# Complex Hadamard Matrices and Strongly Regular Graphs 

Ada Chan

Department of Mathematics and Statistics
York University
BIRS Algebraic Graph Theory Workshop 2011

## Theorem (Goethals and Seidel 1970)

Let $X$ be a strongly regular graph.
Then I $-A(X)+A(\bar{X})$ is a Hadamard matrix if and only if $X$ or $\bar{X}$ has one of the following parameters:
i. $\left(4 \theta^{2}, 2 \theta^{2}-\theta, \theta^{2}-\theta, \theta^{2}-\theta\right)$ (Latin square type)
ii. $\left(4 \theta^{2}, 2 \theta^{2}+\theta, \theta^{2}+\theta, \theta^{2}+\theta\right)$ (negative Latin square type)

## A Generalization

Theorem
Let $X$ be a strongly regular graph with at least 5 vertices. Then $I+x A(X)+y A(\bar{X})$ is a complex Hadamard matrix if and only if $X$ or $\bar{X}$ has one of the following parameters:
i. $\left(4 \theta^{2}, 2 \theta^{2}-\theta, \theta^{2}-\theta, \theta^{2}-\theta\right)$
ii. $\left(4 \theta^{2}, 2 \theta^{2}+\theta, \theta^{2}+\theta, \theta^{2}+\theta\right)$
iii. $\left(4 \theta^{2}-1,2 \theta^{2}, \theta^{2}, \theta^{2}\right)$
iv. $\left(4 \theta^{2}+4 \theta+1,2 \theta^{2}+2 \theta, \theta^{2}+\theta-1, \theta^{2}+\theta\right)$
v. $\left(4 \theta^{2}+4 \theta+2,2 \theta^{2}+\theta, \theta^{2}-1, \theta^{2}\right)$

## Definition

A complex Hadamard matrix is a $v \times v$ matrix $H$ such that

- $\left|H_{i j}\right|=1$, for all $i, j$
- $H H^{*}=v l$.


## We say $H$ and $H^{\prime}$ are equivalent if

$$
H^{\prime}=D_{1} P_{1} H P_{2} D_{2}
$$

for some unitary diagonal matrices $D_{1}$ and $D_{2}$, and permutation matrices $P_{1}$ and $P_{2}$.

## Definition

A complex Hadamard matrix is a $v \times v$ matrix $H$ such that

- $\left|H_{i j}\right|=1$, for all $i, j$
- $H H^{*}=v /$.

We say $H$ and $H^{\prime}$ are equivalent if

$$
H^{\prime}=D_{1} P_{1} H P_{2} D_{2}
$$

for some unitary diagonal matrices $D_{1}$ and $D_{2}$, and permutation matrices $P_{1}$ and $P_{2}$.

## Definition

A type II matrix is a $v \times v$ matrix $W$ satisfying

$$
W W^{(-) T}=v l,
$$

where $W_{i j}^{(-)}=\frac{1}{W_{i j}}$.

Example
complex Hadamard matrices
spin models, four-weight spin models

## Definition

A type II matrix is a $v \times v$ matrix $W$ satisfying

$$
W W^{(-) T}=v l,
$$

where $W_{i j}^{(-)}=\frac{1}{W_{i j}}$.

## Example

complex Hadamard matrices spin models, four-weight spin models

For $a, b=1, \ldots, v$, define

$$
Y_{a b}=\left(\begin{array}{c}
\frac{W_{1 a}}{W_{1 b}} \\
\frac{W_{2 a}}{W_{2 b}} \\
\vdots \\
\frac{W_{v a}}{W_{v b}}
\end{array}\right)
$$

$\left(Y_{a a}=[1,1, \ldots, 1]^{T}\right)$

For $a, b=1, \ldots, v$, define

$$
\begin{gathered}
Y_{a b}=\left(\begin{array}{c}
\frac{W_{1 a}}{W_{1 b}} \\
\frac{W_{2 a}}{W_{2 b}} \\
\vdots \\
\frac{W_{a a}}{W_{v b}}
\end{array}\right) \\
\left(Y_{a a}=[1,1, \ldots, 1]^{T}\right)
\end{gathered}
$$

## The Nomura algebra of $W$ is

$$
\mathcal{N}_{W}=\left\{M: Y_{a b} \text { is an eigenvector of } M \quad \forall a, b\right\}
$$

- $I \in \mathcal{N}_{W}$

- $\mathcal{N}_{W}$ is closed under matrix multiplication.
- $\mathcal{N}_{1 / T}$ is commutative and is closed under entrywise product and transpose.


