Small deviation probabilities of Gaussian processes and path regularity

Frank Aurzada
TU Berlin

Banff, October 12, 2011
High Dimensional Probability

Outline

(1) Small deviation probabilities
(2) Main results
(3) Relation to the entropy method

Outline

(1) Small deviation probabilities
(2) Main results
(3) Relation to the entropy method

Small deviation probabilities

Let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with $X_{0}=0$
Goal: find asymptotic rate of

$$
\mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx ?, \quad \text { with } \varepsilon \rightarrow 0
$$

Small deviation probabilities

Let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with $X_{0}=0$
Goal: find asymptotic rate of

$$
\mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx ?, \quad \text { with } \varepsilon \rightarrow 0
$$

In many examples,

$$
\mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right]=e^{-\kappa \varepsilon^{-r}(1+o(1))}, \quad \text { with } \varepsilon \rightarrow 0
$$

with $\gamma>0$ und $\kappa>0$.

Small deviation probabilities

Let $\left(X_{t}\right)_{t \geq 0}$ be a stochastic process with $X_{0}=0$
Goal: find asymptotic rate of

$$
\mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx ?, \quad \text { with } \varepsilon \rightarrow 0
$$

Therefore, we study

$$
\phi_{X}(\varepsilon):=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right]=\kappa \varepsilon^{-r}(1+o(1)), \quad \text { with } \varepsilon \rightarrow 0
$$

the so-called small deviation function of X.

Small deviation probabilities

In the setup of Gaussian processes, there are various connections to:

- functional analytic quantities (later in this talk)
- entropy of function classes
- convergence rate of series representations
- coding quantities for the process
- approximation quantitites for the process
- Chung's law of the iterated logarithm
- statistical problems
- ...

Outline

(1) Small deviation probabilities

(2) Main results
(3) Relation to the entropy method

Motivation

$\mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx ?, \quad$ with $\varepsilon \rightarrow 0$

Exemplary result

Theorem

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process and n an integer. If (a modif. of) X is n-times differentiable with $X^{(n)} \in L_{2}[0,1]$ then

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \preceq \varepsilon^{-1 / n} .
$$

Exemplary result

Theorem

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process and n an integer. If (a modif. of) X is n-times differentiable with $X^{(n)} \in L_{2}[0,1]$ then

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \preceq \varepsilon^{-1 / n} .
$$

Corollary

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process.
If X has a \mathcal{C}^{∞}-modif. then for any $\delta>0$

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\delta}\left(-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right]\right)=0
$$

Exemplary result

Theorem

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process and n an integer. If (a modif. of) X is n-times differentiable with $X^{(n)} \in L_{2}[0,1]$ then

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \preceq \varepsilon^{-1 / n} .
$$

Corollary

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process.
If X has a \mathcal{C}^{∞}-modif. then for any $\delta>0$

$$
\lim _{\varepsilon \rightarrow 0} \delta^{\delta}\left(-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right]\right)=0
$$

Now, what happens when n (above) is non-integer?

Main result

Define fractional differentiation: Let $\gamma>0$ (recall $\left.X_{0}=0\right)$

$$
X_{t}^{(\gamma)}=x(t) \quad \text { if } \quad X_{t}=\int_{0}^{t}(t-s)^{\gamma-1} x(t) \mathrm{d} t
$$

Main result

Define fractional differentiation: Let $\gamma>0\left(\right.$ recall $\left.X_{0}=0\right)$

$$
X_{t}^{(\gamma)}=x(t) \quad \text { if } \quad X_{t}=\int_{0}^{t}(t-s)^{\gamma-1} x(t) \mathrm{d} t
$$

Theorem

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process and $\gamma>1 / 2$. If $X^{(\gamma)}$ exists and $X(\gamma) \in L_{2}[0,1]$ then

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \preceq \varepsilon^{-1 / \gamma} .
$$

