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Slepian’s inequality

Let X = (X1,...,X;) be arandom vector such thaXy,..., X} €
L*(P) . We let X; := X; — EX; denote the centered random variables
and we let

05 := BE(X; X;) and wff = B(X; - XJ‘)Q

denotethe covariancesandthe squared intrinsic metricsf X . Note that

X =0 and 7rl. = X—I—o —20

27
Let X = (Xl, oy Xi) and Y = (Yl,.. ,Y;,) be Gaussian vectors

with zero means and set;; := 05; a)j( and Vij = 7r)§ — 7r5; . Let

f: R¥ - R be a given function satisfying a certain set of “regularity
conditions”. Then Slepian’s inequality states:

O 3 5 0pire) > 0 = EAX) < BAY)

and we have an important variant of (1); due to X. Fernique (1974), stating:

ko k
(2) 2 2_: Yij 8:5855]( )ZO = Ef(X) SEf(Y)

again under a certain set of “regularity conditions” which are a bit different
from the ones implying (1).
Since Yij = 292'3' — 0 — Hjj , we have

Eook g Eook , k
Z:: z::%] 8:?890]( ):22 Zleij%( ) 22 Hmax (Z %)(fﬁ)

j=1

Hence, if Zle agg) is constant, then (1) implies (2); for instance, if
f(z +te) = at + f(z) for some a € R where e = (1,1,...,1)

X. Fernique proved (2) wheny;; > 0 and f(z) = ¢(Q(x)) where
Q(x) = maxi<; j<, |z; —2;| and ¢ : Ry — R is convex and increasing.
Note that Q(z + te) = Q(x) .



Slepian’s inequality (the smooth case)

Let X =(Xy,...,X;) and Y = (Y1,...,Y;) be Gaussian vectors

with zero means and sed;; := 05; — 0)]( and vij = m —m . Let

] ?
f: R¥ = R be a differentiable function such tha%l,...,%f are
Fréchet differentiable and lek : R* — [0, 00] be a Borel function and set

K9 (,y) = sup( e (1+ [lse —tyll) - w(sz + ty) Va,y € RY
|h|lx :=inf{c> 0] |f(z)] < ck(z) Ve e R*} Vh:RF - R
where S% = {(s,t) e R*|s >0, t >0, s*+t> =1} . Suppose that

(@) /Rk Px(dx) /Rk k%(x,y) Py(dy) < oo

b) | 7

Then we have

< 0 and H Z?:l Hij% HH<OO Vi=1,...,k

(1) ZZ%axax()ZO = Ef(X)SEf(Y)

=1 5=
and if there existsa € R such that
() flz+te) =at+ f(z) Vte RVz € R*
where e = (1,1,...,1) , then we have

@ % % o) 20 & Ei(X) < BfY)

=1 y3=1

Remark: Let Q:R* — [0,00) be any given seminorm oR” and
set k(z) := @@’ . Then we have

W) < (144 lle]2 + g2 ) - Q)+
< (14 [laf]) Q) (1 + [[y])) W)

Let Ax and Ay be the largest eigen value &f y and >y , respectively,
and set A := max(Ax,A\y) . Then we have

k(z) == eI satisfies (a) for all0 < o <

3



Schwartz distributions
Slepian’s inequality is often used to prove inequalities of the form

P(X1§t177Xk§tk)§P(}/i§tla7Y]{2§t1{2)
of P(X1>t1,..., Xp > 1) <PV > tr,..., Vi > 1))

which means that the functionf is an indicator function of some set
A C RF; forinstance A = {(x1,...,23) | z; <t; Vi=1,...,k} .

Let D(R") denote the set of all infinitely often continuously differen-
tiable functionsf : R* — R with compact support with its usual inductive
limit topology and let D*(R¥) denotethe Schwartz distributions.e. the
set of continuous linear functional§ : D(R¥) — R . If ¢ € D*(RF),
we write £ > 0 if £(¢) > 0 for all non-negative functionsp € D(RF) .

If f : R¥ — R be locally \;-integrable, then f(¢) :=
Jrr f(y)o(y)dy and

0.0 (6) = (—1)" /R F(0) g 2l (#)da V6 € D(RY)

are Schwartz’ distributions associated t6 and its “partial derivative”

If
8% 8xm '

Following Kahane, Ledoux and Talagrand, we shall interpret the
condition:  >>; >, a;; %{{% > 0 in distribution sense; i.e. as
D2 aij0if > 0.

If f is twice differentiable and f , g—i and % are locally
Lebesgue integrable for alll < :,57 < k , we have

Z Zaljaljf>0 Mg Z Zamax éfx( ) >0 \,-a.e.