## The Nomura algebra of $W$ is

$$
\mathcal{N}_{W}=\left\{M: Y_{a b} \text { is an eigenvector of } M \quad \forall a, b\right\}
$$

- $I \in \mathcal{N}_{W}$
- $\sum_{x} \frac{W_{x a}}{W_{x b}}=v \delta_{a b} \Longrightarrow J \in \mathcal{N}_{W}$
- $\mathcal{N}_{w}$ is closed under matrix multiplication.
- $\mathcal{N}_{W}$ is commutative and is closed under entrywise product and transpose.


## The Nomura algebra of $W$ is

$$
\mathcal{N}_{W}=\left\{M: Y_{a b} \text { is an eigenvector of } M \quad \forall a, b\right\}
$$

- $I \in \mathcal{N}_{W}$
- $\sum_{x} \frac{W_{x a}}{W_{x b}}=v \delta_{a b} \Longrightarrow J \in \mathcal{N}_{W}$
- $\mathcal{N}_{w}$ is closed under matrix multiplication.
- $\mathcal{N}_{W}$ is commutative and is closed under entrywise product and transpose.


## The Nomura algebra of $W$ is

$$
\mathcal{N}_{W}=\left\{M: Y_{a b} \text { is an eigenvector of } M \quad \forall a, b\right\}
$$

- $I \in \mathcal{N}_{W}$
- $\sum_{x} \frac{W_{x a}}{W_{x b}}=v \delta_{a b} \Longrightarrow J \in \mathcal{N}_{W}$
- $\mathcal{N}_{w}$ is closed under matrix multiplication.
- $\mathcal{N}_{W}$ is commutative and is closed under entrywise product and transpose.

Theorem (Jaeger et al. 1998)
$\mathcal{N}_{W}$ and $\mathcal{N}_{W^{\top}}$ give a formally dual pair of association schemes.

## Spin model $W$

- Type I: constant diagonal, constant row and column sum
- Type II
- Type III: $W \in \mathcal{N} W$.


## Example

Potts model $W=-u^{3} I+u^{-1} J$ where $\left(u^{2}+u^{-2}\right)^{2}=n$ Jones polynomial

Theorem (Jaeger et al. 1998)
$W \in \mathcal{N}_{W}$ if and only if cW is a spin model, for some constant c .

## Spin model $W$

- Type I: constant diagonal, constant row and column sum
- Type II
- Type III: $W \in \mathcal{N} W$.


## Example

Potts model $W=-u^{3} I+u^{-1} J$ where $\left(u^{2}+u^{-2}\right)^{2}=n$ Jones polynomial

Theorem (Jaeger et al. 1998)
$W \in \mathcal{N}_{W}$ if and only if cW is a spin model, for some constant $c$.

## Spin model W

- Type I: constant diagonal, constant row and column sum
- Type II
- Type III: $W \in \mathcal{N}_{W}$.


## Example

Potts model $W=-u^{3} I+u^{-1} J$ where $\left(u^{2}+u^{-2}\right)^{2}=n$ Jones polynomial

Theorem (Jaeger et al. 1998) $W \in \mathcal{N}_{W}$ if and only if cW is a spin model, for some constant $c$.

## Wanted: more type II matrices

# Wanted: more type II matrices <br> Where to start: association schemes 

Let $X$ be a strongly regular graph with $v$ vertices and eigenvalues $k, \theta$ and $\tau(\theta \geq 0>\tau)$.
Let $E_{0}, E_{1}$ and $E_{2}$ be the orthogonal projection onto the eigenspace for $k, \theta$, and $\tau$, respectively.

Consider

$$
W=I+x A(X)+y A(\bar{X})
$$



Let $X$ be a strongly regular graph with $v$ vertices and eigenvalues $k, \theta$ and $\tau(\theta \geq 0>\tau)$.

Let $E_{0}, E_{1}$ and $E_{2}$ be the orthogonal projection onto the eigenspace for $k, \theta$, and $\tau$, respectively.

Consider

$$
\begin{aligned}
W= & I+x A(X)+y A(\bar{X}) \\
= & {[1+k x+(v-k-1) y] E_{0}+} \\
& {[1+\theta x+(-1-\theta) y] E_{1}+} \\
& {[1+\tau x+(-1-\tau) y] E_{2} }
\end{aligned}
$$

## Then

$$
W W^{(-) T}=v l
$$

## if and only if

$$
\begin{cases}(1+k x+(v-k-1) y)\left(1+k \frac{1}{x}+(v-k-1) \frac{1}{y}\right) & =v \\ (1+\theta x+(-1-\theta) y)\left(1+\theta \frac{1}{x}+(-1-\theta) \frac{1}{y}\right) & =v \\ (1+\tau x+(-1-\tau) y)\left(1+\tau \frac{1}{x}+(-1-\tau) \frac{1}{y}\right) & =v\end{cases}
$$

