Slepian's inequality

Jørgen Hoffmann-Jørgensen

Department of Mathematical Sciences
University of Aarhus, Denmark

Slepian's inequality

Let $X=\left(X_{1}, \ldots, X_{k}\right)$ be a random vector such that $X_{1}, \ldots, X_{k} \in$ $L^{2}(P)$. We let $\bar{X}_{i}:=X_{i}-E X_{i}$ denote the centered random variables and we let

$$
\sigma_{i j}^{X}:=E\left(\bar{X}_{i} \bar{X}_{j}\right) \text { and } \pi_{i j}^{X}:=E\left(\bar{X}_{i}-\bar{X}_{j}\right)^{2}
$$

denote the covariances and the squared intrinsic metrics of X. Note that $\pi_{i i}^{X}=0$ and $\pi_{i j}^{X}=\sigma_{i i}^{X}+\sigma_{j j}^{X}-2 \sigma_{i j}^{X}$.

Let $X=\left(X_{1}, \ldots, X_{k}\right)$ and $Y_{Y}=\left(Y_{1}, \ldots, Y_{k}\right)$ be Gaussian vectors with zero means and set $\theta_{i j}:=\sigma_{i j}^{Y}-\sigma_{i j}^{X}$ and $\gamma_{i j}=\pi_{i j}^{X}-\pi_{i j}^{Y}$. Let $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ be a given function satisfying a certain set of "regularity conditions". Then Slepian's inequality states:

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=1}^{k} \theta_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \geq 0 \Rightarrow E f(X) \leq E f(Y) \tag{1}
\end{equation*}
$$

and we have an important variant of (1); due to X. Fernique (1974), stating:

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=1}^{k} \gamma_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \geq 0 \Rightarrow E f(X) \leq E f(Y) \tag{2}
\end{equation*}
$$

again under a certain set of "regularity conditions" which are a bit different from the ones implying (1).

Since $\gamma_{i j}=2 \theta_{i j}-\theta_{i i}-\theta_{j j}$, we have

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} \gamma_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)=2 \sum_{i=1}^{k} \sum_{j=1}^{k} \theta_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)-2 \sum_{i=1}^{k} \theta_{i i} \frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{k} \frac{\partial f}{\partial x_{j}}\right)(x)
$$

Hence, if $\sum_{j=1}^{k} \frac{\partial f(x)}{\partial x_{j}}$ is constant, then (1) implies (2); for instance, if $f(x+t e)=a t+f(x)$ for some $a \in \mathbf{R}$ where $e=(1,1, \ldots, 1)$
X. Fernique proved (2) when $\gamma_{i j} \geq 0$ and $f(x)=\phi(Q(x))$ where $Q(x)=\max _{1 \leq i, j \leq n}\left|x_{i}-x_{j}\right|$ and $\phi: \mathbf{R}_{+} \rightarrow \mathbf{R}$ is convex and increasing. Note that $Q(x+t e)=Q(x)$.

Slepian's inequality (the smooth case)

Let $X=\left(X_{1}, \ldots, X_{k}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{k}\right)$ be Gaussian vectors with zero means and set $\theta_{i j}:=\sigma_{i j}^{Y}-\sigma_{i j}^{X}$ and $\gamma_{i j}=\pi_{i j}^{X}-\pi_{i j}^{Y}$. Let $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ be a differentiable function such that $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{k}}$ are Fréchet differentiable and let $\kappa: \mathbf{R}^{k} \rightarrow[0, \infty]$ be a Borel function and set

$$
\begin{aligned}
& \kappa^{\diamond}(x, y):=\sup _{(s, t) \in S_{+}^{2}}(1+\|s x-t y\|) \cdot \kappa(s x+t y) \forall x, y \in \mathbf{R}^{k} \\
& \|h\|_{\kappa}:=\inf \left\{c \geq 0| | f(x) \mid \leq c \kappa(x) \forall x \in \mathbf{R}^{k}\right\} \forall h: \mathbf{R}^{k} \rightarrow \mathbf{R}
\end{aligned}
$$

