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BERNSTEIN INEQUALITY

Let X1, X2, . . . , be a sequence of independent
random variables such that for all i ≥ 1, EXi =
0 and for some κ > 0 and v > 0 for integers
m ≥ 2, E |Xi|m ≤ vm!κm−2/2.

The classic Bernstein inequality (cf. p. 855 of
Shorack and Wellner (1986) says that in this
situation for all n ≥ 1 and t ≥ 0

P


∣∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣∣ > t

 ≤ 2 exp

{
− t2

2vn + 2κt

}
.
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MAXIMAL VERSION

Moreover, (cf. Theorémè B.2 in Rio (2000) its
maximal form also holds, i.e. we have

P

 max
1≤j≤n

∣∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣∣ > t

 ≤ 2 exp

{
− t2

2vn + 2κt

}
.
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GENERAL BERNSTEIN
INEQUALITY

It turns out that, under a variety of assump-
tions, a sequence of not necessarily independent
random variables X1, X2, . . . , will satisfy a gen-
eralized Bernstein-type inequality of the follow-
ing form: for suitable constants A > 0, a > 0,
b ≥ 0 and 0 < γ < 2 for all i ≥ 0, n ≥ 1 and
t ≥ 0,

P{|S(i + 1, i + n)| > t}

≤ A exp

{
− at2

n + btγ

}
,

(GB)

where for any choice of 1 ≤ i ≤ j < ∞ we de-

note the partial sum S(i, j) =
∑j
k=iXk. Here

are some examples.

4



BERNSTEIN EXAMPLE 1

Let X1, X2, . . . , be a stationary sequence satis-
fying

EX1 = 0 and V arX1 = 1.

For each integer n ≥ 1 set

Sn = X1 + · · · + Xn

and B2
n = V ar (Sn).

Assume that for some σ2
0 > 0

we have B2
n ≥ σ2

0n for all n ≥ 1.

Statulevičius and Jakimavičius (1988) prove that
the partial sums satisfy GB with constants de-
pending on the particular mixing and bounding
condition that the sequence may fulfill.
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BENTKUS AND RUDZKIS

Their Bernstein-type inequalities are derived via
the following result of Bentkus and Rudzkis (1980)
relating cumulant behavior to tail behavior:

For an arbitrary random variable ξ with expec-
tation 0, whenever there exist γ ≥ 0, H > 0
and ∆ > 0 such that its cumulants Γk (ξ) satisfy

|Γk (ξ)| ≤ (k!/2)1+γH/∆k−2 for k = 2, 3, . . . ,
then for all x ≥ 0

P {±ξ > x}

≤ exp

−
x2

2

(
H +

(
x/∆1/(1+2γ)

)(1+2γ)/(1+γ)
)
 .
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BERNSTEIN EXAMPLE 2

Doukhan and Neumann (2007) have shown us-
ing the result in Bentkus and Rudzkis (1980)
cited in the previous example that if a sequence
of mean zero random variables X1, X2, . . . , sat-
isfies a general covariance condition then the
partial sums satisfy GB.

Refer to their Theorem 1 and Remark 2, and
also see Kallabis and Neumann (2006).
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BERNSTEIN EXAMPLE 3

Assume that X1, X2, . . . , is a strong mixing se-
quence with mixing coefficients α (n), n ≥ 1,
satisfying for some d > 0, α (n) ≤ exp (−2dn).
Also assume that EXi = 0 for some M > 0
|Xi| ≤ M , for all i ≥ 1. Theorem 2 of Mer-
levéde, Peligrad and Rio (2009) implies that for
some constant D > 0 for all t ≥ 0 and n ≥ 1,

P {|Sn| ≥ t} ≤ exp

(
− Dt2

nv2 + M2 + tM (log n)2

)
,

where Sn =
∑n
i=1Xi and

v2 = sup
i>0

V ar (Xi) + 2
∑
j>i

∣∣cov (Xi, Xj)∣∣
 .
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EXPLANATION

To see how this last example satisfies GB, notice
that for any 0 < η < 1 there exists a D1 > 0
such that for all t ≥ 0 and n ≥ 1,

nv2+M2+tM (log n)2 ≤ n
(
v2 + M2

)
+D2t

1+η.

Thus GB holds with γ = 1 + η for suitable
A > 0, a > 0 and b ≥ 0.
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GENERAL MAXIMAL
BERNSTEIN INEQUALITY

For any choice of 1 ≤ i ≤ j <∞ define

M(i, j) = max{|S(i, i)|, . . . , |S(i, j)|}.
Somewhat unexpectedly, if a sequence of ran-
dom variables X1, X2, . . . , satisfies a Bernstein-
type inequality of the form GB, then without
any additional assumptions a modified version
of it also holds for

M(m + 1,m + n) = max
1≤i≤n

|S(1 + m, i + m)|.
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GMB InequalityAssume that for constants
A > 0, a > 0, b ≥ 0 and γ ∈ (0, 2), inequal-
ity GB holds for all i ≥ 0, n ≥ 1 and t ≥ 0.
Then for every 0 < c < a there exists a
C > 0 depending only on A, a, b and γ such
that for all m ≥ 0, n ≥ 1 and t ≥ 0,

P{M(m+1,m+n) > t} ≤ C exp

{
− ct2

n + btγ

}
.
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REMARK

Clearly c < a can be chosen arbitrarily close to
a.

The case b = 0 is a special case of Thereom 1 of
Moricz (1979).

