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Small value probabilities or small deviations study the decay prob-

ability that positive random variables behave near zero. In partic-

ular, small ball probabilities provide the asymptotic behavior of the

probability measure inside a ball as the radius of the ball tends to

zero. In this talk, we will provide an overview on some recent devel-

opments, including symmetrization inequalities in high dimension,

smooth Gaussian processes, and branching related processes.
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Small Value Probability

Small value (deviation) probability studies the asymptotic rate of
approaching zero for rare events that positive random variables take
smaller values. To be more precise, let Vn be a sequence of non-
negative random variables and suppose that some or all of the prob-
abilities

P (Vn ≤ εn) , P (Vn ≤ C) , P (Vn ≤ (1− δ)EVn)

tend to zero as n → ∞, for εn → 0, some constant C > 0 and
0 < δ ≤ 1. Of course, they are all special cases of P (Vn ≤ hn) → 0
for some function hn ≥ 0, but examples and applications given later
show the benefits of the separated formulations.

What is often an important and interesting problem is the determi-
nation of just how “rare” the event {Vn ≤ hn} is, that is, the study
of the small value (deviation) probabilities of Vn associated with the
sequence hn.

If εn = ε and Vn = ‖X‖, the norm of a random element X on a sepa-
rable Banach space, then we are in the setting of small ball/deviation
probabilities.
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Deviations: Large vs Small

• Both are estimates of rare events and depend on one’s point of

view in certain problems.

• Large deviations deal with a class of sets rather than special sets.

And results for special sets may not hold in general.

• Similar techniques can be used, such as exponential Chebychev’s

inequality, change of measure argument, isoperimetric inequalities,

concentration of measure, etc.

• Second order behavior of certain large deviation estimates depends

on small deviation type estimates.

• General theory for small deviations has been developed for Gaus-

sian processes and measures.
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• Some technical difficulties for small deviations: Let X and Y be
two positive r.v’s (not necessarily ind.). Then

P (X + Y > t) ≥ max(P (X > t) ,P (Y > t))

P (X + Y > t) ≤ P (X > δt) + P (Y > (1− δ)t)
but

?? ≤ P (X + Y ≤ ε) ≤ min(P (X ≤ ε) ,P (Y ≤ ε))

• Moment estimates an ≤ EXn ≤ bn can be used for

E eλX =
∑
n=0

λn

n!
EXn

but E exp{−λX} is harder to estimate.

• Exponential Tauberian theorem: Let V be a positive random vari-
able. Then for α > 0

logP (V ≤ ε) ∼ −CV ε−α as ε→ 0+

if and only if

logE exp(−λV ) ∼ −(1 + α)α−α/(1+α)C
1/(1+α)
V λα/(1+α)

as λ→∞.
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Some Formulations for General Processes

Let X = (Xt)t∈T be a real valued stochastic process (not necessary

Gaussian) indexed by T .

The large deviation under the sup-norm: P
(
supt∈T (Xt −Xt0) ≥ λ

)
as λ→∞.

The small ball (deviation) probability: logP (‖X‖ ≤ ε) as ε → 0

for any norm ‖·‖.

The small ball probability under the sup-norm: P (supt∈T |Xt| ≤ ε)
as ε→ 0.

Two-sided exit problem: P (supt∈T |Xt| ≤ 1) as |T | → ∞.

The lower tail probability: P
(
supt∈T (Xt −Xt0) ≤ ε

)
as ε→ 0 with

t0 ∈ T fixed.

One-sided exit problem: P
(
supt∈T (Xt −Xt0) ≤ 1

)
as |T | → ∞.

•For processes with scaling property, problems equivalent for ε→ 0

and for |T | → ∞.
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Applications: Partition functions, local times and statistics

•Chen (2010), Chen and Rosinski (2011): Renormalization and

asymptotics for physical models.

•Chen, Li, Rosinski and Shao (2011): Large deviations for local

times and intersection local times

•Go, Li and Wellner (2010): How many Laplace transforms of prob-

ability measures are there? Applications to bracket entropy in em-

pirical processes theory.