where $S_{+}^{2}=\left\{(s, t) \in \mathbf{R}^{2} \mid s \geq 0, t \geq 0, s^{2}+t^{2}=1\right\}$. Suppose that
(a) $\int_{\mathbf{R}^{k}} P_{X}(d x) \int_{\mathbf{R}^{k}} \kappa^{\diamond}(x, y) P_{Y}(d y)<\infty$
(b) $\quad\left\|\frac{\partial f}{\partial x_{i}}\right\|_{\kappa}<\infty$ and $\left\|\sum_{j=1}^{k} \theta_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\|_{\kappa}<\infty \quad \forall i=1, \ldots, k$

Then we have

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=1}^{k} \theta_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \geq 0 \Rightarrow E f(X) \leq E f(Y) \tag{1}
\end{equation*}
$$

and if there exists $a \in \mathbf{R}$ such that
(c) $\quad f(x+t e)=a t+f(x) \quad \forall t \in \mathbf{R} \forall x \in \mathbf{R}^{k}$
where $e=(1,1, \ldots, 1)$, then we have
(2) $\sum_{i=1}^{k} \sum_{j=1}^{k} \gamma_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \geq 0 \Rightarrow E f(X) \leq E f(Y)$

Remark: Let $Q: \mathbf{R}^{k} \rightarrow[0, \infty)$ be any given seminorm on \mathbf{R}^{k} and set $\kappa(x):=e^{Q(x)^{2}}$. Then we have

$$
\begin{aligned}
\kappa^{\diamond}(x, y) & \leq\left(1+\sqrt{\|x\|^{2}+\|y\|^{2}}\right) \cdot e^{Q(x)^{2}+Q(y)^{2}} \\
& \leq(1+\|x\|) e^{Q(x)^{2}} \cdot(1+\|y\|) e^{Q(y)^{2}}
\end{aligned}
$$

Let λ_{X} and λ_{Y} be the largest eigen value of Σ_{X} and Σ_{Y}, respectively, and set $\lambda:=\max \left(\lambda_{X}, \lambda_{Y}\right)$. Then we have

$$
\kappa(x):=e^{\alpha\|x\|^{2}} \text { satisfies (a) for all } 0 \leq \alpha<\frac{1}{2 \lambda}
$$

Schwartz distributions

Slepian's inequality is often used to prove inequalities of the form

$$
\begin{aligned}
& P\left(X_{1} \leq t_{1}, \ldots, X_{k} \leq t_{k}\right) \leq P\left(Y_{1} \leq t_{1}, \ldots, Y_{k} \leq t_{k}\right) \\
& \text { or } P\left(X_{1} \geq t_{1}, \ldots, X_{k} \geq t_{k}\right) \leq P\left(Y_{1} \geq t_{1}, \ldots, Y_{k} \geq t_{k}\right)
\end{aligned}
$$

which means that the function f is an indicator function of some set $A \subseteq \mathbf{R}^{k}$; for instance $A=\left\{\left(x_{1}, \ldots, x_{k}\right) \mid x_{i} \leq t_{i} \forall i=1, \ldots, k\right\}$.

Let $D\left(\mathbf{R}^{k}\right)$ denote the set of all infinitely often continuously differentiable functions $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ with compact support with its usual inductive limit topology and let $D^{*}\left(\mathbf{R}^{k}\right)$ denote the Schwartz distributions; i.e. the set of continuous linear functionals $\xi: D\left(\mathbf{R}^{k}\right) \rightarrow \mathbf{R}$. If $\xi \in D^{*}\left(\mathbf{R}^{k}\right)$, we write $\xi \geq 0$ if $\xi(\phi) \geq 0$ for all non-negative functions $\phi \in D\left(\mathbf{R}^{k}\right)$.

