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Definition
For an n × n matrix A let µA denote its spectral measure, i.e.

µA =
1
n

n∑
i=1

δλi (A),

where λi(A) are the eigenvalues of A.

Theorem (Tao, Vu (2008))
Let (Xij)i,j<∞ be an infinite array of i.i.d. mean zero, variance one
complex random variables. Let An = (Xij)i,j≤n. Then the spectral
measure of n−1/2An converges almost surely as n→∞ to the uniform
measure on the unit disc.

Previous contributions:
Ginibre, Mehta, Girko, Edelman, Bai, Götze-Tikhomirov, Pan-Zhou
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where λi(A) are the eigenvalues of A.

Theorem (Tao, Vu (2008))
Let (Xij)i,j<∞ be an infinite array of i.i.d. mean zero, variance one
complex random variables. Let An = (Aij)i,j≤n. Then the spectral
measure of n−1/2An converges almost surely as n→∞ to the uniform
measure on the unit disc.

The general approach

Reduction to the Hermitian matrix
Mn = (n−1/2An − zId)(n−1/2An − zId)∗

Needed: bounds on the smallest singular value of n−1/2An − zId.



Question:

Can the independence assumption on the entries of An be
relaxed?
The first idea: independent entries –> independent rows?
What could step in for independence? Looking for some
geometric conditions.

Existing results: Random Markov matrices - Chafaï, Bordenave,
Caputo (2008)

Natural candidates for the rows:

Random vectors distributed on `np balls (properly normalized)
More generally isotropic log-concave vectors
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Isotropicity, log-concavity

A random vector X in Rn is isotropic if

EX = 0

and
EX ⊗ X = Id

or equivalently for all y ∈ Rn,

E〈X , y〉2 = |y |2.

A random vector X in Rn is log-concave if its law µ satisfies a
Brunn-Minkowski type inequality

µ(θA + (1− θ)B) ≥ µ(A)θµ(B)1−θ.

Theorem (Borell)
A random vector not supported on any (n − 1) dimensional hyperplane
is log-concave iff it has density of the form exp(−V (x)), where
V : Rn → (−∞,∞] is convex.



Theorem (R.A. (2010–2011))
Let An be a sequence of n× n random matrices with independent rows
X (n)

1 , . . . ,X (n)
n (defined on the same probability space). Assume that for

each n and i ≤ n, X (n)
i has a log-concave isotropic distribution. Then,

with probability one, the spectral measure µ 1√
n

An
converges weakly to

the uniform distribution on the unit disc.



Strategy of proof (Girko)

Definition
Let µ be a probability measure on C integrating log(| · |) at infinity. The
logarithmic potential of µ is defined as

Uµ(z) =

∫
C

log(|x − z|)dµ(x).

Fact

µ = − 1
2π

∆Uµ.



Strategy of proof (Girko)

Definition
Let µ be a probability measure on C integrating log(| · |) at infinity. The
logarithmic potential of µ is defined as

Uµ(z) =

∫
C

log(|x − z|)dµ(x).

For the empirical spectral measure of n−1/2An,

Uµn (z) =
1
n

log |det(n−1/2An − z)| =
1

2n
log |det(An − z)|2

=
1
2

∫
log xdνz(x),

where νz is the empirical spectral measure of the (Hermitian) matrix
(n−1/2An − z)(n−1/2An − z)∗.
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Prove that (µn)n is tight and νn converge weakly. Use the
log-potential to identify the limit.

Problem: singularities of the logarithm
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Theorem (Replacement principle - Tao, Vu (2008))
Suppose for each n that An,Bn are ensembles of n × n random
matrices defined on a common probability space. Assume that

(i) The expression
1
n2 ‖An‖2HS +

1
n2 ‖Bn‖2HS

is bounded almost surely,
(ii) For almost all complex numbers z,

1
n

log |det(
1√
n

An − zId)| − 1
n

log |det(
1√
n

Bn − zId)|

converges almost surely to zero.
Then µ 1√

n
An
− µ 1√

n
Bn

converges almost surely to 0.

To prove the circular law one checks the hypothesis e.g. with
Bn = (gij), where gij – i.i.d. N (0,1).
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Log-concave toolkit

Theorem (Prekopa-Leindler (1970’s))
Marginals of log-concave isotropic random vectors are themselves
isotropic and log-concave.

Theorem (Hensley (1980))
The density of a one-dimensional variance one log-concave variable is
bounded by a universal constant.

Theorem (Klartag’s thin shell concentration (2007))
Let X be an isotropic log-concave random vector in Rn. There exist
numerical positive constants C and c such that for all ε ∈ (0,1),

P
(∣∣∣∣ |X |2n

− 1
∣∣∣∣ ≥ ε) ≤ C exp(−cεCnc).



The bound on the Hilbert-Schmidt norm follows immediately by
Klartag’s result since the matrix A treated as a random vector in
Rn2

is log-concave isotropic (with respect to the Euclidean
structure given by ‖ · ‖HS)

It remains to show that for each z, with probability one,

1
n

log |det(
1√
n

An − zId)| − 1
n

log |det(
1√
n

Bn − zId)| → 0.

