Paley Uniform Hypergraphs

Shonda Gosselin
University of Winnipeg

Algebraic Graph Theory Workshop
Banff International Research Station
April 29, 2011

Outline

Outline

The Paley graph P_{n}

Definition

For a prime power $n \equiv 1(\bmod 4)$ and a finite field \mathbb{F}_{n}, the Paley graph of order \mathbf{n}, denoted by $\mathbf{P}_{\mathbf{n}}$, is the simple graph with vertex set $V=\mathbb{F}_{n}$ and edge set E, where

$$
\{x, y\} \in E \Longleftrightarrow x-y \text { is a nonzero square. }
$$

P_{5}

P_{5}^{C}

P_{13}

P_{13}

P_{n} is self-complementary

If ω is a generator of \mathbb{F}_{n}^{*}, then

$$
x-y \in\left\langle\omega^{2}\right\rangle \Longleftrightarrow \omega x-\omega y=\omega(x-y) \notin\left\langle\omega^{2}\right\rangle
$$

$\mathbf{T}_{\omega, \mathbf{0}}: x \mapsto \omega x$ is an isomorphism from P_{n} to its complement.

Properties of the Paley graph P_{n}

- Cayley graph $\operatorname{Cay}\left(\mathbb{F}_{n} ;\left\langle\omega^{2}\right\rangle\right)$ (vertex-transitive)
- self-complementary
- arc-transitive
- strongly regular ($n, \frac{n-1}{2}, \frac{n-5}{4}, \frac{n-1}{4}$) (a conference graph)
- distance-transitive
- P_{n} and P_{n}^{C} are the relation graphs of a symmetric 2-class association scheme.
- $\operatorname{Aut}\left(P_{n}\right)$ is an index-2 subgroup of the affine group $A \Gamma L(1, n)$

Outline

Definition

A simple k-uniform hypergraph X with vertex set V and edge set E is (cyclically) q-complementary if there is a permutation θ on V such that the sets

$$
E, E^{\theta}, E^{\theta^{2}}, \ldots, E^{\theta^{q-1}}
$$

partition the set of k-subsets of V.
θ is called a q-antimorphism of X (i.e., $\theta \in \mathbf{A n t}_{\mathbf{q}}(\mathbf{X})$).

- The 2-complementary 2-uniform hypergraphs are the self-complementary graphs, which have been well studied due to their connection to the graph isomorphism problem.
- The q-complementary k-hypergraphs correspond to cyclic edge decompositions (cyclotomic factorisations) of the complete k-uniform hypergraph into q parts.
- The vertex-transitive q-complementary k-uniform hypergraphs correspond to large sets of isomorphic designs which are point-transitive.
- The strongly regular q-complementary graphs are the relation graphs of symmetric q-class cyclotomic association schemes.

Outline

The Paley graph P_{n} - revisited

Definition

For a prime power $n \equiv 1(\bmod 4)$ and a finite field \mathbb{F}_{n} of order n, the Paley graph of order \mathbf{n}, denoted by $\mathbf{P}_{\mathbf{n}}=(\mathbf{V}, \mathbf{E})$, is the simple graph with $\mathbf{V}=\mathbb{F}_{\mathbf{n}}$ and

$$
\{\mathbf{x}, \mathbf{y}\} \in \mathbf{E} \Longleftrightarrow \mathbf{x}-\mathbf{y} \in\left\langle\omega^{2}\right\rangle
$$

where ω is a generator of \mathbb{F}_{n}^{*}.

Generalized Paley Graphs

Definition

Let \mathbb{F}_{n} be a finite field of order n, and let q be a divisor of $n-1$ where $q \geq 2$, and if n is odd then $(n-1) / q$ is even. Let $S \leq \mathbb{F}_{n}^{*}$ where $|S|=(n-1) / q$.

The generalized Paley graph GPaley (\mathbf{n}, \mathbf{q}) is the graph with vertex set \mathbb{F}_{n} and edge set all pairs $\{x, y\}$ with $x-y \in S$.

Generalized Paley Graphs

Definition

Let \mathbb{F}_{n} be a finite field of order n, and let q be a divisor of $n-1$ where $q \geq 2$, and if n is odd then $(n-1) / q$ is even. Let $S \leq \mathbb{F}_{n}^{*}$ where $|S|=(n-1) / q$.