•van der Vaart and van Zanten (2008a,b): Statistical applications

for Gaussian priors based on Reproducing kernel Hilbert spaces.

•Gine and Nickl (2011+): Non-parametric estimation, using lower

bounds for small ball probabilities for m-th integrated BM.

•Nikitin and Pusev (2011): Refined estimates for weighted L2-norm.
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Integrated processes: Simply integrated r.w.

•Aurzada and Dereich (2011+): For X a LP or RW with ∃β > 0:

E eβ|X1| <∞ and EX1 = 0

P

 sup
0≤n≤T

n∑
i=1

Xi ≤ 0

 ≈ P
(

sup
0≤t≤T

∫ t
0
Xsds ≤ 1

)
= T−1/4eO(log logT )

•Dembo and Gao (2011+): For X a RW with ∃β > 0: E eβX
−
1 <∞,

EX1 = 0, (+ some unimportant regularity cond. for X−1 ),

P

 sup
0≤n≤T

n∑
i=1

Xi ≤ 0

 ≈
√√√√ E |XT |
T E |X1|

≈

T−1/4 if E (X+
1 )2 <∞

T−(1−1/α)/2 if X+
1 in DoA(α)

•Vysotsky (2011+): For a couple of special cases (all require ∃β > 0:

E eβX
−
1 <∞, EX1 = 0),

P

 sup
0≤n≤T

n∑
i=1

Xi ≤ 0

 ∼ cT−(1−1/α)/2,

if X+
1 in DoA(α), 1 < α ≤ 2.
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Lower tails for fractional BM

A fractional Brownian motion (FBM) BH is a centered Gaussian

process with covariance

EBHt BHs =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ R,

where 0 < H < 1 is the Hurst parameter. For H = 1/2, this is a

Brownian motion.

•Molchan (1999), Aurzada (2011): For fractional Brownian motion

we have, for some c > 0,

T−(1−H)(logT )−c ≤ P
(

sup
0≤t≤T

BHt ≤ 1

)
≤ T−(1−H)(logT )c,

•Aurzada, Li and Shao (2011+): Fractional integrated Brownian

motion.
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Small ball probability for smooth Gaussian processes

•Aurzada, Gao, Kühn, Li and Shao (2011): Small deviation proba-
bility for a family of smooth Gaussian processes with

EXα,β(t)Xα,β(s) =
22β+1(ts)α

(t+ s)2β+1

for α > 0 and β > −1/2.
Thm: For α > β > −1/2,

− logP
(∫ 1

0
|Xα,β(t)|2 dt ≤ ε2

)
∼ κα,β| log ε|3,

where the constant is given by κα,β := 1
3(α−β)π2.

For α > β + 1/2 > 0,

κ̃α,β| log ε|3 . − logP

 sup
t∈[0,1]

|Xα,β(t)| ≤ ε

 . κα−1/2,β| log ε|3.

•Aurzada (2011+): Path regularity and small deviations of smooth
Gaussian processes.

•Lifshits and Linde (2011): Gaussian summation processes on trees
(non-smooth, discrete types).
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A Symmetrization Inequality for Two Norms

Let K ⊂ Rd and L ⊂ Rd be two origin symmetric convex bodies, ‖·‖K
and ‖ · ‖L be the corresponding gauges on Rd, that is the norms for

which K and L are the unit balls.

Let C+ = C+(‖ ·‖K, ‖ ·‖L, d, a, b, ) be the optimal constant such that,

for all Rd-valued i.i.d. random variables X and Y , and a, b > 0,

P(‖X + Y ‖L ≤ b) ≤ C+ · P(‖X − Y ‖K ≤ a).

•For d = 1, it is not hard to show C+ ≤ d2b/ae+ 1.

•Schultze and Weizsäcker (2007): For d = 1 and a = b, C+ = 2

which answers an open problem for about 10 years.

