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Schur Idempotents

An association scheme A consists of a set A0, . . . ,Ad of
01-matrices such that:

1 A0 = I and
∑

i Ai = J .
2 AT

i ∈ A for all i.
3 For all i and j the product AiAj lies in the span R[A] of the

matrices in A.
4 AiAj = AjAi for all i and j.
5 Ai ◦Aj = δi,jAi .

Note that R[A] is also closed under Schur multiplication, by (5).
We call R[A] the Bose-Mesner algebra of the scheme.
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Symmetric Schemes

The scheme is symmetric if each matrix Ai is symmetric; this is
the only case we will consider here. Hence we can view A1, . . . ,Ad
as the adjacency matrices of graphs with common vertex set V .
We set v = |V |.

Chris Godsil University of Waterloo Linear Algebra
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Matrix Idempotents

The span R[A] is a commutative semisimple algebra and therefore
it has a basis of matrices E0, . . . ,Ed such that

1 E0 = 1
v J

2 Ei ∈ {E0, . . . ,Ed} for all i.
3 For all i and j the product Ei ◦ Ej lies in R[A].
4 EiEj = δi,jEi .

Chris Godsil University of Waterloo Linear Algebra
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The Change of Basis Matrix

There are scalars pi(j) such that

Ai =
d∑

j=0
pi(j)Ej .

The change of basis matrix is denoted by P and is called the
matrix of eigenvalues of the scheme.

The name is well chosen because, since EjEr = δj,rEr , we have

AiEr = pi(r)Er

and so pi(r) is an eigenvalue of Ai .

Chris Godsil University of Waterloo Linear Algebra
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The Inner Product

IfM is a complex vector space of matrices, we define an inner
product by

〈M ,N 〉 = tr(M ∗N ) = sum(M ◦N )

Chris Godsil University of Waterloo Linear Algebra



Association Schemes Koppinen Pseudocyclic Schemes Idempotents An Inner Product Space

Orthogonal Bases

Since

〈Ai ,Aj〉 = sum(Ai ◦Aj) = δi,j sum(Ai) = δi,jvvi

and
〈Ei ,Ej〉 = tr(EiEj) = δi,j tr(Ei) = δi,jmi

we have two orthogonal bases for R[A].

Chris Godsil University of Waterloo Linear Algebra



Association Schemes Koppinen Pseudocyclic Schemes Idempotents An Inner Product Space

Projections

The Bose-Mesner algebra R[A] is a subspace of the space of v × v
matrices and so we may use any orthogonal basis of R[A] to
compute the orthogonal projection M̂ of a matrix M onto R[A]:

M̂ =
d∑

i=0

〈M ,Ai〉
〈Ai ,Ai〉

Ai =
d∑

j=0

〈M ,Ej〉
〈Ej ,Ej〉

Ej .

Chris Godsil University of Waterloo Linear Algebra
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An Application

Suppose S is a subset of the vertices of A with characteristic
vector x. Set M = xxT . We compute M̂ .

〈xxT ,Ai〉 = tr(xxT Ai) = tr(xT Aix) = xT Aix.

〈Ai ,Ai〉 = vvi .
〈xxT ,Ej〉 = tr(xxT Ej) = xT Ejx.
〈Ej ,Ej〉 = mj .

Theorem
If M = xxT then

M̂ =
d∑

i=0

xT Aix
vvi

Ai =
d∑

i=0

xT Ejx
mj

Ej .

Chris Godsil University of Waterloo Linear Algebra
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The Identity

Theorem (Koppinen)∑
i

1
vvi

Ai ⊗Ai =
∑

j

1
mj

Ej ⊗ Ej =: K.
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Using Koppinen

We have

(xxT ⊗ I )K =
∑

i

1
vvi

(xxT Ai)⊗Ai =
∑

j

1
mj

(xxT Ej)⊗ Ej

and if we apply tr⊗I to each side, we get:

d∑
i=0

xT Aix
vvi

Ai =
d∑

i=0

xT Ejx
mj

Ej .
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The Clique-Coclique Bound

Suppose S and C are subsets of V with characteristic vectors x
and y respectively and

(xT Aix)(yT Aiy) = 0. (i = 1, . . . , d)

Then on one hand (x ⊗ y)TK(x ⊗ y) is equal to

d∑
i=0

(xT Aix)(yT Aiy)
vvi

= (xT A0x)(yT A0y)
v = |C | |S |v

and, on the other it is equal to

d∑
i=0

(xT Ejx)(yT Ejy)
mj

≥ (xT E0x)(yT E0y) = |C |
2|S |2

v2 .