## Theorem (Godsil and C, 2010)

$W$ is a type-Il matrix if and only if one of the following holds
(a) $y=x=\frac{1}{2}\left(2-v \pm \sqrt{v^{2}-4 v}\right)$ and $W$ is the Potts model.
(b) $x=\frac{1}{2}\left(2-v \pm \sqrt{v^{2}-4 v}\right)$ and $y=(1+x k) /(x+k)$, and $X$ is isomorphic to $m K_{k+1}$ for some $m>1$.
(c) $x=1$ and $y=\frac{v+2(1+\theta)(1+\tau) \pm \sqrt{v^{2}+4 v(1+\theta)(1+\tau)}}{2(1+\theta)(1+\tau)}$, and $A(\bar{X})$ is the incidence matrix of a symmetric design.
(d) $x=-1$ and $y=\frac{-v+2 \theta^{2}+2 \pm \sqrt{(v-4)\left(v-4 \theta^{2}\right)}}{2(1+\theta)(1+\tau)}$, and $A(X)$ is the incidence matrix of a symmetric design.
(e) $x+x^{-1}$ is a zero of a quadratic equation and $y=\frac{\theta \tau x^{3}-[v(\theta+\tau+1)-2 \theta-2 \tau-1] x^{2}-(v+2 \theta+2 \tau+\tau \theta) x-1}{\left(x^{2}-1\right)(1+\theta)(1+\tau)}$.

When $|x|=|y|=1$,

$$
v=(1+\theta x+(-1-\theta) y)\left(1+\theta \frac{1}{x}+(-1-\theta) \frac{1}{y}\right)
$$

$=1+\theta^{2}+(-1-\theta)^{2}+\theta\left(x+\frac{1}{x}\right)+(-1-\theta)\left(y+\frac{1}{y}\right)+$

$\leq 4(\theta+1)^{2}$.

When $|x|=|y|=1$,

$$
\begin{aligned}
v & =(1+\theta x+(-1-\theta) y)\left(1+\theta \frac{1}{x}+(-1-\theta) \frac{1}{y}\right) \\
& =1+\theta^{2}+(-1-\theta)^{2}+\theta\left(x+\frac{1}{x}\right)+(-1-\theta)\left(y+\frac{1}{y}\right)+ \\
& \theta(-1-\theta)\left(\frac{x}{y}+\frac{y}{x}\right)
\end{aligned}
$$

When $|x|=|y|=1$,

$$
\begin{aligned}
v & =(1+\theta x+(-1-\theta) y)\left(1+\theta \frac{1}{x}+(-1-\theta) \frac{1}{y}\right) \\
& =1+\theta^{2}+(-1-\theta)^{2}+\theta\left(x+\frac{1}{x}\right)+(-1-\theta)\left(y+\frac{1}{y}\right)+ \\
& \theta(-1-\theta)\left(\frac{x}{y}+\frac{y}{x}\right) \\
& \leq 4(\theta+1)^{2} .
\end{aligned}
$$

Theorem
$W=I+x A(X)+y A(\bar{X})$ is a complex Hadamard matrix if and only if $X$ or $\bar{X}$ has one of the following parameters:
i $\left(4 \theta^{2}, 2 \theta^{2}-\theta, \theta^{2}-\theta, \theta^{2}-\theta\right)$
ii $\left(4 \theta^{2}, 2 \theta^{2}+\theta, \theta^{2}+\theta, \theta^{2}+\theta\right)$
iii $\left(4 \theta^{2}-1,2 \theta^{2}, \theta^{2}, \theta^{2}\right)$
iv $\left(4 \theta^{2}+4 \theta+1,2 \theta^{2}+2 \theta, \theta^{2}+\theta-1, \theta^{2}+\theta\right)$.
v $\left(4 \theta^{2}+4 \theta+2,2 \theta^{2}+\theta, \theta^{2}-1, \theta^{2}\right)$

## Cases (i) and (ii):

## All solutions of $x$ and $y$ give Hadamard matrices.

Case (iii): $\left(4 \theta^{2}-1,2 \theta^{2}, \theta^{2}, \theta^{2}\right)$

- $\left(\begin{array}{cc}0 & 1^{\top} \\ 1 & S(X)\end{array}\right)+I$ is a Hadamard matrix. Szöllősi's construction (2010)
- $J-A(X)$ is the incidence matrix of a Hadamard design. Szöllósi's construction (2010)