•Dong, J. Li and Li (2011):

C+ ≤ N(BL(b), BK(a/2)),

and the bound are optimal for ‖ · ‖K = ‖ · ‖L = ‖ · ‖∞ with C+ =

d2b/aed.
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An Extension of 123 Theorem

Let C− = C−(‖ · ‖K, ‖ · ‖L, d, a, b, ) be the optimal constant such that,

for all Rd-valued i.i.d. random variables X and Y , and b > a > 0,

P(‖X − Y ‖L ≤ b) ≤ C− · P(‖X − Y ‖K ≤ a).

•Alon and Yuster (1995) and (independently) Kotlov: For d = 1,

C− ≤ 2db/ae − 1. In particular, for a = 1, b = 2, we have C− = 3.

•Alon and Yuster (1995): For ‖ · ‖K = ‖ · ‖L = ‖ · ‖2, C− ≤M if there

is no set F of M + 1 points in a ball of radius b so that the center

belongs to F and the distance between any two pints of F exceeds

a. In addition, C− = M in special settings.

•Dong, J. Li and Li (2011):

C− ≤ N(BL(b) \BK(a), BK(a/2)) + 1,

and the bound is optimal for d = 1.
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Our approach for both problems (C+ and C−) extends techniques

developed in Schultze and Weizsäcker (2007) which starts with the

following fact:

Lemma: The following two statement are equivalent for a given

symmetric matrix A = (aij)n×n:

(i) For all probability measure p ∈ P := {p :
∑
pi = 1, pi ≥ 0},∑

i,j

aijpipj > 0;

(ii) For all p ∈ P,

max
i

∑
j

aijpipj > 0.

•The above fact can be reformulated in the infinite dimensional

setting for product measure.
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SVP for the Martingale Limit of a Galton-Watson Tree

Consider the Galton-Watson branching process (Zn)n≥0 with off-

spring distribution (pk)k≥0 starting with Z0 = 1. In any subsequent

generation individuals independently produce a random number of

offspring according to P(N = k) = pk. Suppose µ = EN > 1 and

EN logN < ∞. Then by Kesten-Stigum theorem, the martingale

limit (a.s and in L1)

W = lim
n→∞

Zn

µn

exists and is nontrivial almost surely with EW = 1. WOLG, assume

p0 = 0 and pk < 1 for all k ≥ 1. Then in the case p1 > 0, there exist

constants 0 < c < C <∞ such that for all 0 < ε < 1

cετ ≤ P(W ≤ ε) ≤ Cετ , τ = − log p1/ logµ

and in the case p1 = 0, there exist constants 0 < c < C < ∞ such

that for all 0 < ε < 1

cε−β/(1−β) ≤ − logP(W ≤ ε) ≤ Cε−β/(1−β).

with ν = min{k ≥ 2 : pk 6= 0} and β = log ν/ logµ < 1.
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•These results are due to Dubuc (1971a,b) in the p1 > 0 case, and

up to a Tauberian theorem also in the p1 = 0 case, see Bingham

(1988). The proofs are relying on nontrivial complex analysis and

are therefore difficult to generalize, for example to processes with

immigration and/or dependent offsprings.

•Examples, near-constancy phenomena and various refinements, see

Harris (1948), Karlin and McGregor (1968 a,b), Dubuc (1982), Bar-

low and Perkins (1987), Goldstein (1987) and Kusuoka (1987),

Bingham (1988), Biggins and Bingham (1991), Biggins and Bing-

ham (1993), Biggins and Nadarajah (1994), Hambly (1995), Fleis-

chman and Wachtel (2007, 2009).