If $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ be locally λ_{k}-integrable, then $f(\phi):=$ $\int_{\mathbf{R}^{k}} f(y) \phi(y) d y$ and

$$
\partial_{i_{1}, \ldots, i_{n}} f(\phi)=(-1)^{n} \int_{\mathbf{R}^{k}} f(x) \frac{\partial^{n} \phi}{\partial x_{i_{1}} \cdots \partial x_{i_{n}}}(x) d x \quad \forall \phi \in D\left(\mathbf{R}^{k}\right)
$$

are Schwartz' distributions associated to f and its "partial derivative" $\frac{\partial^{n} f}{\partial x_{i_{1}} \cdots \partial x_{i_{n}}}$.

Following Kahane, Ledoux and Talagrand, we shall interpret the condition: $\quad \sum_{i} \sum_{j} a_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \geq 0$ in distribution sense; i.e. as $\sum_{i} \sum_{j} a_{i j} \partial_{i j} f \geq 0$.

If f is twice differentiable and $f, \frac{\partial f}{\partial x_{i}}$ and $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ are locally Lebesgue integrable for all $1 \leq i, j \leq k$, we have

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i j} \partial_{i j} f \geq 0 \Leftrightarrow \sum_{i=1}^{k} \sum_{j=1}^{k} a_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \geq 0 \quad \lambda_{k} \text {-a.e. }
$$

Let $\Delta_{i}^{u} f(x)=f\left(x+u e_{i}\right)-f(x)$ denote the difference operator for $x \in \mathbf{R}^{k}, u \in \mathbf{R}$ and $i=1, \ldots, k$ where e_{1}, \ldots, e_{k} are the standard unit vectors. If $\epsilon_{1}, \epsilon_{2}, \ldots>0$ and $\delta_{1}, \delta_{2}, \ldots>0$ are positive sequences satisfying $\epsilon_{n} \rightarrow 0$ and $\delta_{n} \rightarrow 0$ and $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ is locally $\lambda_{k^{-}}$ integrable, we have

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i j} \partial_{i j} f \geq 0 \Leftrightarrow \sum_{i=1}^{k} \sum_{j=1}^{k} a_{i j} \Delta_{i}^{\epsilon_{n}} \Delta_{j}^{\delta_{n}} f(x) \geq 0 \quad \lambda_{k} \text {-a.e. } \forall n \geq 1
$$

An example

Let $f(x)=-1_{\Delta}(x)$ where $\Delta=\left\{\left(x_{1}, \ldots, x_{k}\right) \mid x_{1}=\cdots=x_{k}\right\}$ and $k \geq 2$. Then we have $\partial_{i j} f=0$ for all $1 \leq i, j \leq k$. Let X_{1}, \ldots, X_{k} be independent $N(0,1)$-variables and set $X=\left(X_{1}, \ldots, X_{k}\right)$ and $Y=\left(X_{1}, \ldots X_{1}\right)$. Then we have

$$
\begin{aligned}
& \theta_{i j}=\sigma_{i j}^{Y}-\sigma_{i j}^{X}=1-\delta_{i j} \geq 0 \text { and } \theta_{i i}=0 \\
& E f(X)=0 \text { and } E f(Y)=-1
\end{aligned}
$$

Showing that Theorem 3.11 p. 74 in Ledoux and Talagrand, Probability in Banach Spaces, is false. However, their corollaries 3.12-3.14 are correct but with a different proof.

