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Log-concave vectors

A random vector in Rn is called logarithmically concave
(log-concave in short) if for any compact nonempty sets A,B ⊂ Rn

and λ ∈ [0, 1],

P(X ∈ λA + (1− λ)B) ≥ P(X ∈ A)λP(X ∈ B)1−λ.

Theorem (Borell)
A random vector X with a full dimensional support is log-concave
iff it has a log-concave density, i.e a density of the form e−h(x)

with h : Rd → (−∞,∞] convex.



Examples of log-concave vectors

Gaussian vectors
Vectors with independent log-concave coordinates (in
particular vectors with the product exponential distribution)
Vectors uniformly distributed on convex bodies
Affine images of log-concave vectors
Sums of independent log-concave vectors

It may be shown that the class of log-concave distributions is the
smallest class that contains uniform distributions on convex bodies
and is closed under affine transformations and weak limits.



Notation

For x ∈ Rn,

|x | = ‖x‖2 =
(∑n

i=1 x2
i

)1/2

‖x‖r =
(∑n

i=1 |xi |r
)1/r

, 1 ≤ r <∞, ‖x‖∞ = maxi |xi |

PIx - canonical projection of x onto {y ∈ Rn : supp(y) ⊂ I},
∅ 6= I ⊂ {1, . . . , n}.

For a random variable S and p > 0, ‖S‖p := (E|S|p)1/p

We say that a random vector X = (X1, . . . ,Xn) is isotropic if
EXi = 0 and EXiXj = δi ,j .



Paouris Large Deviation for Euclidean Norm

Theorem (Paouris’06)
For any isotropic log-concave vector X in Rn,

P(|X | ≥ t) ≤ exp
(
− 1

C t
)

for t ≥ C
√
n,

equivalently

(E|X |p)1/p ≤ C
(√

n + p
)

for p ≥ 2.

Problem. What is the concentration for other norms of X? In
particular how it is for ‖X‖r?



Concentration of lr norms, 1 ≤ r < 2

Case 1 ≤ r ≤ 2 reduces to the Paouris result for r = 2, since by
the Hölder’s inequality ‖X‖r ≤ n1/r−1/2|X |. Thus

(E‖X‖pr )1/p ≤ C(n1/r + n1/r−1/2p)

and

P(‖X‖r ≥ t) ≤ exp
(
− 1

C tn1/2−1/r
)

for t ≥ Cn1/r .

It is not hard to construct examples showing that these bounds are
optimal.



Concentration of lr norms, r > 2

Example If X1, . . . ,Xn are independent symmetric exponential
r.v.’s with variance one then

(E‖X‖pr )1/p ≥ 1
C (rn1/r + p) for p ≥ 2, r ≥ 2, n ≥ C r .

Problem Can we reverse this bound?
We have

‖X‖r =
( n∑

i=1
|Xi |r

)1/r
=
( n∑

i=1
|X ∗i |r

)1/r
≤
(
2

s−1∑
k=0

2k |X ∗2k |r
)1/r

,

where s = blog2 nc and X ∗1 ≥ X ∗2 ≥ . . . ≥ X ∗n we denote the
nonincreasing rearrangement of |X1|, . . . , |Xn| (order statistics of
vectors X ).
So to get concentration inequalities for lr norms we may look at
the tail inequalities for X ∗l , 1 ≤ l ≤ n.



Union bound
We have for isotropic logconcave vectors X ,

P(X ∗k ≥ t) = P
( ⋃

i1<...<ik
{|Xi1 | ≥ t, . . . , |Xik | ≥ t}

)
≤

∑
i1<...<ik

∑
η1=±1,...,ηk=±1

P(η1Xi1 ≥ t, . . . , ηkXik ≥ t)

≤
∑

i1<...<ik

∑
η1=±1,...,ηk=±1

P
( 1√

k
(η1Xi1 + . . .+ ηkXik ) ≥ t

√
k
)

≤
(
n
k

)
2k exp

(
− 1

C t
√
k
)
.

Therefore

P(X ∗k ≥ t) ≤ exp
(
− 1

C t
√
k
)

for t ≥ C
√
k log

(en
k
)
.

The threshold
√
k log( en

k ) is very bad.
If coordinates of Xi are independent symmetric exponential r.v.
with variance 1 then Med(X ∗k ) ∼ log(en/k) for k ≤ n/2.
The right threshold should be log(en/k), not

√
k log( en

k ).



Order Statistics for isotropic log-concave vectors

Theorem

Let X be n-dimensional log-concave isotropic vector. Then

P(X ∗k ≥ t) ≤ exp
(
− 1

C
√
kt
)

for t ≥ C log
(en
k
)
.

The proof is based on the estimate of moments of the process

NX (t) :=
n∑

i=1
1{Xi≥t} t ≥ 0.