=1 5= =1 j=
Let Alf(xz) = f(x + ue;) — f(x) denote the difference operator for
zeRY, weR and i =1,...,k where ej,...,e; are the standard

unit vectors. If e1,¢e2,... >0 and 61,02,... > 0 are positive sequences
satisfying ¢, — 0 and 6, — 0 and f: RF¥ — R is locally \;-
integrable, we have

z Zawé’wf>0 & 2 Z%Aﬁwénf( ) >0 M\-ae Vn>1
1=1 j= =1 =



An example

Let f(z) = —1a(z) where A = {(z1,...,2;) | z1 = -+ = z}}
and k£ > 2. Then we have d;;f = 0 forall 1 <45 <k . Let
Xi,...,X; beindependend (0, 1)-variables and setX = (X,...,X})

and Y = (X1,...X1) . Then we have
0;; =0} —oj; =1—¢6;>0 and 6; =0
Ef(X)=0 and Ef(Y)= -1
Showing that Theorem 3.11 p.74 in Ledoux and Talagrérdbability in

Banach Spacess false. However, their corollaries 3.12-3.14 are correct
but with a different proof.



Approximate directional continuity

Recall that K C R¥ is starshapedf axz ¢ K forall 2 ¢ K and
al 0<a<1.Let KCR" bea bounded, starshaped Borel set with
non-empty interior and letf : R¥ — R be a function. If z € R* | we
say that f is continuous atx along K if

*) lim {Sup f(x+2) —f(x)|} -0

=00 Lyck

We let C™(f) denote the set of allz € R* satisfying (*). We say
that f is approximately continuous atz along K if f is locally
Lebesgue integrable and

(**) Jlim I,\f($+%)—f($)\dy:0
3¢
We let CJ(f) denote the set of all € R* satisfying (**).

We say that f is right continuous atz if f Is continuous atx
along the unit cubel0, 1]* , and we say thatf is left continuous atz if
f is continuous atz along the negative unit cubé—1,0]* .

Fact: If f islocally Lebesgue integrable, we have™ (f) C CL (f)
and Ay (R*\ C(f)) = 0.



A lemma

Let (Uy,Uy,...,U;) be a(k + 1)-dimensional Gaussian vector with
mean zero. SetU = (Uy,...,U;) and 6 = (61,...,0;) where
0; = cov(Up,U;) = E(UpU;) . Let h: R¥ — R be a Borel function such
that directional derivativeg—g(x) = lim,_ %(h(x + uf) — h(x)) exists
for all = € R* and

E|Uy h(U)| < 0o and E|94(U)| < oo
Then we have
1) E{Uoh(U)} = E{53(U)}

Proof: If 6 =0, then ‘g—g(x) =0 and Uy and U are independent
and since EUy = 0 , we see that (1) holds trivially. In general, we set
Vo=02Uy and V; = U; — 6;Vy . Then (Vp,V4,...,V}) is Gaussian
with mean zero andVy, and W := (V1,...,V};) are independent. By
integration by parts, we have

/ h(z+t0)o2te 72 gt = / O (+ + 10) e~ (7)/2 gy

— 00 —o0

oy

for all 2 € R* for which the integrals exist and sinc&, has density

#6_(075)2/ 2 we obtain (1) by integrating with respect &



Slepian’s inequality (the general case)

Let X = (Xy1,...,X;) and Y = (Yy,...,Y;) be Gaussian vectors

_ LY _ X _ X _ Y
with zero means and seb;; := o;; — 0;; and Vij = m;; — m; . Let

f:R¥ - R and x: R¥ — [0,00] be a Borel functions and lelf C R*
be a bounded, starshaped Borel set with non-empty interior satisfying

@ [ Pxtde) [ ) Pridy) < o
() |Fll. < oo where F(z) = supyerc | f(z + )
© P(X eC(f) =1=PY echf)

Then we have

(1) 21 Z 0;j 0 f(z) >0 = Ef(X) < Ef(Y)
i=1 j=

and if there existsa € R such that

(d) f(z+te)=at+ f(z) Vt € RVz € RF

where e = (1,1,...,1) , then we have

@ X% dfla) 20 = BIX) < BAY)

Remark: Let Ry and Ry denote the ranges obxy and >y .
Then Ry and Ry are linear subspaces dR* and we let AR, and
AR, denote the Lebesgue measures Gy and Ry , respectively.
Then (c) is equivalent to

©) Ay (Rx \ CL(f) =0 =g, (Ry \ Coy(f))

Since R*\ CI‘( f) is aX;-null set, we see that (c) holds ity and
Yy are non- smgular



Integral orderings

Let (S,B) be a measurable space and 1& C R® . If X and
Y are S-valued random functions, it is custom to defitme ®-integral
ordering as follows:

X<sY & E¢(X)<E¢(Y) V¢ € @ so that the expectations exists

There is deficiency with this ordering: It is NOT a preordering.

Example: Let £ =1 and let ® be the set of all increasing convex
functionson R . If X is a random variable withE X+ = oo , we have
X <Y and Y <g X for every random variableY .

