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Outline

Talagrand’s ineq. (T2)

⇐=

Log-Sobolev ineq. (LSI)

W2 ≤
√

H

Otto & Villani (00)

H ≤ I
Marton & Talagrand (90’s) Gross (70’s)

⇓ ⇓

Gaussian concentration
Milman, Talagrand, Ledoux . . .

T2 6= LSI (Cattiaux and Guillin 2005)

Main result of this talk : Talagrand’s inequality is equivalent to a modified
Log-Sobolev inequality.
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Notation

• (X , d) is a polish metric space (i.e complete and separable)

• µ is a Borel probability measure on X

• P(X ) is the set of all Borel probability measures on X
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Talagrand’s inequality

Quadratic optimal transport cost

For all ν, µ ∈ P2(X )

T2(ν, µ) = inf
n

E[d2(X ,Y )];L(X ) = ν and L(Y ) = µ
o
.

The Wasserstein distance W2 is defined by

W2(ν, µ) =
p
T2(ν, µ), ∀ν, µ ∈ P2(X ).

Relative entropy / Kullback-Leibler distance

For all ν, µ ∈ P(X ),

H(ν | µ) =

Z
log

„
dν

dµ

«
dν, if ν � µ, and +∞ otherwise.
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Talagrand’s inequality

Talagrand’s inequality

The probability µ verifies T2(C), if

T2(ν, µ) ≤ CH(ν|µ), ∀ν ∈ P2(X ).

The idea of bounding a transport cost by a function of the relative entropy first
appeared in a paper by Marton in 1986.

Talagrand (96) was the first to prove that the standard Gaussian measure on R
satisfies T2(2). The constant 2 is optimal.

Examples : More generally, if µ is a probability on Rk with a density of the
form e−V with V such that

Hess V ≥ C I, with C > 0,

then µ verifies T2(2/C).
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Link with Gaussian concentration

Gaussian concentration

The probability µ verifies the Gaussian concentration property CP2(a, to) for
a, to ≥ 0, if for all A ⊂ X such that µ(A) ≥ 1/2,

µ(At) ≥ 1− e−a(t−to )2

, ∀t ≥ to ,

where At = {x ∈ X ; d(x ,A) ≤ t}.

Example.
The standard Gaussian measure on Rn verifies CP2(1/2, 0) for all n.

Proposition

The probability µ verifies the Gaussian concentration property CP2(a, to) if and
only if for all 1-Lipschitz function f : X → R, it holds

µ(f > m + t) ≤ e−a(t−to )2

, ∀t ≥ to ,

where m is a median of f .

Nathaël Gozlan Concentration of measure and optimal transport



Link with Gaussian concentration

Gaussian concentration

The probability µ verifies the Gaussian concentration property CP2(a, to) for
a, to ≥ 0, if for all A ⊂ X such that µ(A) ≥ 1/2,

µ(At) ≥ 1− e−a(t−to )2

, ∀t ≥ to ,

where At = {x ∈ X ; d(x ,A) ≤ t}.

Example.
The standard Gaussian measure on Rn verifies CP2(1/2, 0) for all n.

Proposition

The probability µ verifies the Gaussian concentration property CP2(a, to) if and
only if for all 1-Lipschitz function f : X → R, it holds

µ(f > m + t) ≤ e−a(t−to )2

, ∀t ≥ to ,

where m is a median of f .
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Marton’s argument

Theorem

If µ verifies T2(C), then µ verifies CP2

`
1
C
, to
´
, with to =

p
C log(2)

Proof.
Take A ⊂ X , with µ(A) ≥ 1/2 and define B = X \ At , t > 0.