Main result

Define fractional differentiation: Let $\gamma>0\left(\right.$ recall $\left.X_{0}=0\right)$

$$
X_{t}^{(\gamma)}=x(t) \quad \text { if } \quad X_{t}=\int_{0}^{t}(t-s)^{\gamma-1} x(t) \mathrm{d} t
$$

Theorem

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process and $\gamma>1 / 2$. If $X^{(\gamma)}$ exists and $X^{(\gamma)} \in L_{2}[0,1]$ then

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \preceq \varepsilon^{-1 / \gamma} .
$$

Example: Brownian motion X is γ-times "differentiable" (Hölder), $\gamma<\frac{1}{2}$.

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-2}=\varepsilon^{-\frac{1}{1 / 2}} .
$$

Main result

Define fractional differentiation: Let $\gamma>0$ (recall $\left.X_{0}=0\right)$

$$
X_{t}^{(\gamma)}=x(t) \quad \text { if } \quad X_{t}=\int_{0}^{t}(t-s)^{\gamma-1} x(t) \mathrm{d} t
$$

Theorem

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process and $\gamma>1 / 2$. If $X^{(\gamma)}$ exists and $X^{(\gamma)} \in L_{2}[0,1]$ then

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \preceq \varepsilon^{-1 / \gamma}
$$

Example: Brownian motion X is γ-times "differentiable" (Hölder), $\gamma<\frac{1}{2}$.

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-2}=\varepsilon^{-\frac{1}{1 / 2}}
$$

What happens for different norms?

Main result: Different norms

Let us not recall from Lifshits/Simon'05 the notion of ||. || being a
"translation invariant β-self-similar p-pseudo-additive functional semi-norm in the wide sense w.r.t. the Schauder system"

Included: L_{p} norms $(\beta=-1 / p, p=p)$, Hölder norms $(\beta=\eta, p=\infty)$, p-variation norm $(\beta=0, p=p)$, certain Besov and Sobolev norms

Main result: Different norms

Let us not recall from Lifshits/Simon'05 the notion of ||.|| being a
"translation invariant β-self-similar p-pseudo-additive functional semi-norm in the wide sense w.r.t. the Schauder system"

Included: L_{p} norms $(\beta=-1 / p, p=p)$, Hölder norms $(\beta=\eta, p=\infty)$, p-variation norm $(\beta=0, p=p)$, certain Besov and Sobolev norms

Theorem

Let $\left(X_{t}\right)_{t \in[0,1]}$ be a centred Gaussian process and ||.|| such a norm not defined above, and $\gamma>\beta+1 / p+1 / 2$. If $X^{(\gamma)}$ exists and $X^{(\gamma)} \in L_{2}[0,1]$ then

$$
-\log \mathbb{P}[\|X\| \leq \varepsilon] \preceq \varepsilon^{-1 /(\gamma-\beta-1 / p)}
$$

Some applications of the main result

In combination with Li'99 (weak decorrelation inequality) one obtains:

Theorem

Let Y, R be a centred Gaussian processes (not nec. indep.) and set $X_{t}=Y_{t}+R_{t}$.

Some applications of the main result

In combination with Li'99 (weak decorrelation inequality) one obtains:

Theorem

Let Y, R be a centred Gaussian processes (not nec. indep.) and set $X_{t}=Y_{t}+R_{t}$. If

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|Y_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-r}
$$

and $R^{(\gamma)} \in L_{2}[0,1]$ for some $\gamma>\max (1 / r, 1 / 2)$

Some applications of the main result

In combination with Li'99 (weak decorrelation inequality) one obtains:

Theorem

Let Y, R be a centred Gaussian processes (not nec. indep.) and set $X_{t}=Y_{t}+R_{t}$. If

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|Y_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-r}
$$

and $R^{(\gamma)} \in L_{2}[0,1]$ for some $\gamma>\max (1 / r, 1 / 2)$ then

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-r}
$$

Some applications of the main result

In combination with Li'99 (weak decorrelation inequality) one obtains:

Theorem

Let Y, R be a centred Gaussian processes (not nec. indep.) and set $X_{t}=Y_{t}+R_{t}$. If

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|Y_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-r}
$$

and $R^{(\gamma)} \in L_{2}[0,1]$ for some $\gamma>\max (1 / r, 1 / 2)$ then

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-r}
$$

I.e. smoother remainder terms R do not matter; in particular if $R \in \mathcal{C}^{\infty}$.