Let Xi be the rows of An, Zi the rows of n−1/2An − zId, Yi – rows of
n−1/2Bn − zId

1
n

log |det(
1√
n

An − zId)| =
1
n

n∑
i=1

log dist(Zi , span{Zj}j<i)

1
n

log |det(
1√
n

Bn − zId)| =
1
n

n∑
i=1

log dist(Yi , span{Yj}j<i)
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Still following Tao & Vu:
One takes care of i > n − nε by employing the bound on
max{|Zi |, |Yi |} and the smallest singular value –> Hensley
One can discard i ∈ [(1− δ)n,n − nε] using an estimate for a
distance of a row to a subspace of codimension at least nε –>
Klartag
For the sum over i ∈ (1− δ)n one can use convergence of the
empirical spectral measures of (n−1/2An − zId)(n−1/2An − zId)∗

and (n−1/2Bn − zId)(n−1/2Bn − zId)∗ –> Klartag



Let Xi be the rows of An, Zi the rows of n−1/2An − zId, Yi – rows of
n−1/2Bn − zId

1
n

log |det(
1√
n

An − zId)| =
1
n

n∑
i=1

log dist(Zi , span{Zj}j<i)

1
n

log |det(
1√
n

An − zId)| =
1
n

n∑
i=1

log dist(Yi , span{Yj}j<i)

Still following Tao & Vu:
One takes care of i > n − nε by employing the bound on
max{|Zi |, |Yi |} and the smallest singular value –> Hensley

One can discard i ∈ [(1− δ)n,n − nε] using an estimate for a
distance of a row to a subspace of codimension at least nε –>
Klartag
For the sum over i ∈ (1− δ)n one can use convergence of the
empirical spectral measures of (n−1/2An − zId)(n−1/2An − zId)∗

and (n−1/2Bn − zId)(n−1/2Bn − zId)∗ –> Klartag



Let Xi be the rows of An, Zi the rows of n−1/2An − zId, Yi – rows of
n−1/2Bn − zId

1
n

log |det(
1√
n

An − zId)| =
1
n

n∑
i=1

log dist(Zi , span{Zj}j<i)

1
n

log |det(
1√
n

An − zId)| =
1
n

n∑
i=1

log dist(Yi , span{Yj}j<i)

Still following Tao & Vu:
One takes care of i > n − nε by employing the bound on
max{|Zi |, |Yi |} and the smallest singular value –> Hensley
One can discard i ∈ [(1− δ)n,n − nε] using an estimate for a
distance of a row to a subspace of codimension at least nε –>
Klartag

For the sum over i ∈ (1− δ)n one can use convergence of the
empirical spectral measures of (n−1/2An − zId)(n−1/2An − zId)∗

and (n−1/2Bn − zId)(n−1/2Bn − zId)∗ –> Klartag



Let Xi be the rows of An, Zi the rows of n−1/2An − zId, Yi – rows of
n−1/2Bn − zId

1
n

log |det(
1√
n

An − zId)| =
1
n

n∑
i=1

log dist(Zi , span{Zj}j<i)

1
n

log |det(
1√
n

An − zId)| =
1
n

n∑
i=1

log dist(Yi , span{Yj}j<i)

Still following Tao & Vu:
One takes care of i > n − nε by employing the bound on
max{|Zi |, |Yi |} and the smallest singular value –> Hensley
One can discard i ∈ [(1− δ)n,n − nε] using an estimate for a
distance of a row to a subspace of codimension at least nε –>
Klartag
For the sum over i ∈ (1− δ)n one can use convergence of the
empirical spectral measures of (n−1/2An − zId)(n−1/2An − zId)∗

and (n−1/2Bn − zId)(n−1/2Bn − zId)∗ –> Klartag



Bounds on the smallest singular value

Proposition
Let An be an n × n matrix with independent log-concave isotropic rows
and let Mn be any deterministic matrix. Let σn be the smallest singular
value of An + Mn. Then with probability at least 1− n−2,

σn ≥ cn−4.

Proof (now standard).
Let Xi be the rows of An + Mn. We have

σn ≥
1√
n

min
i≤n

(dist(Xi , span{Xj}j 6=i).

This can be easily bounded by conditioning and using the fact that the
densities of one dimensional marginals are bounded.



Digression: Mn = 0

Theorem (Guédon, Litvak, Pajor, Tomczak-Jaegermann, R.A.
(2010))
Let An be an n × n matrix with independent log-concave isotropic rows
and let σn be the smallest singular value of An. Then for every
ε ∈ (0,1),

P
(
σn ≤ cεn−1/2

)
≤ Cε log2

(2
ε

)
.

This may be considered a counterpart of the Edelman-Szarek result
for the Gaussian case. Remark: everything is smooth so no discrete
problems present e.g. for sign matrices)

Problems:

get rid of the log,
extend to nonzero Mn (for Gaussian matrix - Sankar, Spielman,
Teng (2003)).
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Distance from a subspace

We need a good lower estimate on dist(X,E), where E is a
deterministic subspace of Cn of codimension k ≥ nα.