Set dµA = 1IA
µ(A)

dµ and dµB = 1IB
µ(B)

dµ.

t ≤W2(µA, µB) ≤W2(µA, µ) + W2(µB , µ)

≤
p

C H(µA | µ) +
p

C H(µB | µ)

≤
p
−C log(µ(A)) +

p
−C log(µ(B))

So,

µ(B) ≤ exp

„
− 1

C
(t − to)2

«
, ∀t ≥ to =

p
C log(2).
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Dimension free concentration

In fact a much stronger phenomenon occurs

Definition

The probability µ verifies the Gaussian dimension free concentration property
CP∞2 (a, to), with a, to ≥ 0, if for all n ∈ N∗, the product measure µ⊗ n verifies
CP2(a, to) on X n equipped with the product distance

d2(x , y) =

"
nX

i=1

d2(xi , yi )

#1/2

, ∀x , y ∈ X n.

This phenomenon found many applications in Probability or Analysis in high
dimensions.

Nathaël Gozlan Concentration of measure and optimal transport



T2 ⇒ CP∞2

Theorem (Marton-Talagrand)

If µ verifies T2(C), then for all n ∈ N∗, µ⊗n verifies T2(C) on (X n, d2).

In particular,
T2(C)⇒ CP∞2 (1/C ,

p
C log(2))
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Other functional approach to dimension free concentration

Logarithmic Sobolev inequality

 Gaussian concentration - model : 1
Z
e−|x|

2

dx
Gross, Herbst, Ledoux, Bobkov-Götze. . .

Poincaré inequality
 Exponential concentration - model : 1

Z
e−|x| dx

Gromov-Milman, Bobkov-Ledoux, Bobkov-Houdré

Lata la-Oleszkiewicz inequalities
 between exponential and Gaussian - model : 1

Z
e−|x|

α

dx , α ∈ [1, 2]
Beckner, Lata la-Oleszkiewicz, Barthe-Cattiaux-Roberto

Modified Logarithmic Sobolev inequalities
 Sub- and super-Gaussian - model : 1

Z
e−|x|

α

dx , α ≥ 1
Bobkov-Ledoux, Bobkov-Zegarlinski, Gentil-Guillin-Miclo, Barthe-Roberto

Transport inequalities
Marton, Talagrand, Otto-Villani, Bobkov-Götze, Bobkov-Gentil-Ledoux,
Djellout-Guillin-Wu, Wang . . .

τ Property
Maurey, Lata la-Wojtaszczyk
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A converse to Marton’s Theorem

Theorem (G. 09)

A probability measure µ has the dimension free Gaussian concentration
property if and only if it verifies Talagrand’s T2 inequality.

More precisely, µ verifies T2(C) if and only if, there is to such that

µn(At) ≥ 1− exp

„
− 1

C
(t − to)2

«
, ∀n ≥ 1, ∀µn(A) ≥ 1/2, ∀t ≥ to .

Comments :
• T2 ⇒ concentration : Marton (86), Talagrand (96).
• Concentration ⇒ T2 : G. (09)
 Gozlan, A characterization of dimension free concentration in terms of
transport inequalities, AOP (2009).
• Use of Large deviations : G. and Léonard (07)
 G. and Léonard, A large deviation approach to some transportation cost
inequalities, PTRF (2007).
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Sketch of proof.

The idea is to estimate the probability of the following rare event

P(W2(Ln, µ) > t), t ≥ 0,

where Ln = 1
n

Pn
i=1 δXi and Xi an i.i.d sequence of law µ.

• A first estimate (from above) is given by CP∞2 (a, to):

P(W2(Ln, µ) > t) ≤ e−nat2

(roughly speaking)

Here we use the crucial fact that x 7→W2(Lx
n, µ) is 1/

√
n Lipschitz.