The generalized Paley graph GPaley (\mathbf{n}, \mathbf{q}) is the graph with vertex set \mathbb{F}_{n} and edge set all pairs $\{x, y\}$ with $x-y \in S$.

- Cayley graph $\operatorname{Cay}\left(\mathbb{F}_{n} ; S=\left\langle\omega^{q}\right\rangle\right)$ (vertex-transitive)
- arc-transitive
- q-complementary $(x \mapsto \omega x$ is a q-antimorphism)
- the relation graphs of symmetric q-class cyclotomic association schemes.
- If $n=p^{\alpha}$ and q divides $p-1$, then $\operatorname{GPaley}(n, q)$ is strongly regular, and $\operatorname{Aut}(\operatorname{GPaley}(n, q))$ is an index- q subgroup of $А Г\llcorner(1, n)$.

Constructing q-complementary k-hypergraphs

Partition a group G into q sets

$$
\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{q-1}
$$

where each \mathcal{C}_{i} is a union of cosets of a subgroup S of G.
Find an operation $\Psi: V^{(k)} \rightarrow G$ and a permutation $\theta: V \rightarrow V$ such that

$$
\Psi\left(\left\{x_{1}, \ldots, x_{k}\right\}\right) \in \mathcal{C}_{i} \Longleftrightarrow \Psi\left(\left\{x_{1}, \ldots, x_{k}\right\}^{\theta}\right) \in \mathcal{C}_{i+s}
$$

for some s where $\operatorname{gcd}(s, q)=1$.
Let $E_{i}=\left\{e \in V^{(k)} \mid \Psi(e) \in \mathcal{C}_{i}\right\}$.
Then $X_{i}=\left(V, E_{i}\right)$ is q-complementary with q-antimorphism θ.

Examples

1. Generalized Paley Graphs:

- $V=\mathbb{F}_{n}$.
- $G=\mathbb{F}_{n}^{*}$.
- $S=\left\langle\omega^{q}\right\rangle$.
- $\Psi(\{x, y\})=x-y$.

2. q-Paley k-hypergraphs:

- $V=\mathbb{F}_{n}$.
- G is the group of squares of \mathbb{F}_{n}^{*}.
- $S=\left\langle\omega^{2 q\binom{k}{2}}\right\rangle$
- Ψ : the square of the Van der Monde determinant,

$$
V M^{2}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)^{2} .
$$

The q-Paley k-hypergraph $P_{n, k}^{q}$

Definition

q is prime, ℓ is the highest power of q dividing k or $k-1$.
n is a prime power, $n \equiv 1\left(\bmod q^{\ell+1}\right)$
G is the group of squares in \mathbb{F}_{n}^{*}.
$S=\left\langle\omega^{2 q\binom{k}{2}}\right\rangle$.
$c=\operatorname{gcd}\left(|G|,\binom{k}{2}\right) .(q c$ is the number of cosets of S in G.)
F_{i} is the coset $\omega^{2 i}\left\langle\omega^{2 q}\binom{k}{2}\right\rangle$ in $G(0 \leq i \leq q c-1)$.
$\mathcal{C}_{j}=F_{j c+0} \cup F_{j c+1} \cup \cdots \cup F_{(j+1) c-1}(0 \leq j \leq q-1)$.
The \mathbf{q}-Paley \mathbf{k}-hypergraph of order $\mathbf{n}, \mathbf{P}_{\mathbf{n}, \mathbf{k}}^{\mathbf{q}}=(V, E)$, is the simple k-hypergraph with $\mathbf{V}=\mathbb{F}_{\mathbf{n}}$ and

$$
\left\{\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right\} \in \mathbf{E} \Longleftrightarrow \prod_{\mathbf{i}<j}\left(\mathrm{x}_{\mathbf{i}}-\mathrm{x}_{\mathbf{j}}\right)^{2} \in \mathcal{C}_{0}
$$

$P_{n, k}^{q}$ is q-complementary

$$
\begin{aligned}
& V M^{2}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in F_{i} \\
\Longleftrightarrow & V M^{2}\left(\omega x_{1}, \omega x_{2}, \ldots, \omega x_{k}\right)=\omega^{2\binom{k}{2}} V M^{2}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in F_{i+s c},
\end{aligned}
$$

where $\operatorname{gcd}(q, s)=1$.
$\mathbf{T}_{\omega, \mathbf{0}}: \mathbf{x} \rightarrow \omega \mathbf{x}$ is a q-antimorphism of $P_{n, k}^{q}$.