Approximate directional continuity

Recall that $K \subseteq \mathbf{R}^{k}$ is starshaped if $\alpha x \in K$ for all $x \in K$ and all $0 \leq \alpha \leq 1$. Let $K \subseteq \mathbf{R}^{k}$ be a bounded, starshaped Borel set with non-empty interior and let $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ be a function. If $x \in \mathbf{R}^{k}$, we say that f is continuous at x along K if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\sup _{y \in K}\left|f\left(x+\frac{y}{n}\right)-f(x)\right|\right\}=0 \tag{*}
\end{equation*}
$$

We let $C^{K}(f)$ denote the set of all $x \in \mathbf{R}^{k}$ satisfying (*). We say that f is approximately continuous at x along K if f is locally Lebesgue integrable and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{K}\left|f\left(x+\frac{y}{n}\right)-f(x)\right| d y=0 \tag{**}
\end{equation*}
$$

We let $C_{a p}^{K}(f)$ denote the set of all $x \in \mathbf{R}^{k}$ satisfying (**).
We say that f is right continuous at x if f is continuous at x along the unit cube $[0,1]^{k}$, and we say that f is left continuous at x if f is continuous at x along the negative unit cube $[-1,0]^{k}$.

Fact: If f is locally Lebesgue integrable, we have $C^{K}(f) \subseteq C_{a p}^{K}(f)$ and $\quad \lambda_{k}\left(\mathbf{R}^{k} \backslash C_{a p}^{K}(f)\right)=0$.

A lemma

Let $\left(U_{0}, U_{1}, \ldots, U_{k}\right)$ be a $(k+1)$-dimensional Gaussian vector with mean zero. Set $U=\left(U_{1}, \ldots, U_{k}\right)$ and $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ where $\theta_{i}=\operatorname{cov}\left(U_{0}, U_{i}\right)=E\left(U_{0} U_{i}\right)$. Let $h: \mathbf{R}^{k} \rightarrow \mathbf{R}$ be a Borel function such that directional derivative $\frac{\partial h}{\partial \theta}(x)=\lim _{u \rightarrow 0} \frac{1}{u}(h(x+u \theta)-h(x))$ exists for all $x \in \mathbf{R}^{k}$ and

$$
E\left|U_{0} h(U)\right|<\infty \text { and } E\left|\frac{\partial h}{\partial \theta}(U)\right|<\infty
$$

Then we have
(1) $E\left\{U_{0} h(U)\right\}=E\left\{\frac{\partial h}{\partial \theta}(U)\right\}$

Proof: If $\theta=0$, then $\frac{\partial h}{\partial \theta}(x)=0$ and U_{0} and U are independent and since $E U_{0}=0$, we see that (1) holds trivially. In general, we set $V_{0}=\sigma^{-2} U_{0}$ and $V_{i}=U_{i}-\theta_{i} V_{0}$. Then $\left(V_{0}, V_{1}, \ldots, V_{k}\right)$ is Gaussian with mean zero and V_{0} and $W:=\left(V_{1}, \ldots, V_{k}\right)$ are independent. By integration by parts, we have

$$
\int_{-\infty}^{\infty} h(z+t \theta) \sigma^{2} t e^{-(\sigma t)^{2} / 2} d t=\int_{-\infty}^{\infty} \frac{\partial h}{\partial \theta}(z+t \theta) e^{-(\sigma t)^{2} / 2} d t
$$

for all $z \in \mathbf{R}^{k}$ for which the integrals exist and since V_{0} has density $\frac{\sigma}{\sqrt{2 \pi}} e^{-(\sigma t)^{2} / 2}$, we obtain (1) by integrating with respect to P_{W}

Slepian's inequality (the general case)

Let $X=\left(X_{1}, \ldots, X_{k}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{k}\right)$ be Gaussian vectors with zero means and set $\theta_{i j}:=\sigma_{i j}^{Y}-\sigma_{i j}^{X}$ and $\gamma_{i j}=\pi_{i j}^{X}-\pi_{i j}^{Y}$. Let $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ and $\kappa: \mathbf{R}^{k} \rightarrow[0, \infty]$ be a Borel functions and let $K \subseteq \mathbf{R}^{k}$ be a bounded, starshaped Borel set with non-empty interior satisfying
(a)

$$
\int_{\mathbf{R}^{k}} P_{X}(d x) \int_{\mathbf{R}^{k}} \kappa^{\diamond}(x, y) P_{Y}(d y)<\infty
$$