This result has appeared in Kevei and M (2011).
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MOTIVATION

The GMB inequality was partially motivated
by Theorem 2.2 of Móricz, Serfling and Stout
(1982), who showed that whenever for a suitable
positive function g (i, j) of (i, j) ∈ {1, 2, . . . }×
{1, 2, . . . }, positive function φ (t) defined on
(0,∞) and constant K > 0, for all 1 ≤ i ≤
j <∞ and t > 0,

P{|S(i, j)| > t} ≤ K exp {−φ (t) /g (i, j)} ,
then there exist constants c > 0 and C > 0
such that for all m ≥ 0, n ≥ 1 and t > 0,

P{M(m + 1,m + n) > t}
≤ C exp {−cφ (t) /g (1, n)} .

This inequality is clearly not applicable to ob-
tain a maximal form of the generalized Bern-
stein inequality.
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APPLICATIONS OF GMB
INEQUALITY

An obvious application of the GMB inequality
is the following bounded law of the iterated log-
arithm.

Bounded LIL Under the assumptions of the
previous theorem, with probability 1,

lim sup
n→∞

|S(1, n)|√
n log log n

≤ 1√
a
.
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OBSERVATION

In general one cannot replace “≤ ” by “=” our
bounded LIL. To see this, let Y , Z1, Z2, . . . be a
sequence of independent random variables such
that Y takes on the value 0 or 1 with probability
1/2 and Z1, Z2, . . . are independent standard
normals. Now define Xi = Y Zi, i = 1, 2, . . . It
is easily checked that assumptions of the GMB
inequality are satisfied with A = 2, a = 1/2,
b = 0 and γ = 1.

When Y = 1 the usual law of the iterated log-
arithm gives with probability 1,

lim sup
n→∞

|S(1, n)|/
√
n log log n =

√
2 = 1/

√
a

whereas, when Y = 0 the above limsup is 0.
This agrees with the bounded LIL, which says
that with probability 1 the limsup is ≤

√
2.

However, we see that with probability 1/2 it
equals

√
2 and with probability 1/2 it equals

0.
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A MORE GENERAL MAXIMAL
BERNSTEIN INEQUALITY

THEOREM Assume that there exist constants
A > 0 and a > 0 and a sequence of non-
decreasing non-negative functions {gn}n≥1 on
(0,∞), such that for all t > 0 and n ≥ 1,
gn (t) ≤ gn+1 (t) and for all 0 < γ < 1

lim
n→∞

inf

{
t2

gn(t) log t
: gn (t) > γn

}
=∞,

where the infinum of the empty set is defined to
be infinity, such that for all m ≥ 0, n ≥ 1 and
t ≥ 0,

P{|S(m+1,m+n)| > t} ≤ A exp

{
− at2

n + gn(t)

}
.
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Then for every 0 < c < a there exists a C > 0
depending only on A, a and {gn}n≥1 such that
for all n ≥ 1, m ≥ 0 and t ≥ 0,

P{M(m+1,m+n) > t} ≤ C exp

{
− ct2

n + gn(t)

}
.

Note that the more general maximal Bernstein
inequality implies the previous one by choosing

gn (t) = btγ.
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EXAMPLE 1 Assume that X1, X2, . . . , is a
stationary Markov chain satisfying the condi-
tions of Theorem 6 of Adamczak (2008) and let
f be any bounded function f such thatEf (X1) =
0.

This theorem implies that for suitable positive
constants D, d1, d2 for all t ≥ 0 and n ≥ 1,

P ({|Sn(f )| ≥ t} ≤ D−1 exp

(
− Dt2

nd1 + td2 log n

)
,

where Sn(f ) =
∑n
i=1 f (Xi).
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In this example one can verify that the assump-
tions of the theorem hold with

A = D−1, a = D/d1 and

gn (t) =

(
td2

d1

)
log n.
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EXAMPLE 2 Assume that X1, X2, . . . , is a
strong mixing sequence with mixing coefficients
α (n), n ≥ 1, satisfying for some d > 0, α (n) ≤
exp (−2dn). Also assume that EXi = 0 for
some M > 0 |Xi| ≤M , for all i ≥ 1. Theorem
2 of Merlevéde, Peligrad and Rio (2009) implies
that for some constant D > 0 for all t ≥ 0 and
n ≥ 1,

P {|Sn| ≥ t}

≤ exp

(
− Dt2

nv2 + M2 + tM (log n)2

)
,

where Sn =
∑n
i=1Xi and

v2 = sup
i>0

V ar (Xi) + 2
∑
j>i

∣∣cov (Xi, Xj)∣∣
 .
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In this example the assumptions of the theorem
hold with A = 1, a = D/v2 and

gn (t) =
M2

v2
+

(
tM

v2

)
(log n)2 ,

which leads to the inequality valid for all n ≥ 1
and t > 0

P

{
max

1≤m≤n
|Sm| ≥ t

}
≤ C exp

(
− cDt2

nv2 + M2 + tM (log n)2

)
for some constants C ≥ 1 and 0 < c < 1.
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MOTIVATION OF MORE GMB

See Corollary 24 of Merlevéde and Peligrad (in
press) for a closely related inequality that holds
for all n ≥ 2 and t > K log n for some K > 0.

They remark that their maximal inequality can-
not be derived the Kevei and M (2011) GMB
inequality. We formulated and proved our more
GMB inequality to include results like theirs.
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