Some applications of the main result

In combination with Li'99 (weak decorrelation inequality) one obtains:

Theorem

Let Y, R be a centred Gaussian processes (not nec. indep.) and set $X_{t}=Y_{t}+R_{t}$. If

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|Y_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-r}
$$

and $R^{(\gamma)} \in L_{2}[0,1]$ for some $\gamma>\max (1 / r, 1 / 2)$ then

$$
-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right] \approx \varepsilon^{-r}
$$

I.e. smoother remainder terms R do not matter; in particular if $R \in \mathcal{C}^{\infty}$. Standard example: FBM vs. RL process

$$
c_{H} B_{t}^{H}=\int_{0}^{t}(t-s)^{H-1 / 2} \mathrm{~d} B(s)+\int_{-\infty}^{0}\left((t-s)^{H-1 / 2}-(-s)^{H-1 / 2}\right) \mathrm{d} B(s) .
$$

Proof of the main result

Proof of the main result

Proposition (Chen/Li'03)

Let X, Y be a centred Gaussian r.v. in the Banach space $E ; \mathcal{H}$ be the RKHS of Y. Then for all $\varepsilon, \lambda>0$:

$$
\mathbb{P}\left[\|X\|_{E} \leq \varepsilon\right] \geq \mathbb{P}\left[\|Y\|_{E} \leq \lambda \varepsilon\right] \cdot \mathbb{E} e^{-\frac{\lambda^{2}}{2}\|X\|_{\mathcal{H}}^{2}} .
$$

Proof of the main result

Proposition (Chen/Li'03)

Let X, Y be a centred Gaussian r.v. in the Banach space $E ; \mathcal{H}$ be the RKHS of Y. Then for all $\varepsilon, \lambda>0$:

$$
\mathbb{P}\left[\|X\|_{E} \leq \varepsilon\right] \geq \mathbb{P}\left[\|Y\|_{E} \leq \lambda \varepsilon\right] \cdot \mathbb{E} e^{-\frac{\lambda^{2}}{2}\|X\|_{\mathcal{H}}^{2}} .
$$

Say, $E=L_{\infty}[0,1]$, choosing Y the Riemann-Liouville process,

$$
Y_{t}=\int_{0}^{t}(t-s)^{\gamma-1 / 2-1} \mathrm{~d} B(s)
$$

yields that

$$
\|X\|_{\mathcal{H}}=\left\|X^{(\gamma)}\right\|_{L_{2}[0,1]} ;
$$

Proof of the main result

Proposition (Chen/Li'03)

Let X, Y be a centred Gaussian r.v. in the Banach space $E ; \mathcal{H}$ be the RKHS of Y. Then for all $\varepsilon, \lambda>0$:

$$
\mathbb{P}\left[\|X\|_{E} \leq \varepsilon\right] \geq \mathbb{P}\left[\|Y\|_{E} \leq \lambda \varepsilon\right] \cdot \mathbb{E} e^{-\frac{\lambda^{2}}{2}\|X\|_{\mathcal{H}}^{2}} .
$$

