q^{17} ,
Hoffman bound: ~ q^{20}

EKR problem in polar spaces	Algebraic graph theory approach 00000000	Exceptional cases	Extra
000		0000000	○●000
Other approaches			

Alternative approach to symplectic $C_d(q)/W(2d-1,q)$ for odd d

- Here EKR set S of maximum size satisfies: $\chi_S \in V_0 \perp V_1 \perp V_d$
- Ustimenko graph: same vertices as dual polar graph $C_d(q)/W(2d-1,q)$, adjacency: when at distance 1 or 2 in dual polar graph
- EKR set S of maximum size: sets with $w^* = 1$ and $w + w^* =$ diameter in Ustimenko graph
- Tanaka (2010): classified all sets with $w + w^* =$ diameter in 15 families of graphs, including Ustimenko graphs

EKR problem in polar spaces 000	Algebraic graph theory approach 00000000	Exceptional cases	Extra ○0●○○
Other approaches			

Alternative approach to symplectic $C_d(q)/W(2d-1,q)$ for odd d?

- From parameters $B_d(q)/Q(2d,q)$ or $C_d(q)/W(2d-1,q)$: EKR set S of maximum size with no adjacent vertices all elements of S at even distance
- Construction exists for B_d(q)/Q(2d,q) with d odd, but how to prove that for odd q there is no analog in C_d(q)/W(2d-1,q)?
- Suda (2010): "dual zero intervals" ⇒ S induces a scheme
 …?

EKR problem in polar spaces 000	Algebraic graph theory approach 00000000	Exceptional cases	Extra ○○○●O
Other problems			

More general problem

- Instead of demanding every two elements intersect non-trivially....
 t-intersecting: any two intersect in at least a t-space
- *t*-intersecting set of maximal totally isotropic subspaces = set with no two at distance more than d t in dual polar graph

Linear programming bound

- Usually much higher than known constructions!
- In some cases only integer for few q!

EKR problem in polar spaces	Algebraic graph theory approach	Exceptional cases	Extra 0000
000	00000000	0000000	
Other problems			

Thank you for your attention! Slides (and more) on http://cage.ugent.be/~fvanhove