(b) $\quad\|F\|_{\kappa}<\infty$ where $F(x)=\sup _{y \in K}|f(x+y)|$
(c) $\quad P\left(X \in C_{a p}^{K}(f)\right)=1=P\left(Y \in C_{a p}^{K}(f)\right)$

Then we have

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=1}^{k} \theta_{i j} \partial_{i j} f(x) \geq 0 \Rightarrow E f(X) \leq E f(Y) \tag{1}
\end{equation*}
$$

and if there exists $a \in \mathbf{R}$ such that
(d) $\quad f(x+t e)=a t+f(x) \quad \forall t \in \mathbf{R} \forall x \in \mathbf{R}^{k}$
where $e=(1,1, \ldots, 1)$, then we have

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=1}^{k} \gamma_{i j} \partial_{i j} f(x) \geq 0 \Rightarrow E f(X) \leq E f(Y) \tag{2}
\end{equation*}
$$

Remark: Let \mathcal{R}_{X} and \mathcal{R}_{Y} denote the ranges of Σ_{X} and Σ_{Y}. Then \mathcal{R}_{X} and \mathcal{R}_{Y} are linear subspaces of \mathbf{R}^{k} and we let $\lambda_{\mathcal{R}_{X}}$ and $\lambda_{\mathcal{R}_{Y}}$ denote the Lebesgue measures on \mathcal{R}_{X} and \mathcal{R}_{Y}, respectively. Then (c) is equivalent to
(c") $\quad \lambda_{\mathcal{R}_{X}}\left(\mathcal{R}_{X} \backslash C_{a p}^{K}(f)\right)=0=\lambda_{\mathcal{R}_{Y}}\left(\mathcal{R}_{Y} \backslash C_{a p}^{K}(f)\right)$
Since $\mathbf{R}^{k} \backslash C_{a p}^{K}(f)$ is a λ_{k}-null set, we see that (c) holds if Σ_{X} and Σ_{Y} are non-singular.

Integral orderings

Let (S, \mathcal{B}) be a measurable space and let $\Phi \subseteq \mathbf{R}^{S}$. If X and Y are S-valued random functions, it is custom to define the Φ-integral ordering as follows:

$$
X \leq \Phi Y \Leftrightarrow E \phi(X) \leq E \phi(Y) \forall \phi \in \Phi \text { so that the expectations exists }
$$

There is deficiency with this ordering: It is NOT a preordering.
Example: Let $k=1$ and let Φ be the set of all increasing convex functions on \mathbf{R}. If X is a random variable with $E X^{+}=\infty$, we have $X \leq_{\Phi} Y$ and $Y \leq_{\Phi} X$ for every random variable Y.

The deficiency can be repaired by the usual modification:

$$
X \preceq \Phi_{\Phi} Y \Leftrightarrow E^{*} \phi(X) \leq E^{*} \phi(Y) \forall \phi \in \Phi
$$

Then $X \preceq_{\Phi} Y$ implies $X \leq_{\Phi} Y$ and the converse implication holds if $\phi(X) \in L^{1}(P)$ and $\phi(Y) \in L^{1}(P)$ for all $\phi \in \Phi$. Passing to the distributions measures $P_{X}(B)=P(X \in B)$, leads us to the following:

Let $\operatorname{Pr}(S, \mathcal{B})$ denote the set of all probability measures on (S, \mathcal{B}). Let Φ be a set of real-valued functions on S. Then we introduce the Φ-integral ordering on $\operatorname{Pr}(S, \mathcal{B})$ as above:
$\mu \preceq_{\Phi} \nu$ if and only if $\int^{*} \phi d \mu \leq \int^{*} \phi d \nu$ for all $\phi \in \Phi$
and if $\mathcal{Q} \subseteq \operatorname{Pr}(S, \mathcal{B})$, we define the maximal generator as follows

$$
D^{\Phi}(\mathcal{Q}):=\left\{f \in \mathbf{R}^{S} \mid \int^{*} f d \mu \leq \int^{*} f d \nu \forall \mu, \nu \in \mathcal{Q} \text { so that } \mu \preceq \Phi \nu\right\}
$$