Say, $E=L_{\infty}[0,1]$, choosing Y the Riemann-Liouville process,

$$
Y_{t}=\int_{0}^{t}(t-s)^{\gamma-1 / 2-1} \mathrm{~d} B(s),
$$

yields that

$$
\|X\|_{\mathcal{H}}=\left\|X^{(\gamma)}\right\|_{L_{2}[0,1]} ;
$$

and thus
$\mathbb{P}\left[\|X\|_{E} \leq \varepsilon\right] \geq \mathbb{P}\left[\|Y\|_{E} \leq \lambda \varepsilon\right] \cdot \mathbb{E} e^{-\frac{\lambda^{2}}{2}\|X(\gamma)\|_{2}^{2}} \geq e^{-c(\varepsilon \lambda)^{-\frac{1}{\gamma-1 / 2}}} \cdot q_{K} e^{-\frac{\lambda^{2}}{2} K^{2}}$ having used Lifshits/Simon'05; optimizing λ, the result follows.

Similar applications

Proposition (Chen/Li'03)

Let X be a centred Gaussian r.v. in the Banach space $E ; Y$ be a $(\gamma-1 / 2)$-R-L-process. Then for all $\varepsilon, \lambda>0$:

$$
\mathbb{P}\left[\|X\|_{E} \leq \varepsilon\right] \geq \mathbb{P}\left[\|Y\|_{E} \leq \lambda \varepsilon\right] \cdot \mathbb{E} e^{-\frac{\lambda^{2}}{2}\|X(\gamma)\|_{2}^{2}}
$$

Relation between:
the SD prob. of $\left\|X^{(\gamma)}\right\|_{2}$,
i.e. of the γ-th derivative w.r.t. the L_{2} norm, and

$$
\text { the SD prob. of } X
$$

w.r.t. the norm $\|.\|_{E}$

Outline

(1) Small deviation probabilities

(2) Main results

(3) Relation to the entropy method

The entropy method

Let X be a centred Gaussian random variable with values in the dual Banach space ($\left.E^{\prime}, \||\cdot| \mid\right)$: i.e.

$$
\langle X, g\rangle \quad \forall g \in E
$$

The entropy method

Let X be a centred Gaussian random variable with values in the dual Banach space ($E^{\prime}, \||.| |)$: i.e.

$$
\langle X, g\rangle \quad \forall g \in E
$$

There is a linear operator $u: E \rightarrow L_{2}[0,1]$ belonging to X such that

$$
\mathbb{E} e^{i\langle X, g\rangle}=\exp \left(-\|u(g)\|^{2} / 2\right), \quad g \in E
$$

Note: $u^{\prime}\left(L_{2}[0,1]\right)$ is the RKHS of X

The entropy method

On the one hand, we consider the small deviation function:

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\|X\|_{E^{\prime}} \leq \varepsilon\right]\left(=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right]\right)
$$

The entropy method

On the one hand, we consider the small deviation function:

$$
\phi_{X}(\varepsilon)=-\log \mathbb{P}\left[\|X\|_{E^{\prime}} \leq \varepsilon\right]\left(=-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right]\right)
$$

On the other hand, the entropy numbers of u :

$$
e_{n}(u):=\inf \left\{\varepsilon>0 \mid \exists \varepsilon \text {-net of } 2^{n-1} \text { points of } u\left(B_{E}\right) \text { in } L_{2}[0,1]\right\}
$$

where B_{E} is the unit ball in E (inverse of covering numbers).

The entropy method

Theorem (Kuelbs/Li'93, Li/Linde'99,
 A./Ibragimov/Lifshits/van Zanten'08)

For $r>0$ and $\delta \in \mathbb{R}$:

$$
\begin{aligned}
& \phi_{X}(\varepsilon) \preceq \varepsilon^{-r}|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad e_{n}(u) \preceq n^{-1 / 2-1 / r}(\log n)^{\delta / r} \\
& \phi_{X}(\varepsilon) \succeq \varepsilon^{-r}|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad e_{n}(u) \succeq n^{-1 / 2-1 / r}(\log n)^{\delta / r}
\end{aligned}
$$

where the first \Leftarrow requires $\phi_{X}(\varepsilon) \preceq \phi(2 \varepsilon)$.
Further, for $\delta>0$ and $\kappa>0$,

$$
\begin{aligned}
& \phi_{X}(\varepsilon) \lesssim \kappa|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad-\log e_{n}(u) \gtrsim \kappa^{-1 / \delta} n^{1 / \delta} \\
& \phi_{X}(\varepsilon) \gtrsim \kappa|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad-\log e_{n}(u) \lesssim \kappa^{-1 / \delta} n^{1 / \delta}
\end{aligned}
$$