•A probabilistic argument is given in Mörters and Ortgiese (2008).
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SVP for supercritical branching processes with Immigration

Consider the supercritical branching process with immigration, de-

noted by (Zn, n ≥ 0). That is

Z0 = Y0, Zn+1 = Xn
1 +Xn

2 + · · ·+Xn
Zn−1

+ Yn+1, n ≥ 0,

where Xn
1 , X

n
2 , · · · are independent and identically distributed with

the same offspring distribution as X, the Y0, Y1, · · · are i.i.d. with

the same immigration distribution {qk, k ≥ 0} and the X ′s and Y ′s
are independent. It is classic result, see Seneta (1970), for example,

that

lim
n→∞Zn/m

n =W

exists and is finite a.s. if and only if

E log+ Y <∞ and E (X logX) <∞.

where here and throughout, log+ x = log max(x,1) ≥ 0.
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Thm: (Chu, Li and Ren (2011)) Assume the X logX and logY

conditions and p0 = 0.

(a) If 0 < q0 < 1, then

P(W ≤ ε) � ε| log q0|/ logm as ε→ 0+.

(b) If q0 = 0 and p1 > 0, then

logP(W ≤ ε) ∼ −
κ| log p1|

2(logm)2
· | log ε|2, as ε→ 0+,

with κ = inf{n : qn > 0}.

(c) If q0 = 0 and p1 = 0, then

logP(W ≤ ε) � −ε−β/(1−β), as ε→ 0+,

with β being defined as in the case without immigration.

(d) If p0 > 0, then

P(W ≤ ε) � ε| logh(ρ)|/ logm, as ε→ 0+,
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where ρ is the solution of f(s) = s between (0,1), and h is the

generating function of immigration.

•The asymptotic � is best possible in the sense that it can not be

improved into the more precise asymptotic ∼.

•The oscillation occurs with immigration even there is no oscillation

without immigration. This is quite unexpected and demonstrates

the significant effects of the immigration.
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Smoothness of the Density via Malliavin Matrix

Consider F = (F1, · · · , Fm) : Ω → Rm with F i ∈ D1,2. Then Malli-
avin Matrix of F is

γF = (γijF ), γ
ij
F =

〈
DF i, DF j

〉
Thm:(Bouleau-Hirsch) If det(γF ) > 0, a.s, then the law of F is
absolute continuous.

Thm: (Malliavin) If (1) F i ∈ D∞ and (2) E |det γF |−p < ∞ for any
p > 0, then F has a C∞ density.

•The condition (ii) is called non-degeneracy for F .

•All these have been extended into theory of SDE and SPDE. It is
curial to check the non-degeneracy condition which is small value
probability.

•Mueller and Nualart (2008): Regularity of the density for the
stochastic heat equation.
•Fei, Hu and Nualart (2011+): convergence of densities.
•Nualart (2010, book): Malliavin Calculus and its Applications.
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Probability of all real zeros for random polynomial
with exponential ensemble

Thm (Li (2011)). The probability that a random polynomial of
degree n with i.i.d exponentially distributed coefficients has all real
zeros is

P(All zeros are real) = E
∏

1≤j<k≤n
|Uj − Uk| =

n−1∏
k=1

(2k + 1

k

)−1

where Ui are i.i.d uniform on the interval [0,1].

•In particular, we have

pe1 = 1, pe2 =
1

3
, pe3 =

1

30
, pe4 =

1

1050
pe5 =

1

132300
.

•Asymptotically, logP(Nn = n) ∼ − log 2 · n2 as n→∞.

•The second identity is a form of Selberg integral with simplification.

•Our evaluation of the probability starts with a formula of Za-
porozhets (2004) which is based on an integral geometry represen-
tation developed by Edelman and Kostlan (1995) and tools from
differential geometry.

19



Small Value Theory

We believe a theory of small value phenomenon should be developed

and centered on:

• systematically studies of the existing techniques and applications

• applications of the existing methods to a variety of fields

• new techniques and problems motivated by current interests of

advancing knowledge such as random matrices.

♦ W.V. Li, Ten lectures on Small Deviation Probabilities: Theory

and Applications, NSF/CBMS Regional Research Conference in the

Mathematical Sciences, University of Alabama in Huntsville, June

04-08, 2012.
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