Theorem

For any isotropic log-concave vector X and p ≥ 1 we have

E(t2NX (t))p ≤ (Cp)2p for t ≥ C log
(nt2

p2

)
.



Estimate for NX implies tail inequality for X ∗k
Recall:

E(t2NX (t))p ≤ (Cp)2p for t ≥ C log
(nt2

p2

)
, p ≥ 1.

where
NX (t) :=

n∑
i=1

1{Xi≥t} t ≥ 0.

To get estimate for order statistics we observe that X ∗k ≥ t implies
that NX (t) ≥ k/2 or N−X (t) ≥ k/2 and vector −X is also
isotropic and log-concave. Estimates for NX and Chebyshev’s
inequality gives

P(X ∗k ≥ t) ≤
(2
k
)p(

ENX (t)p + EN−X (t)p) ≤ 2
( Cp
t
√
k

)2p

provided that t ≥ C log(nt2/p2). We take p = 1
eC t
√
k and notice

that the restriction on t follows by the assumption that
t ≥ C log(en/k).



Estimate for NX implies Paouris concentration

Proposition
Suppose that X is a random vector in Rn such that

E
(
t2NUX (t)

)l ≤ (A1l)2l for t ≥ A2, l ≥
√
n, U ∈ O(n),

where A1,A2 are finite constants. Then

P(|X | ≥ t
√
n) ≤ exp

(
− 1

CA1
t
√
n
)

for t ≥ max{CA1,A2}.

Idea of the proof. For any U1, . . . ,Ul ∈ O(n),

E
l∏

i=1
NUi X (t) ≤

( l∏
i=1

ENUi X (t)l
)1/l
≤
(A1l

t

)2l
for l ≥

√
n.

If U1, . . . ,Ul are random rotations then one may show that

EX EU

l∏
i=1

NUi X (t) = EX (EU1NU1X (t))l ≥ nlC−lP(|X | ≥ 2t
√
n)

and we take l =
⌈√

nt/(
√
eC1A1)

⌉
.



Concentration of lr norms, r > 2

Theorem

For any δ > 0 there exist constants C1(δ),C2(δ) ≤ Cδ−1/2 such
that for any isotropic logconcave vector X and r ≥ 2 + δ,

(E‖X‖pr )1/p ≤ C2(δ)
(
rn1/r + p

)
for p ≥ 2.

Equivalently

P(‖X‖r ≥ t) ≤ exp
(
− 1

C1(δ)
t
)

for t ≥ C1(δ)rn1/r .

We suspect that there should be no dependence on δ.



Uniform Paouris-type estimate

Theorem

For any m ≤ n and any isotropic log-concave vector X in Rn we
have for t ≥ 1,

P
(
sup
|I|=m

|PIX | ≥ Ct
√
m log

(en
m
))
≤ exp

(
− t

√
m√

log(em)
log
(en
m
))
.

Idea of the proof. We have

sup
I⊆{1,...,N}
|I|=m

|PIX | =
( m∑

k=1
|X ∗k |2

)1/2
≤ 2

( s−1∑
i=0

2i |X ∗2i |2
)1/2

,

where s = dlog2 me.



Weak parameter

For a vector X in Rn we define

σX (p) := sup
t∈Sn−1

(E|〈t,X 〉|p)1/p p ≥ 2.

Examples
For isotropic log-concave vectors X , σX (p) ≤ p/

√
2.

For subgaussian vectors X , σX (p) ≤ C√p.
We say that an isotropic vector X is ψα if σX (p) ≤ Cp1/α

(uniform distributions on suitable normalized Bn
r balls are ψα

with α = min(r , 2))



Paouris theorem with weak parameter

Theorem (Paouris)

For any log-concave random vector X,

(E|X |p)1/p ≤ C
(
(E|X |2)1/2 + σX (p)

)
for p ≥ 2,

P(|X | ≥ t) ≤ exp
(
− σ−1

X

( t
C
))

for t ≥ C(E|X |2)1/2.

Corollary
For any log-concave vector X in Rn, any Euclidean norm ‖ ‖ on Rn

and p ≥ 1 we have

(E‖X‖p)1/p ≤ C
(
(E‖X‖2)1/2 + sup

‖t‖∗≤1
(E|〈t,X 〉|p)1/p

)
, (1)

where (Rn, ‖ · ‖∗) is a dual space to (Rn, ‖ · ‖).

It is an open problem whether (1) holds for arbitrary norms



Bounds with use of weak parameter

Theorem

For any n-dimensional log-concave isotropic vector X,

P(X ∗l ≥ t) ≤ exp
(
− σ−1

X

( 1
C t
√
l
))

for t ≥ C log
(en
l
)
.

As before the proof is based on a suitable estimate of NX :

Theorem

Let X be an isotropic log-concave vector in Rn. Then

E(t2NX (t))p ≤ (CσX (p))2p for p ≥ 2, t ≥ C log
( nt2

σ2
X (p)

)
.