The entropy method

Theorem (Kuelbs/Li'93, Li/Linde'99,
A./Ibragimov/Lifshits/van Zanten'08)

For $r>0$ and $\delta \in \mathbb{R}$:

$$
\begin{aligned}
& \phi_{X}(\varepsilon) \preceq \varepsilon^{-r}|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad e_{n}(u) \preceq n^{-1 / 2-1 / r}(\log n)^{\delta / r} \\
& \phi_{X}(\varepsilon) \succeq \varepsilon^{-r}|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad e_{n}(u) \succeq n^{-1 / 2-1 / r}(\log n)^{\delta / r}
\end{aligned}
$$

where the first \Leftarrow requires $\phi_{X}(\varepsilon) \preceq \phi(2 \varepsilon)$.
Further, for $\delta>0$ and $\kappa>0$,

$$
\begin{aligned}
& \phi_{X}(\varepsilon) \lesssim \kappa|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad-\log e_{n}(u) \gtrsim \kappa^{-1 / \delta} n^{1 / \delta} \\
& \phi_{X}(\varepsilon) \gtrsim \kappa|\log \varepsilon|^{\delta} \quad \Leftrightarrow \quad-\log e_{n}(u) \lesssim \kappa^{-1 / \delta} n^{1 / \delta} .
\end{aligned}
$$

The entropy method: recent results

several recent results using the above Thm in the case of slowly varying ϕ_{X} (exp. decreasing $e_{n}(u)$, slowly var. covering numbers)

- A./lbragimov/Lifshits/van Zanten'08: spectral measure

$$
\mathrm{d} F(u)=e^{-|u|^{\nu}} \mathrm{d} u, \quad \tilde{F}(u)=\sum_{k \in \mathbb{Z}} e^{-|k|^{\nu}} \delta_{2 \pi k}
$$

- Kühn'11: L_{2} and L_{∞} case

$$
\mathbb{E} X_{t} X_{s}=e^{-\sigma^{2}\|t-s\|^{2}}, \quad t, s \in \mathbb{R}^{d}
$$

- A./Gao/Kühn/Li/Shao'11+: L_{2} and L_{∞} case

$$
\mathbb{E} X_{t} X_{s}=\frac{2^{2 \beta+1}(t s)^{\alpha}}{(t+s)^{2 \beta+1}}, \quad t, s>0
$$

- Karol'/Nazarov'11+: rather general spectral measure, \mathbb{R}^{d} indexed, L_{2} case

$$
\mathrm{d} F(u)=e^{-G(u)} \mathrm{d} u
$$

Relation of the main theorem to the entropy method

- with the fractional integration operator I_{γ}

$$
X_{t}=I_{\gamma}\left(X^{(\gamma)}\right)_{t}:=\int_{0}^{t}(t-s)^{\gamma-1} X_{s}^{(\gamma)} d s
$$

Relation of the main theorem to the entropy method

- with the fractional integration operator I_{γ}

$$
X_{t}=I_{\gamma}\left(X^{(\gamma)}\right)_{t}:=\int_{0}^{t}(t-s)^{\gamma-1} X_{s}^{(\gamma)} d s
$$

- u_{γ} - generating operator of $X^{(\gamma)} ; u_{\gamma} \circ I_{\gamma}^{\prime}=u$ generates X