• A second estimate (from below) is given by Sanov’s Theorem:

− inf{H(ν|µ); W2(ν, µ) > t} ≤ lim inf
n→+∞

1

n
log P(W2(Ln, µ) > t)

Comparing these two estimates gives Talagrand’s inequality:

W 2
2 (ν, µ) ≤ 1

a
H(ν|µ), ∀ν ∈ P(X ).
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Links with the Log-Sobolev inequality - Otto-Villani
Theorem

Definition

The probability µ verifies the Log-Sobolev inequality LSI(C) if

Entµ(f 2) ≤ C

Z
|∇f |2 dµ,

for all locally Lipschitz f , where

Entµ(g) =

Z
g log(g) dµ−

„Z
g dµ

«
· log

„Z
g dµ

«
, ∀g ≥ 0.

The following result is due to Otto and Villani (2000). Bobkov-Gentil-Ledoux
proposed another proof in 2001.

Theorem

Let (X , d) be a complete, connected Riemannian manifold equipped with its
geodesic distance, and µ be an absolutely continuous probability measure on
X . If µ verifies LSI(C) then it verifies T2(C).
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A proof based on concentration

To prove the implication
LSI(C)⇒ T2(C)

it is enough to prove that

LSI(C)⇒ CP∞2 (1/C , to), for some to .

This is a well known property of the log-Sobolev inequality due to Herbst.

Sketch of proof. Apply LSI(C)

Entµ

n

(g 2) ≤ C

Z
|∇g |2 dµ

n

to g = eλf /2 with f a centered 1-Lipschitz function. After some elementary
calculations, this yields the following bound:Z

eλf dµ

n

≤ eCλ2/4, ∀λ ≥ 0.

This implies

µ

n

(f ≥ t) ≤ e−t2/C , ∀t ≥ 0.
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Inf-Convolution Log-Sobolev inequality

LSI:

Entµ(g 2) ≤ C

Z
|∇g |2 dµ, ∀g .

New gradient:

|∇f |2(x) ←→

8<:
f (x)− Qλf (x)
where
Qλf (x) = infy∈X{f (y) + 1

2λ
d2(x , y)}

Definition

The probability µ is said to verify the inf-convolution log-Sobolev inequality
with constants A and λ if

Entµ(e f ) ≤ A

Z
(f − Qλf )e f dµ, ∀f .

 joint work with C. Roberto and P-M Samson.
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Inf-Convolution Log-Sobolev inequality

Theorem (G-Roberto-Samson (2011))

Let µ be a probability on some polish space (X , d); the following statements
are equivalent:

(1) There is some constant C such that µ verifies T2(C).
(2) There are constants A, λ > 0 such that µ verifies the following
inf-convolution log-Sobolev inequality:

Entµ(e f ) ≤ A

Z
(f − Qλf )e f dµ, ∀f ,

where Qλf (x) = infy∈X
˘
f (y) + λd2(x , y)

¯
.

There is a precise relation between C ,A and λ.

The proof of (2) ⇒ (1) uses the same arguments as the proof of Otto-Villani
Theorem (tensorization + sophisticated Herbst argument)
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Perturbation of Talagrand’s inequality.

Theorem (GRS 2011)

If µ verifies T2(C) and if µ̄ is a probability such that

µ̄(dx) = eϕ(x) µ(dx),

where ϕ : X → R is a bounded function, then µ̄ verifies T2(C), with

C = κeOsc (ϕ)C , where Osc (ϕ) = supϕ− inf ϕ.

The same conclusion holds (with κ = 1) for the Log-Sobolev or Poincaré
inequality and all their variants (Holley-Stroock perturbation lemma).

Proof of the Theorem. We use the equivalence between T2 and the
inf-convolution log-Sobolev inequality and we apply the Holley-Stroock
perturbation lemma in its classical form.
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Thank you for your attention !
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Link with the usual gradient for semi convex functions

If f is K -semi convex on Rk , then, by definition,

f (y) ≥ f (x) +∇f (x) · (y − x)− K

2
|y − x |22

Therefore, if λ < 1/K

Qλf (x) = inf
y


f (y) +

1

2λ
|x − y |22

ff
≥ inf

y


f (x) +∇f (x) · (y − x) +

1

2

„
1

λ
− K

«
|x − y |22

ff
= f (x)− 1

2
`

1
λ
− K

´ |∇f |2(x).

