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Small deviation probabilities

Let (Xt)t≥0 be a stochastic process with X0 = 0
Goal: find asymptotic rate of

P

[
sup

0≤t≤1
|Xt | ≤ ε

]
≈ ? , with ε→ 0

1

ε

X

−ε

In many examples,

P

[
sup

0≤t≤1
|Xt | ≤ ε

]
= e−κε

−r (1+o(1)), with ε→ 0

with γ > 0 und κ > 0.
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Small deviation probabilities

Let (Xt)t≥0 be a stochastic process with X0 = 0
Goal: find asymptotic rate of

P

[
sup

0≤t≤1
|Xt | ≤ ε

]
≈ ? , with ε→ 0

1

ε

X

−ε

Therefore, we study

φX (ε) := − logP

[
sup

0≤t≤1
|Xt | ≤ ε

]
= κε−r (1 + o(1)), with ε→ 0

the so-called small deviation function of X . γ



Small deviation probabilities

In the setup of Gaussian processes, there are various connections to:
functional analytic quantities (later in this talk)
entropy of function classes
convergence rate of series representations
coding quantities for the process
approximation quantitites for the process
Chung’s law of the iterated logarithm
statistical problems
...
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Motivation

P

[
sup

0≤t≤1
|Xt | ≤ ε

]
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Exemplary result

Theorem
Let (Xt)t∈[0,1] be a centred Gaussian process and n an integer.
If (a modif. of) X is n-times differentiable with X (n) ∈ L2[0,1] then

φX (ε) = − logP

[
sup

0≤t≤1
|Xt | ≤ ε

]
� ε−1/n.

Corollary
Let (Xt)t∈[0,1] be a centred Gaussian process.
If X has a C∞-modif. then for any δ > 0

lim
ε→0

εδ

(
− logP

[
sup

0≤t≤1
|Xt | ≤ ε

])
= 0.

Now, what happens when n (above) is non-integer?
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Main result

Define fractional differentiation: Let γ > 0 (recall X0 = 0)

X (γ)
t = x(t) if Xt =

∫ t

0
(t − s)γ−1x(t)dt .

Theorem
Let (Xt)t∈[0,1] be a centred Gaussian process and γ > 1/2. If X (γ)

exists and X (γ) ∈ L2[0,1] then

φX (ε) = − logP

[
sup

0≤t≤1
|Xt | ≤ ε

]
� ε−1/γ .

Example: Brownian motion X is γ-times “differentiable” (Hölder),
γ < 1

2 .

− logP

[
sup

0≤t≤1
|Xt | ≤ ε

]
≈ ε−2 = ε

− 1
1/2 .

What happens for different norms?
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Main result: Different norms

Let us not recall from Lifshits/Simon’05 the notion of ||.|| being a

“translation invariant β-self-similar p-pseudo-additive functional
semi-norm in the wide sense w.r.t. the Schauder system”

Included: Lp norms (β = −1/p, p = p), Hölder norms (β = η, p =∞),
p-variation norm (β = 0, p = p), certain Besov and Sobolev norms

Theorem
Let (Xt)t∈[0,1] be a centred Gaussian process and ||.|| such a norm not
defined above, and γ > β + 1/p + 1/2. If X (γ) exists and
X (γ) ∈ L2[0,1] then

− logP [||X || ≤ ε] � ε−1/(γ−β−1/p).
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Some applications of the main result

In combination with Li’99 (weak decorrelation inequality) one obtains:

Theorem
Let Y ,R be a centred Gaussian processes (not nec. indep.) and set
Xt = Yt + Rt .

If

− logP

[
sup

0≤t≤1
|Yt | ≤ ε

]
≈ ε−r

and R(γ) ∈ L2[0,1] for some γ > max(1/r ,1/2) then

− logP

[
sup

0≤t≤1
|Xt | ≤ ε

]
≈ ε−r .

I.e. smoother remainder terms R do not matter; in particular if R ∈ C∞.
Standard example: FBM vs. RL process

cHBH
t =

∫ t

0
(t − s)H−1/2dB(s) +

∫ 0

−∞
((t − s)H−1/2 − (−s)H−1/2)dB(s).
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Proof of the main result

Proposition (Chen/Li’03)
Let X ,Y be a centred Gaussian r.v. in the Banach space E ; H be the
RKHS of Y . Then for all ε, λ > 0:

P [||X ||E ≤ ε] ≥ P [||Y ||E ≤ λε] · Ee−
λ2
2 ||X ||

2
H .

Say, E = L∞[0,1], choosing Y the Riemann-Liouville process,

Yt =

∫ t

0
(t − s)γ−1/2−1dB(s),

yields that
||X ||H = ||X (γ)||L2[0,1];

and thus

P [||X ||E ≤ ε] ≥ P [||Y ||E ≤ λε] · Ee−
λ2
2 ||X

(γ)||22 ≥ e−c(ελ)
− 1
γ−1/2 · qK e−

λ2
2 K 2

having used Lifshits/Simon’05; optimizing λ, the result follows.
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Similar applications

Proposition (Chen/Li’03)
Let X be a centred Gaussian r.v. in the Banach space E ; Y be a
(γ − 1/2)-R-L-process. Then for all ε, λ > 0:

P [||X ||E ≤ ε] ≥ P [||Y ||E ≤ λε] · Ee−
λ2
2 ||X

(γ)||22 .