Relation of the main theorem to the entropy method

- with the fractional integration operator I_{γ}

$$
X_{t}=I_{\gamma}\left(X^{(\gamma)}\right)_{t}:=\int_{0}^{t}(t-s)^{\gamma-1} X_{s}^{(\gamma)} d s
$$

- u_{γ} - generating operator of $X^{(\gamma)} ; u_{\gamma} \circ l_{\gamma}^{\prime}=u$ generates X
- The multiplicativity property of the entropy numbers yields:

$$
e_{n}(u)=e_{n}\left(u_{\gamma} \circ l_{\gamma}^{\prime}\right) \leq\left\|u_{\gamma}\right\| \cdot e_{n}\left(I_{\gamma}\right)
$$

Relation of the main theorem to the entropy method

- with the fractional integration operator I_{γ}

$$
X_{t}=I_{\gamma}\left(X^{(\gamma)}\right)_{t}:=\int_{0}^{t}(t-s)^{\gamma-1} X_{s}^{(\gamma)} d s
$$

- u_{γ} - generating operator of $X^{(\gamma)} ; u_{\gamma} \circ I_{\gamma}^{\prime}=u$ generates X
- The multiplicativity property of the entropy numbers yields:

$$
e_{n}(u)=e_{n}\left(u_{\gamma} \circ l_{\gamma}^{\prime}\right) \leq\left\|u_{\gamma}\right\| \cdot e_{n}\left(l_{\gamma}\right)
$$

- Now, $\left\|u_{\gamma}\right\|$ is finite by assumption and as is well-studied:

$$
e_{n}\left(I_{\gamma}\right) \preceq n^{-1 / 2-\gamma}
$$

Relation of the main theorem to the entropy method

- with the fractional integration operator I_{γ}

$$
X_{t}=I_{\gamma}\left(X^{(\gamma)}\right)_{t}:=\int_{0}^{t}(t-s)^{\gamma-1} X_{s}^{(\gamma)} d s
$$

- u_{γ} - generating operator of $X^{(\gamma)} ; u_{\gamma} \circ l_{\gamma}^{\prime}=u$ generates X
- The multiplicativity property of the entropy numbers yields:

$$
e_{n}(u)=e_{n}\left(u_{\gamma} \circ l_{\gamma}^{\prime}\right) \leq\left\|u_{\gamma}\right\| \cdot e_{n}\left(l_{\gamma}\right)
$$

- Now, $\left\|u_{\gamma}\right\|$ is finite by assumption and as is well-studied:

$$
e_{n}\left(I_{\gamma}\right) \preceq n^{-1 / 2-\gamma}
$$

- The relation between e_{n} and ϕ_{X} gives

$$
\phi_{X}(\varepsilon) \preceq \varepsilon^{-1 / \gamma},
$$

i.e. the main result.

Relation to entropy method: remarks, open questions

- Main result can also be proved via the entropy method. However, there is a purely probabilistic proof.
- The probabilistic proof can be extended to the setup of non-Gaussian stable processes.
- How about a reverse result? E.g. if for any $\delta>0$

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\delta}\left(-\log \mathbb{P}\left[\sup _{0 \leq t \leq 1}\left|X_{t}\right| \leq \varepsilon\right]\right)=0
$$

then (ex. a modif. of) $X \in \mathcal{C}^{\infty}$?

Summary

- the smoother the process, the slower the increase of the small deviation function (quantified)

Summary

- the smoother the process, the slower the increase of the small deviation function (quantified)

- parallels the entropy method: small deviations vs. entropy numbers of the related operator

Summary

- the smoother the process, the slower the increase of the small deviation function (quantified)

- parallels the entropy method: small deviations vs. entropy numbers of the related operator
- entropy tools: here multiplicativity property vs. probabilistic tools: here Chen/Li'99 inequality

Thank you for your attention!

Frank Aurzada
Technische Universität Berlin
page.math.tu-berlin.de/~aurzada/