Case (iii): $\left(4 \theta^{2}-1,2 \theta^{2}, \theta^{2}, \theta^{2}\right)$

- $\left(\begin{array}{cc}0 & 1^{\top} \\ 1 & S(X)\end{array}\right)+I$ is a Hadamard matrix. Szöllősi's construction (2010)
- $J-A(X)$ is the incidence matrix of a Hadamard design. Szöllósi's construction (2010)
Godsil and C. (2010)

Case (iv): $\left(4\left(\theta^{2}+\theta\right)+1,2\left(\theta^{2}+\theta\right),\left(\theta^{2}+\theta\right)-1, \theta^{2}+\theta\right)$
$\left(\begin{array}{cc}0 & 1^{\top} \\ 1 & S(X)\end{array}\right)$ is a symmetric conference matrix. Szöllósi's construction (2010)

## Case (v): $\left(4 \theta^{2}+4 \theta+2,2 \theta^{2}+\theta, \theta^{2}-1, \theta^{2}\right)$

- $S(X)$ is a regular symmetric conference matrix, $x=-y= \pm i$. Turyn's construction (1970)


## Case (v): $\left(4 \theta^{2}+4 \theta+2,2 \theta^{2}+\theta, \theta^{2}-1, \theta^{2}\right)$

- $S(X)$ is a regular symmetric conference matrix, $x=-y= \pm i$.
Turyn's construction (1970)

$$
x=\frac{-1 \pm \sqrt{4 \theta^{2}(\theta+1)^{2}-1} i}{2 \theta(\theta+1)} \quad \text { and } \quad y=\bar{x}
$$

## Diţă's construction

Let $M=\left[m_{i j}\right]$ be a $k \times k$ complex Hadamard matrix. Let $N_{1}, \ldots, N_{k}$ be $v \times v$ complex Hadamard matrix. Then

$$
W=\left(\begin{array}{cccc}
m_{11} N_{1} & m_{12} N_{2} & \ldots & m_{1 k} N_{k} \\
m_{21} N_{1} & m_{22} N_{2} & \ldots & m_{2 k} N_{k} \\
\vdots & \vdots & \ddots & \vdots \\
m_{k 1} N_{1} & m_{k 2} N_{2} & \ldots & m_{k k} N_{k}
\end{array}\right)
$$

is a $v k \times v k$ complex Hadamard matrix.

## Generalized tensor product (Hosoya and Suzuki 2003)

Let $M_{1}, M_{2}, \ldots, M_{v}$ be $k \times k$ type II matrices.
Let $N_{1}, \ldots, N_{k}$ be $v \times v$ type II matries.
Then the matrix $\left(M_{1}, M_{2}, \ldots M_{v}\right) \otimes\left(N_{1}, \ldots, N_{k}\right)$ with $(i, j)$-block being

$$
\left(\begin{array}{cccc}
\left(M_{1}\right)_{i, j} & 0 & & 0 \\
0 & \left(M_{2}\right)_{i, j} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \left(M_{v}\right)_{i, j}
\end{array}\right) N_{j}
$$

is a $v k \times v k$ type II matrix.

Diţă's construction is $(M, \ldots, M) \otimes\left(N_{1}, \ldots, N_{k}\right)$.

## Theorem (Hosoya and Suzuki, 2003) <br> A type II matrix is equivalent to $\left(M_{1}, \ldots, M_{n}\right) \otimes\left(N_{1}, \ldots, N_{k}\right)$ if and only if $J_{k} \otimes I_{n} \in P \mathcal{N}_{W} P^{\top}$ for some permutation matrix $P$.

Diţă's construction is $(M, \ldots, M) \otimes\left(N_{1}, \ldots, N_{k}\right)$.

Theorem (Hosoya and Suzuki, 2003)
A type II matrix is equivalent to $\left(M_{1}, \ldots, M_{n}\right) \otimes\left(N_{1}, \ldots, N_{k}\right)$ if and only if $J_{k} \otimes I_{n} \in P \mathcal{N}_{W} P^{T}$ for some permutation matrix $P$.

For Case (iii) to (v), $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right)^{\otimes 2}$ is the only complex Hadamard matrix that is of Diţă-type.

## Distance regular cover of $K_{n}$

Theorem
If a distance regular cover of $K_{n}$ gives a complex Hadamard matrix then $n \leq 16$.
$C_{6}$
the cube
the line graph of the Petersen graph

## Distance regular cover of $K_{n}$

Theorem
If a distance regular cover of $K_{n}$ gives a complex Hadamard matrix then $n \leq 16$.
$C_{6}$
the cube
the line graph of the Petersen graph