Relation between:

the SD prob. of ||X (γ)||2,
i.e. of the γ-th derivative

w.r.t. the L2 norm,

and

the SD prob. of X
w.r.t. the norm ||.||E
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The entropy method

Let X be a centred Gaussian random variable with values in the dual
Banach space (E ′, ||.||): i.e.

〈X ,g〉 ∀g ∈ E .

There is a linear operator u : E → L2[0,1] belonging to X such that

Eei〈X ,g〉 = exp
(
−||u(g)||2/2

)
, g ∈ E .

Note: u′(L2[0,1]) is the RKHS of X
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The entropy method

On the one hand, we consider the small deviation function:

φX (ε) = − logP [||X ||E ′ ≤ ε]
(
= − logP

[
sup

0≤t≤1
|Xt | ≤ ε

])

On the other hand, the entropy numbers of u:

en(u) := inf{ε > 0 | ∃ ε-net of 2n−1 points of u(BE) in L2[0,1]},

where BE is the unit ball in E (inverse of covering numbers).
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The entropy method

Theorem (Kuelbs/Li’93, Li/Linde’99,
A./Ibragimov/Lifshits/van Zanten’08)
For r > 0 and δ ∈ R:

φX (ε) � ε−r | log ε|δ ⇔ en(u) � n−1/2−1/r (log n)δ/r

φX (ε) � ε−r | log ε|δ ⇔ en(u) � n−1/2−1/r (log n)δ/r

where the first⇐ requires φX (ε) � φ(2ε).
Further, for δ > 0 and κ > 0,

φX (ε) . κ| log ε|δ ⇔ − log en(u) & κ−1/δn1/δ

φX (ε) & κ| log ε|δ ⇔ − log en(u) . κ−1/δn1/δ.

small deviations ↔ entropy numbers
(probabilistic) (functional analytic)
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The entropy method: recent results

several recent results using the above Thm in the case of slowly
varying φX (exp. decreasing en(u), slowly var. covering numbers)

A./Ibragimov/Lifshits/van Zanten’08: spectral measure

dF (u) = e−|u|
ν
du, F̃ (u) =

∑
k∈Z

e−|k |
ν
δ2πk

Kühn’11: L2 and L∞ case

EXtXs = e−σ
2||t−s||2 , t , s ∈ Rd

A./Gao/Kühn/Li/Shao’11+: L2 and L∞ case

EXtXs =
22β+1(ts)α

(t + s)2β+1 , t , s > 0

Karol’/Nazarov’11+: rather general spectral measure, Rd indexed,
L2 case

dF (u) = e−G(u)du



Relation of the main theorem to the entropy method

with the fractional integration operator Iγ

Xt = Iγ(X (γ))t :=

∫ t

0
(t − s)γ−1X (γ)

s ds

uγ – generating operator of X (γ); uγ ◦ I′γ = u generates X
The multiplicativity property of the entropy numbers yields:

en(u) = en(uγ ◦ I′γ) ≤ ||uγ || · en(Iγ)

Now, ||uγ || is finite by assumption and as is well-studied:

en(Iγ) � n−1/2−γ

The relation between en and φX gives

φX (ε) � ε−1/γ ,

i.e. the main result.
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Relation to entropy method: remarks, open questions

Main result can also be proved via the entropy method.
However, there is a purely probabilistic proof.
The probabilistic proof can be extended to the setup of
non-Gaussian stable processes.
How about a reverse result? E.g. if for any δ > 0

lim
ε→0

εδ

(
− logP

[
sup

0≤t≤1
|Xt | ≤ ε

])
= 0.

then (ex. a modif. of) X ∈ C∞ ?



Summary

the smoother the process, the slower the increase of the small
deviation function (quantified)

1

ε

X

−ε

parallels the entropy method: small deviations vs. entropy
numbers of the related operator
entropy tools: here multiplicativity property vs.
probabilistic tools: here Chen/Li’99 inequality
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Thank you for your attention!

Frank Aurzada
Technische Universität Berlin
page.math.tu-berlin.de/∼aurzada/
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