The deficiency can be repaired by the usual modification:
X2 oY & E9(X)<EG(Y) Vpeo

Then X <3 Y implies X < Y and the converse implication holds
if ¢(X)e LY (P) and ¢(Y) € LY(P) forall ¢ € & . Passing to the
distributions measures’y(B) = P(X € B) , leads us to the following:

Let Pr(S,B) denote the set of all probability measures ¢8, B) .
Let & be a set of real-valued functions of . Then we introduce¢he
d-integral orderingon Pr(S,B) as above:

pn=ev ifandonly if [“¢du < [T¢dv forall ¢ € ®

and if @ C Pr(S,B) , we definethe maximal generatoas follows

DCD(Q) ::{fERS|f*fd,u§f*fdu Vu,veQ sothaty < ¢ v}



Supermodularity
f:R" — R is supermodulaif AfA%f(z) >0 forall = € R",
all s,t >0 andall 1 <1:+# 75 <k, orequivalently if

F@)+ fy) < fleVy) + flwAy) Yo,y € RF

where A and Vv are the usual lattice operation oR* .

We say that f is submodularif —f is supermodular, andf is
modularif f is supermodular and submodular.

Let &1,...,&. : R — R be either all increasing or all decreasing.
Let J C R be aninterval and letp : J — R be an increasing convex
function. Then we have

(1) f is modular if and only if there exist functiong;,..., fi. : R — R
such that f(:l?l, ce ,xk) = fl(xl) + e+ f/{:(xk:>

(2) If f isincreasing and supermodular, thefr is Borel measurable
and if f(RF) C J, then ¢(f(z)) is supermodular

(@) If Ry CJ,then p(maxi<; <j|z; —z;|) is submodular
(4) If f is supermodular, thenf(&i(z1),...,&(z;)) is supermodular

(5) max(&(x1),...,&(x)) Iis submodular and if¢y : R — R is
decreasing, theny(max(x1,...,2;)) is supermodular

(6) min(&(x1),...,&(x;)) is supermodular
(7) If &,...,& are non-negative, therf[f:1 &i(z;) is supermodular

(8) If f is bounded and supermodular, then there exists a bounded mod-
ular function f; and a bounded, increasing, supermodular function
f1 such that f(z) = fo(z) + fi(x) forall = € R*

Let Ii,...,I; € R Dbe intervals with left endpoint —oco and let
Ji,...,J; € R be intervals with right endpoint+oco . Set A =
I x---x1I; and B=J; x---x J; . Then we have

(8 14, 1p and 14,5 are supermodular
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The supermodular ordering

We let <i, denote the integral ordering induced by the set of all
supermodular Borel functions.

We let <4, denote the integral ordering induced by the set of all
bounded supermodular Borel functions.

We let =i, denote the integral ordering induced by the set of all

increasing supermodular functions.

We let <,, denote the integral ordering induced by the set of all
modular Borel functions.

We let <y, denote the integral ordering induced by the set of all
bounded modular Borel functions.

Let Sm(R*) denote the set of all supermodular functions Bff and
let Cp°(R¥) denote the set of all bounded, infinitely often continuously

differentiable function onR* with bounded partial of all orders. Then
we have

1) X< puY & Xi~Y Vi=1,... .k
2 X< 1mY © X< Y and X; ~ Y, Vi=1,....k
(3) Ef(X)<Ef(Y) VfeSmB)NCFRF) = X < Y
and if £ = 1,2, we have
4) X< nY & X < Y
But (4) fails if £ > 3.
Consider the setting of Slepian’s inequality and suppose that= 0
forall + =1,...,k and 6;; >0 forall 1 <45 <%k. By (3)and

Slepian’s inequality, we see thaX <., Y
In the modern literature is often claimed that have

Uj bsmv < Uj smV

and as a consequence, that Slepian’s inequality imphes<;,, Y . The
first claim fails for £ > 3 and | don’'t know if the second claim is true
but in view of the next example, conjecture that it fails fér> 3 ..
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A strange example

Let U, X4,...,X; be random variables such thak; ~ U for all
t=1,...,k . AH. Chen (1980) showed that

(1) Ef(Xi,...,X;) < Ef(U,...,U)

for all supermodular functionsf : R¥ — R satisfying a certain set of
regularity conditions. In the modern literature it is often claimed that these
regularity conditions are not needed. The following example (due to G.
Simons (1977) who used it another context) shows that we DO need some
regularity conditions:

Let U be a strictly positive random variable having with density
*) f(x) = gt if @>0 and f(z) =0 if <0
(The one-sided Cauchy distribution$ince U is strictly positive, we may
define X

V=U-¢) Luvs1y — Lo<))

A straight forward computation shows that, # and V have the same

density given by (*). Setf(z,y,2) = +y —2z for (z,y,2) € R3.
Then we have

f(UaUaU) =0, f(Ua %a %V) :2U1{U§1}+%1{U>1}

0< f(U, L, Lv)<2 | EfUUU)=0<EfU, &, 3v) =212

which means that (1) fails.
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