For Rn it follows
directly from Klartag’s result, since PEc X is an isotropic log-concave
random vector on Ec (by Prekopa-Leindler) and thus

P
(
|PEc X |2 − k | ≥ εk

)
≤ C exp(−cεCkc).
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Distance from a subspace

We need a good lower estimate on dist(X,E), where E is a
deterministic subspace of Cn of codimension k ≥ nα.
For the general case we can use

Lemma (after Pajor&Pastur)
For any p ≥ 1 and any complex matrix A with ‖A‖ = ‖A‖`2→`2 ≤ 1,

E|〈AX ,X 〉 − trA|p ≤ Cpn(1−β)p,

where Cp depends only on p and β > 0 is a universal constant.

For large p it gives dist(X,E) ≥ c
√

k with probab. high enough for
the union bound and Borel-Cantelli lemma (for α ∈ (1− β,1)).
The proof relies on reduction to real diagonal matrices
(log-concavity and isotropicity is rotationally invariant) and then by
convexity to diagonal ±1 matrices. It uses Borell’s lemma for
truncation and Klartag’s inequality for bounding the essential part.
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Distance from a subspace – alternate approach

Instead of Klartag’s result one may also use the following

Theorem (Paouris (2009))
Let X be an isotropic log-concave random vector in Rn and let A be an
n × n real nonzero matrix. Then for y ∈ Rn and ε ∈ (0, c1),

P(|AX − y | ≤ ε‖A‖HS) ≤ εc1(‖A‖HS/‖A‖),

where c1 > 0 is a universal constant.

In our case (after passing to real matrices) ‖A‖HS =
√

k , ‖A‖ ≤ 1.



Limiting spectral distribution for hermitian matrices

We are interested in convergence of the empirical spectral
measure of (n−1/2An − zId)(n−1/2An − zId)∗.

By general properties of random matrices with independent
rows(exponential concentration for the Stieltjes transform), it is
enough to prove the convergence of expected spectral measure.

Lemma (folklore(?)– Corollary to Azuma’s inequality)
Let A be any n × N random matrix with independent rows and let
S : C+ → C be the Stieltjes transform of the spectral measure of
H = AA∗. Then for any α = x + iy ∈ C+ and any ε > 0,

P(|Sn(α)− ESn(α)| ≥ ε) ≤ C exp(−cnε2y2).
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Theorem (R.A. (2011), following Dozier-Silverstein)
Let N = Nn and assume that n/N → c > 0. Let Rn be a deterministic
n × N matrix such that the spectral measure of 1

N RnR∗n converges to
some probability measure H. Let An be an n × N random matrix with
independent rows Xi = X (n)

i such that

max
i≤n

sup
‖C‖≤1

1
N
E|〈CXi ,Xi〉 − tr C| = o(1).

Then the spectral measure of the matrix Mn = 1
N (Rn + An)(Rn + An)∗

converges a.s. to a deterministic probability measure µ, whose
Stieltjes transform S(z) =

∫∞
0

1
x−zµ(dx) is characterized by

S(z) =

∫ ∞
0

1
t

1+cS(z) − (1 + S(z))z + 1− c
H(dt).



Remarks

The Marchenko-Pastur theorem for random matrices with
independent rows distributed uniformly on `np balls was proved by
Aubrun (2006) by reduction to the independent case

The Marchenko-Pastur theorem for general matrices with
independent rows such that

max
‖C‖≤1

1
N2E|〈CX ,X 〉 − tr C|2 = o(1)

was obtained by Pajor and Pastur (2007)
If one is interested in the expected spectral distribution (and not
a.e. convergence), one can obtain results similar to those by
Götze-Tikhomirov for matrices with a martingale structure.
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Further extensions (work in progress)

Definition
A random vector X = (X1, . . . ,Xn) is called unconditional if its
distribution is equal to the distribution of (ε1X1, . . . , εnXn) for any
choice of εi ∈ {−1,+1}.

If in addition to independence of rows one assumes
unconditionality then one can obtain the circular law under the
assumption that projections of rows on coordinate subspaces are
sufficiently (polynomially) concentrated.
the general case would require bounds on the smallest singular
value for square matrices with independent isotropic rows with
some concentration property (open).
if one assumes unconditionality of the matrix law (in the standard
basis) and some concentration properties, then one should be
able to get rid of the independence of rows (partial results).



Theorem (R.A. (2010))

Let An = [X (n)
ij ]1≤i≤n,1≤j≤n. Let us assume that the following

assumptions are satisfied

(A1) for every k ∈ N, supn maxi≤n,j≤n E|X
(n)
ij |

k <∞,

(A2) for every n, i , j , E(X (n)
ij |Fij) = 0, where Fij is the σ-field generated

by {X (n)
kl : (k , l) 6= (i , j)},

(A3) |Rn|/
√

n, |Cn|/
√

n→ 1 in probability, where Rn and Cn are resp.
random row and column of An.

Then the expected spectral measure of

(n−1/2An − zId)(n−1/2An − zId)∗

converges to a measure which does not depend on the distribution of
An.



Thank you