$P_{n, k}^{q}$ is vertex-transitive

For $b \in \mathbb{F}_{n}$,

$$
\begin{aligned}
& V M^{2}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in F_{i} \\
\Longleftrightarrow & V M^{2}\left(x_{1}+b, x_{2}+b, \ldots, x_{k}+b\right)=V M^{2}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in F_{i} .
\end{aligned}
$$

$\mathbf{T}_{1, \mathbf{b}}: \mathbf{x} \rightarrow \mathbf{x}+\mathbf{b}$ is an automorphism of $P_{n, k}^{q}$.

Automorphisms and q-antimorphisms of $P_{n, k}^{q}$

$\operatorname{Aut}\left(P_{n, k}^{q}\right) \geq\left\{T_{a, b} \mid a=\omega^{s}, s \equiv 0(\bmod q), b \in \mathbb{F}_{n}\right\}$
$\operatorname{Ant}_{q}\left(P_{n, k}^{q}\right) \supseteq\left\{T_{a, b} \mid a=\omega^{s}, s \not \equiv 0(\bmod q), b \in \mathbb{F}_{n}\right\}$.
$\mathbf{T}_{\mathbf{a}, \mathbf{b}}: \mathbf{x} \mapsto \mathbf{a x}+\mathbf{b}$
$\operatorname{Aut}\left(P_{n, k}^{q}\right)$ contains an index- q subgroup of $A \Gamma L(1, n)$.

The q-Paley k-hypergraph $P_{n, k, r}^{q}$

Definition

q is prime, ℓ is the highest power of q dividing k or $k-1$.
n is a prime power, $n \equiv 1\left(\bmod q^{\ell+1}\right)$
G is the group of squares in \mathbb{F}_{n}^{*}.
r is a divisor of $(n-1) / q^{\ell+1}$.
$S=\left\langle\omega^{2 r a\binom{k}{2}}\right\rangle$.
$c=\operatorname{gcd}\left(|G|, r\binom{k}{2}\right)$. (qc is the number of cosets of S in G.)
F_{i} is the coset $\omega^{2 i}\left\langle\omega^{2 r q\binom{k}{2}}\right\rangle$ in $G(0 \leq i \leq q c-1)$.
$\mathcal{C}_{j}=F_{j c+0} \cup F_{j c+1} \cup \cdots \cup F_{(j+1) c-1}(0 \leq j \leq q-1)$.
The \mathbf{q}-Paley \mathbf{k}-hypergraph of order $\mathbf{n}, \mathbf{P}_{\mathbf{n}, \mathbf{k}, \mathbf{r}}^{\mathbf{q}}=(V, E)$, is the simple k-hypergraph with $\mathbf{V}=\mathbb{F}_{\mathbf{n}}$ and

$$
\left\{\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right\} \in \mathbf{E} \Longleftrightarrow \prod_{\mathrm{i}<\mathbf{j}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2} \in \mathcal{C}_{\mathbf{0}}
$$

Automorphisms and q-antimorphisms of $P_{n, k, r}{ }^{q}$

$\operatorname{Aut}\left(P_{n, k, r}^{q}\right) \geq\left\{T_{a, b} \mid a=\omega^{r s}, s \equiv 0(\bmod q), b \in \mathbb{F}_{n}\right\}$
$\operatorname{Ant}_{q}\left(P_{n, k, r}^{q}\right) \supseteq\left\{T_{a, b} \mid a=\omega^{r s}, s \not \equiv 0(\bmod q), b \in \mathbb{F}_{n}\right\}$
$\mathbf{T}_{\mathbf{a}, \mathrm{b}}: \mathbf{x} \mapsto \mathbf{a x}+\mathbf{b}$
$\operatorname{Aut}\left(P_{n, k, r}^{q}\right)$ contains an index-qr subgroup of $А\lceil L(1, n)$.

q-Paley k-hypergraph constructions

$q=2, k=2, r=1$ (Paley)
$q=2, k=3, r=1$, (Kocay, 1992)
$q=2, k=2$, any r (Peisert, 2001)
$q, k=2$ (Li, Praeger 2003)(Li, Lim and Praeger 2009)
$q=2$, any $k, r=1$, (Potočnik and Šajna, 2009)
Odd prime q, any k, any r, (G. 2010)

Raymond Paley (1907-1933)