Supermodularity

$f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ is supermodular if $\Delta_{i}^{s} \Delta_{j}^{t} f(x) \geq 0$ for all $x \in \mathbf{R}^{k}$, all $s, t>0$ and all $1 \leq i \neq j \leq k$, or equivalently if

$$
f(x)+f(y) \leq f(x \vee y)+f(x \wedge y) \forall x, y \in \mathbf{R}^{k}
$$

where \wedge and \vee are the usual lattice operation on \mathbf{R}^{k}.
We say that f is submodular if $-f$ is supermodular, and f is modular if f is supermodular and submodular.

Let $\xi_{1}, \ldots, \xi_{k}: \mathbf{R} \rightarrow \mathbf{R}$ be either all increasing or all decreasing. Let $J \subseteq \mathbf{R}$ be an interval and let $\varphi: J \rightarrow \mathbf{R}$ be an increasing convex function. Then we have
(1) f is modular if and only if there exist functions $f_{1}, \ldots, f_{k}: \mathbf{R} \rightarrow \mathbf{R}$ such that $f\left(x_{1}, \ldots, x_{k}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{k}\left(x_{k}\right)$
(2) If f is increasing and supermodular, then f is Borel measurable and if $f\left(\mathbf{R}^{k}\right) \subseteq J$, then $\varphi(f(x))$ is supermodular
(3) If $\mathbf{R}_{+} \subseteq J$, then $\varphi\left(\max _{1 \leq i, j \leq k}\left|x_{i}-x_{j}\right|\right)$ is submodular
(4) If f is supermodular, then $f\left(\xi_{1}\left(x_{1}\right), \ldots, \xi_{k}\left(x_{k}\right)\right)$ is supermodular
(5) $\max \left(\xi_{1}\left(x_{1}\right), \ldots, \xi_{k}\left(x_{k}\right)\right)$ is submodular and if $\psi: \mathbf{R} \rightarrow \mathbf{R}$ is decreasing, then $\psi\left(\max \left(x_{1}, \ldots, x_{k}\right)\right)$ is supermodular
(6) $\min \left(\xi_{1}\left(x_{1}\right), \ldots, \xi_{k}\left(x_{k}\right)\right)$ is supermodular
(7) If ξ_{1}, \ldots, ξ_{k} are non-negative, then $\prod_{i=1}^{k} \xi_{i}\left(x_{i}\right)$ is supermodular
(8) If f is bounded and supermodular, then there exists a bounded modular function f_{0} and a bounded, increasing, supermodular function f_{1} such that $f(x)=f_{0}(x)+f_{1}(x)$ for all $x \in \mathbf{R}^{k}$

Let $I_{1}, \ldots, I_{k} \subseteq \mathbf{R}$ be intervals with left endpoint $-\infty$ and let $J_{1}, \ldots, J_{k} \subseteq \mathbf{R}$ be intervals with right endpoint $+\infty$. Set $A=$ $I_{1} \times \cdots \times I_{k}$ and $B=J_{1} \times \cdots \times J_{k}$. Then we have
(8) $1_{A}, 1_{B}$ and $1_{A \cup B}$ are supermodular

The supermodular ordering

We let \preceq_{sm} denote the integral ordering induced by the set of all supermodular Borel functions.

We let $\preceq_{\text {bsm }}$ denote the integral ordering induced by the set of all bounded supermodular Borel functions.

We let $\preceq_{\text {ism }}$ denote the integral ordering induced by the set of all increasing supermodular functions.