Chris Godsil University of Waterloo Linear Algebra



Association Schemes Koppinen Pseudocyclic Schemes Koppinen’s Identity and Some of its Uses. Proving Koppinen

The Clique-Coclique Bound

Suppose S and C are subsets of V with characteristic vectors x
and y respectively and

(xT Aix)(yT Aiy) = 0. (i = 1, . . . , d)

Then on one hand (x ⊗ y)TK(x ⊗ y) is equal to

d∑
i=0

(xT Aix)(yT Aiy)
vvi

= (xT A0x)(yT A0y)
v = |C | |S |v

and, on the other it is equal to

d∑
i=0

(xT Ejx)(yT Ejy)
mj

≥ (xT E0x)(yT E0y) = |C |
2|S |2

v2 .

Chris Godsil University of Waterloo Linear Algebra



Association Schemes Koppinen Pseudocyclic Schemes Koppinen’s Identity and Some of its Uses. Proving Koppinen

The Clique-Coclique Bound, ctd

Corollary
If C is a clique and S a coclique, then

|C | |S | ≤ v;

if equality holds then (xT Ejx)(yT Ejy) = 0 for j = 1, . . . , d.

Chris Godsil University of Waterloo Linear Algebra
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Orthogonality of Eigenvalues

If we multiply each version of K by Er ⊗ Es then recalling that
AiEr = pi(r)Er , we get(∑

i

pi(r)pi(s)
vvi

)
Er ⊗ Er = δr ,s Er ⊗ Er

and hence ∑
i

pi(r)pi(s)
vi

= vδr ,s.

Chris Godsil University of Waterloo Linear Algebra
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Projections Again

If u1, . . . , um is an orthogonal basis for a subspace U , then
orthogonal projection onto U is represented by

∑
i

1
〈ui , ui〉

uiu∗i .

Note that uiu∗i is an element of End(U ) and

End(U ) ∼= U ⊗U ∗ ∼= U ⊗U .

Chris Godsil University of Waterloo Linear Algebra
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The Proof

Applying this to our pair of orthogonal bases, we get
∑

i

1
vvi

Ai ⊗Ai =
∑

j

1
mj

Ej ⊗ Ej .

Chris Godsil University of Waterloo Linear Algebra
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An Interpretation

1 Orthogonal projection onto R[A] is an endomorphism on the
spaceMv×v of v × v real matrices.

2 Any endomorphism ofMv×v is given by a map

M 7→
∑

r
ArMBT

r

3 It is not unreasonable to denote this endomorphism by:∑
r

Ai ⊗ Br .

4 K ∈ End(Mv×v).

Chris Godsil University of Waterloo Linear Algebra
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A Stranger Interpretation
Matrix and Schur multiplication are linear maps

Mv×v ⊗Mv×v →Mv×v

which we denote by µ and σ. As they are linear, they have adjoint
maps (coproducts) µ∗ and σ∗ respectively fromM∗ toM∗ ⊗M∗.
Koppinen says that

µ∗(I ) = σ∗(J ).

Chris Godsil University of Waterloo Linear Algebra
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Pseudocyclic Schemes

Definition
An association scheme on d classes is pseudocyclic if

m1 = · · · = md

and
v1 = · · · = vd .

Chris Godsil University of Waterloo Linear Algebra
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Examples: Cyclotomic Schemes

Let F be a finite field and let R be a subgroup of the multiplicative
group of F (such that −1 ∈ R).

Definition
The vertices of the cyclotomic scheme are the elements of F, two
distinct vertices u and v are adjacent in the i-th graph of the
scheme if their difference is in the i-th coset of R.

If |F| ≡ 1 mod 4 and R is the set of non-zero squares in F, then
the graphs in the scheme are the Paley graph and its complement.

Chris Godsil University of Waterloo Linear Algebra
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No Cyclotome Picture, but. . .
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OK, An Actual Example: Paley(49)

Chris Godsil University of Waterloo Linear Algebra



Association Schemes Koppinen Pseudocyclic Schemes Some Strongly Regular Graphs Average Mixing

Pseudocyclic to Strongly Regular

Theorem
If A is a pseudocyclic scheme with d classes, then

d∑
i=1

Ai ⊗Ai

is the adjacency matrix of a strongly regular graph.