So,

f (x)− Qλf (x) ≤ 1

2
`

1
λ
− K

´ |∇f |2(x)

and so the inf convolution log-Sobolev inequality implies a restricted
log-Sobolev inequality. . .
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f (y) ≥ f (x) +∇f (x) · (y − x)− K

2
|y − x |22

Therefore, if λ < 1/K

Qλf (x) = inf
y


f (y) +

1

2λ
|x − y |22

ff
≥ inf

y


f (x) +∇f (x) · (y − x) +

1

2

„
1

λ
− K

«
|x − y |22

ff
= f (x)− 1

2
`

1
λ
− K

´ |∇f |2(x).

So,

f (x)− Qλf (x) ≤ 1

2
`

1
λ
− K

´ |∇f |2(x)

and so the inf convolution log-Sobolev inequality implies a restricted
log-Sobolev inequality. . .
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Restricted Log-Sobolev inequality

Theorem (GRS-2010)

Let µ be a probability measure on Rk ; the following propositions are equivalent:
(1) There is C1 > 0 such that µ verifies T2(C1).
(2) There is C2 > 0 such that for all 0 ≤ K < 2

C
and all K -semi-convex

f : Rk → R,

Entµ(e f ) ≤ C`
1− KC

2

´2

Z
|∇f |2e f dµ.

The constants C1 and C2 are related in the the following way:

(1)⇒ (2) with C2 = C1.

(2)⇒ (1) with C1 = 9C2.

 G., Roberto, Samson A new characterization of Talagrand’s
transport-entropy inequalities and applications, AOP (2011).
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Proof - T2 ⇒ inf-convolution LSI

Let f be a function on X and define

dνf =
e fR
e f dµ

dµ.

Then

H(νf | µ) =

Z
log

„
e fR
e f dµ

«
dνf

=

Z
f dνf − log

Z
e f dµ

≤
Z

f dνf −
Z

f dµ, (Jensen)

If π is an optimal transport plan between νf and µ, then

H(νf | µ) ≤
ZZ

f (x)− f (y)π(dxdy).
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Proof - T2 ⇒ inf-convolution LSI

H(νf | µ) ≤
ZZ

f (x)− f (y)π(dxdy).

But

f (y) ≥ Qλf (x)− 1

2λ
d2(x , y),

so

H(νf | µ) ≤
ZZ

f (x)− Qλf (x)π(dxdy) +
1

2λ

ZZ
d2(x , y)π(dxdy)

=

Z
f (x)− Qλf (x) νf (dx) +

1

2λ
T2(νf , µ)

Since µ verifies T2(C), one gets

H(νf | µ) ≤
Z

f (x)− Qλf (x) νf (dx) +
C

2λ
H(νf | µ).

and so for all λ > C/2, it holds

H(νf | µ) ≤ 1

1− C
2λ

Z
f (x)− Qλf (x) νf (dx).

Nathaël Gozlan Concentration of measure and optimal transport



Proof - T2 ⇒ inf-convolution LSI

H(νf | µ) ≤
ZZ

f (x)− f (y)π(dxdy).

But

f (y) ≥ Qλf (x)− 1

2λ
d2(x , y),

so

H(νf | µ) ≤
ZZ

f (x)− Qλf (x)π(dxdy) +
1

2λ

ZZ
d2(x , y)π(dxdy)

=

Z
f (x)− Qλf (x) νf (dx) +

1

2λ
T2(νf , µ)

Since µ verifies T2(C), one gets

H(νf | µ) ≤
Z

f (x)− Qλf (x) νf (dx) +
C

2λ
H(νf | µ).

and so for all λ > C/2, it holds

H(νf | µ) ≤ 1

1− C
2λ

Z
f (x)− Qλf (x) νf (dx).
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