We let \preceq_{m} denote the integral ordering induced by the set of all modular Borel functions.

We let \preceq_{bm} denote the integral ordering induced by the set of all bounded modular Borel functions.

Let $\operatorname{Sm}\left(\mathbf{R}^{k}\right)$ denote the set of all supermodular functions on \mathbf{R}^{k} and let $C_{b}^{\infty}\left(\mathbf{R}^{k}\right)$ denote the set of all bounded, infinitely often continuously differentiable function on \mathbf{R}^{k} with bounded partial of all orders. Then we have
(1) $X \preceq \mathrm{bm} Y \Leftrightarrow X_{i} \sim Y_{i} \quad \forall i=1, \ldots, k$
(2) $X \preceq{ }_{\mathrm{bsm}} Y \Leftrightarrow X \preceq \operatorname{ism} Y$ and $X_{i} \sim Y_{i} \forall i=1, \ldots, k$
(3) $E f(X) \leq E f(Y) \forall f \in \operatorname{Sm}\left(\mathbf{R}^{k}\right) \cap C_{b}^{\infty}\left(\mathbf{R}^{k}\right) \Rightarrow X \preceq \operatorname{bsm} Y$
and if $k=1,2$, we have
(4) $X \preceq \mathrm{~m} Y \Leftrightarrow X \preceq \mathrm{bm} Y$

But (4) fails if $k \geq 3$.

Consider the setting of Slepian's inequality and suppose that $\theta_{i i}=0$ for all $i=1, \ldots, k$ and $\theta_{i j} \geq 0$ for all $1 \leq i, j \leq k$. By (3) and Slepian's inequality, we see that $X \preceq_{\text {bsm }} Y$

In the modern literature is often claimed that have

$$
U \preceq \mathrm{bsm} V \Leftrightarrow U \preceq \mathrm{sm} V
$$

and as a consequence, that Slepian's inequality implies $X \preceq_{s m} Y$. The first claim fails for $k \geq 3$ and I don't know if the second claim is true but in view of the next example, conjecture that it fails for $k \geq 3$..

A strange example

Let U, X_{1}, \ldots, X_{k} be random variables such that $X_{i} \sim U$ for all $i=1, \ldots, k$. A.H. Chen (1980) showed that
(1) $E f\left(X_{1}, \ldots, X_{k}\right) \leq E f(U, \ldots, U)$
for all supermodular functions $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ satisfying a certain set of regularity conditions. In the modern literature it is often claimed that these regularity conditions are not needed. The following example (due to G. Simons (1977) who used it another context) shows that we DO need some regularity conditions:

Let U be a strictly positive random variable having with density:

$$
\begin{equation*}
f(x)=\frac{2}{\pi\left(1+x^{2}\right)} \text { if } x>0 \text { and } f(x)=0 \text { if } x \leq 0 \tag{*}
\end{equation*}
$$

(The one-sided Cauchy distribution). Since U is strictly positive, we may define

$$
V=\left(U-\frac{1}{U}\right) \cdot\left(1_{\{U>1\}}-1_{\{U \leq 1\}}\right)
$$

A straight forward computation shows that $U, \frac{1}{U}$ and $\frac{1}{2} V$ have the same density given by (*). Set $f(x, y, z)=x+y-2 z$ for $(x, y, z) \in \mathbf{R}^{3}$. Then we have

$$
\begin{aligned}
& f(U, U, U)=0, f\left(U, \frac{1}{U}, \frac{1}{2} V\right)=2 U 1_{\{U \leq 1\}}+\frac{2}{U} 1_{\{U>1\}} \\
& 0<f\left(U, \frac{1}{U}, \frac{1}{2} V\right) \leq 2, E f(U, U, U)=0<E f\left(U, \frac{1}{U}, \frac{1}{2} V\right)=\frac{2 \log 2}{\pi}
\end{aligned}
$$

which means that (1) fails.