Proof.
Set m = (v − 1)/d. Then

K = 1
v I + 1

vm

d∑
i=1

A⊗2
i = 1

v J + 1
m

d∑
j=1

E⊗2
j .

Chris Godsil University of Waterloo Linear Algebra
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A Quantum of Knowledge

Let A be the adjacency matrix of some graph X . We work with a
quantum system whose evolution is specified by the matrix HX (t),
where

HX (t) := exp(itA)

This matrix arises in the theory of continuous quantum walks. It is
unitary and symmetric (so HX (t) = HX (−t)).

Chris Godsil University of Waterloo Linear Algebra
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Grover, not Shor
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Entanglement

Chris Godsil University of Waterloo Linear Algebra
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Example

Example
If X = K2, then

HX (t) =
(

cos(t) i sin(t)
i sin(t) cos(t)

)
.

Chris Godsil University of Waterloo Linear Algebra
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Some Probability Distributions

Since H (t) is unitary the Schur product

H (t) ◦H (t) = H (t) ◦H (−t)

is a doubly stochastic matrix.

Chris Godsil University of Waterloo Linear Algebra
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The Average Mixing Matrix

Definition
The average mixing matrix is

lim
T→∞

1
T

∫ T

0
H (t) ◦H (−t) dt.

Chris Godsil University of Waterloo Linear Algebra



Association Schemes Koppinen Pseudocyclic Schemes Some Strongly Regular Graphs Average Mixing

Using the Spectral Decomposition

If A has spectral decomposition

A =
∑

r
θrEr

then HX (t) has spectral decomposition

HX (t) =
∑

r
eitθr Er

and

HX (t) ◦HX (−t) =
∑

r
E◦2r + 2

∑
r<s

cos((θr − θs)t)Er ◦ Es.

Chris Godsil University of Waterloo Linear Algebra
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A Sum of Squares

Theorem
The average mixing matrix is equal to∑

r
E◦2r .

Chris Godsil University of Waterloo Linear Algebra
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Average Mixing is not Uniform

Theorem (Godsil)
If X is a graph on n vertices and its average mixing matrix is
n−1J , then n ≤ 2.

Chris Godsil University of Waterloo Linear Algebra
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Paths

Theorem (Godsil)
Let T = Tn be the permutation matrix such that Tei = en+1−i for
all i. The average mixing matrix for the path Pn is

1
2n + 2(2J + I + T ).

Chris Godsil University of Waterloo Linear Algebra
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Rationality

Theorem (Godsil)
The average mixing matrix of a graph is rational.

Chris Godsil University of Waterloo Linear Algebra
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An Issue

If D is the discriminant of the minimal polynomial of A then
D2M̂X is integral. If the eigenvalues of A are simple then
DM̂X is integral.

There’s a graph on seven vertices with discriminant

540034607936 = 26 × 8438040749.

Chris Godsil University of Waterloo Linear Algebra
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Odd Cycles are Almost Uniform

Theorem (Godsil)
If n is odd then the average mixing matrix for the cycle Cn is

n − 1
n2 J + 1

n I .

Chris Godsil University of Waterloo Linear Algebra
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From Tensor to Schur

Since
1
v I + 1

vm

d∑
i=0

Ai ⊗Ai = 1
v J + 1

m

d∑
j=0

Ej ⊗ Ej

it follows that

1
v I + 1

vm

d∑
i=0

Ai ◦Ai = 1
v J + 1

m

d∑
j=0

Ej ◦ Ej

Chris Godsil University of Waterloo Linear Algebra
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Average Mixing on Pseudocyclic Graphs
If X is a pseudocyclic graph on v vertices with valency
m = (v − 1)/d then

d∑
i=0

1
vvi

Ai ◦Ai = 1
v

(
I + 1

m (J − I )
)

and
d∑

j=0

1
mj

Ej ◦ Ej = 1
v2 J + 1

m

d∑
r=1

E◦2r

Theorem (Godsil)
The average mixing matrix of a pseudocyclic graph X with valency
m on n vertices is:

n −m + 1
n2 J + m − 1

n I .
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The End(s)
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