Uniform bound for projections with weak parameter

Theorem

Let X be an isotropic log-concave vector in Rn. Then for any
t ≥ 1,

P
(

sup
|I|=m

|PIX | ≥ Ct
√
m log

(en
m
))
≤ exp

(
−σ−1

X

( t√m log
(

en
m

)
√
log(em/m0)

))
,

where

m0 = m0(X , t) = sup
{
k ≤ m : k log

(en
k
)
≤ σ−1

X

(
t
√
m log

(en
m
))}

.



Weak parameter for convolution of log-concave measures

Proposition
Let X (1), . . . ,X (d) be independent isotropic log-concave vectors
and Y =

∑d
i=1 xiX (i). Then

σY (p) ≤ C(
√p|x |+ p‖x‖∞). for p ≥ 2.

Sketch of the proof. Fix t ∈ Sn−1. Let Ei be independent
symmetric exponential random variables with variance 1. The
result of Borell gives E|〈t,X (i)〉|p ≤ CpE|Ei |p for p ≥ 1. Hence

(E|〈t,Y 〉|p)1/p =
(
E
∣∣∣ d∑

i=1
xi〈t,X (i)〉

∣∣∣p)1/p
≤ C

(
E
∣∣∣ d∑

i=1
xiEi

∣∣∣p)1/p

≤ C(
√p|x |+ p‖x‖∞),

where the last inequality follows by the Gluskin and Kwapień
bound. 2



Order statistics of convolutions

Corollary

Let X (1), . . . ,X (m) be independent isotropic log-concave vectors
and Y =

∑m
i=1 xiX (i). Then

P(Y ∗l ≥ t) ≤ exp
(
− 1

C min
{ t2l
|x |2 ,

t
√
l

‖x‖∞

})
for t ≥ |x | log

(en
l
)
.



Uniform bound for projections of convolutions

Theorem

Let Y =
∑d

i=1 xiX (i), where X (1), . . . ,X (d) are independent
isotropic n-dimensional log-concave vectors. Assume that |x | ≤ 1
and ‖x‖∞ ≤ b ≤ 1.
i) If b ≥ 1√

m , then for any t ≥ 1,

P
(

sup
I⊆{1,...,n}
|I|=m

|PIY | ≥ Ct
√
m log

(en
m
))
≤ exp

(
−

t
√
m log

(
en
m

)
b
√
log(e2b2m)

)
.

ii) If b ≤ 1√
m then for any t ≥ 1,

P
(

sup
I⊆{1,...,n}
|I|=m

|PIY | ≥ Ct
√
m log

(en
m
))

≤ exp
(
−min

{
t2m log2

(en
m
)
,
t
b
√
m log

(en
m
)})

.



Uniform bound for norms of submatrices
Let A be an d × n random matrix with independent log-concave
isotropic rows X (1), . . . ,X (d) ∈ Rn. For k ≤ d ,m ≤ n we define

Ak,m = sup{‖A|I×J‖`m2→`k2 : I ⊆ {1, . . . , d}, J ⊆ {1, . . . , n},

|I| = k, |J | = m}

the maximal operator norm of a k ×m submatrix of A.

Theorem

For any integers d , n, k ≤ d, m ≤ n and any t ≥ 1, we have

P
(
Ak,m ≥ Ctλmk

)
≤ exp

(
− tλmk√

log(3m)

)
,

where

λmk =
√
log log(3m)

√
m log

(emax(n, d)

m
)

+
√
k log

(ed
k
)
.

The bound is essentially optimal up to
√
log logm factor.



Scheme of the proof

Proof consists of two parts depending on the relation between k
and the quantity

k ′ = inf{l ≥ 1 : m log(en/m) ≤ l log(ed/l)}.

Step 1. Reduction to the case k ≤ k ′. We follow the method of
Adamczak-Litvak-Pajor-Tomczak Jaegermann (JAMS’2010), where
Ak,n was estimated. The new ingredient is uniform Paouris-type
estimate for projections of X .

Step 2. Case k ≤ k ′. Chaining argument with the use of uniform
estimate for projections of convolutions. At this step we loose
log logm.



RIP property for matrices with independent rows

Theorem
Let A be an d × n random matrix with independent log-concave
isotropic rows X (1), . . . ,X (d) ∈ Rn and d ≤ n. There exists an
absolute constant c > 0 such that if m ≤ n satisfies

m log log(3m)
(
log en

m
)2
≤ cd

then with high probability A satisfies RIP property of order m, i.e.
every vector in x ∈ Rn with |supp(x)| ≤ m may be reconstructed
from its compressed image Ax ∈ Rd by l1-minimization method.

In the unconditional case we are able to remove log log factor.
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