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Let (Xt)i>0 be a stochastic process with Xp = 0
Goal: find asymptotic rate of

P|sup [Xi|<e| =~ 7, with e — 0
0<t<1
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Therefore, we study

¢x(g) == —logP [ sup | Xt < s] = ke "(14 0o(1)), with e — 0
0<t<1

the so-called small deviation function of X.



Small deviation probabilities

In the setup of Gaussian processes, there are various connections to:

functional analytic quantities (later in this talk)
@ entropy of function classes

@ convergence rate of series representations

@ coding quantities for the process

@ approximation quantitites for the process

@ Chung’s law of the iterated logarithm

@ statistical problems

o
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Exemplary result

Let (Xt):ec[0,1) b€ @ centred Gaussian process and n an integer.
If (a modif. of) X is n-times differentiable with X(") € [0, 1] then

0<i<1

ox(e) = —logP [ sup | Xz < s] <e1/n
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Corollary

Let (Xt):e[0,1) b€ a centred Gaussian process.
If X has a C°°-modif. then for any 6 > 0

lim &° (— logP [ sup |X¢| < &T]) =0.
=4 0<t<t

Now, what happens when n (above) is non-integer?
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Let (X)tc[o,1 be a centred Gaussian process and v > 1/2. If X()
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sup |X;| < 5] <e 1,

Example: Brownian motion X is v-times “differentiable” (Holder),
1

1
~ 872 = 5_1/2.
0<t<t

—logP [ sup |Xi <e

What happens for different norms?



Main result: Different norms

Let us not recall from Lifshits/Simon’05 the notion of ||.|| being a

“translation invariant g-self-similar p-pseudo-additive functional
semi-norm in the wide sense w.r.t. the Schauder system”

Included: L, norms (8 = —1/p, p = p), HOlder norms (5 =7, p = o),
p-variation norm (5 = 0, p = p), certain Besov and Sobolev norms
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Let us not recall from Lifshits/Simon’05 the notion of ||.|| being a

“translation invariant g-self-similar p-pseudo-additive functional
semi-norm in the wide sense w.r.t. the Schauder system”

Included: L, norms (8 = —1/p, p = p), HOlder norms (5 =7, p = o),
p-variation norm (5 = 0, p = p), certain Besov and Sobolev norms

Let (Xt):e[0,1) e a centred Gaussian process and ||.|| such a norm not

defined above, and v > 5+ 1/p + 1/2. If X1?) exists and
X0 e L,[0, 1] then

—logP[||X|| < ] < e~ V/O=A=1/p),
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Some applications of the main result

In combination with Li'99 (weak decorrelation inequality) one obtains:
Theorem

Let Y, R be a centred Gaussian processes (not nec. indep.) and set
Xe=Yi+ R If

—IogIP’[sup [Yi < a] ~e

0<t<1

and R0 ¢ L,[0, 1] for some ~ > max(1/r,1/2) then

~e .

—logP [ sup |Xi| <e

0<t<1

v

l.e. smoother remainder terms R do not matter; in particular if R € C*°.
Standard example: FBM vs. RL process

t 0
cHB,”:/O(t—s)H1/2dB(s)+/ ((t— s)P-1/2 _ (—g)H-1/2)aB(s).
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Proposition (Chen/Li’'03)

Let X, Y be a centred Gaussian r.v. in the Banach space E; H be the
RKHS of Y. Then for all , A > 0:

2
P[||IX||e <] > P[||Y||e < Ae] - Ee~ = IXIF5.,

Say, E = L]0, 1], choosing Y the Riemann-Liouville process,

t
Ve [ (t= sy aB(s),
0

yields that
[1X1h = IXO[yp0,1y:

and thus

2 -1 2
P[|[X|le <e] > P[||Y||e < Ae] - Ee~ 2 [XVIE > g=eled) 7772 g, o= K

having used Lifshits/Simon’05; optimizing A, the result follows.



Similar applications

Proposition (Chen/Li’'03)

Let X be a centred Gaussian r.v. in the Banach space E; Y be a
(v — 1/2)-R-L-process. Then for all ¢, A > 0O:

2
P[|IX||e <] > P[||Y||e < Ae] - Ee~ 2 IXVIE,

Relation between:

the SD prob. of || X5,
i.e. of the ~-th derivative
w.r.t. the Lo norm,

and

the SD prob. of X
w.r.t. the norm ||.||
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The entropy method

Let X be a centred Gaussian random variable with values in the dual
Banach space (E,||.||): i.e.

(X,9) VgeE

There is a linear operator u : E — L5[0, 1] belonging to X such that
Ee/X9 — exp (~I|u(@)l?/2), geE.

Note: u'(L2[0, 1]) is the RKHS of X
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The entropy method

On the one hand, we consider the small deviation function:

ox(e) = —logP[||X||er < €] <= —logP [ sup |Xi| < s])

0<t<1

On the other hand, the entropy numbers of u:
en(u) == inf{e > 0 | 3 e-net of 2"~ points of u(Bg) in L»[0, 1]},

where Bg is the unit ball in E (inverse of covering numbers).



The entropy method

Theorem (Kuelbs/Li’'93, Li/Linde’99,

A./Ibragimov/Lifshits/van Zanten’08)
Forr>0andd e R:
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Theorem (Kuelbs/Li’'93, Li/Linde’99,
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Forr>0andd e R:
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ox(e) = e "logel’ <  en(u) = n~"/2=V"(log n)/"

where the first < requires ¢x(g) < ¢(2¢).
Further, for 6 > 0 and x > 0,

¢x(e) Skllogel’ & —logen(u) 2 x~'/0n'/°

ox(e) 2 rllogel’ & —logen(u) S k= /on'/s.

small deviations <« entropy numbers
(probabilistic) (functional analytic)



The entropy method: recent results

several recent results using the above Thm in the case of slowly
varying ¢x (exp. decreasing en(u), slowly var. covering numbers)

@ A./lbragimov/Lifshits/van Zanten’08: spectral measure
dF(u)=e""du,  Fu)=>_ e "6
keZ

@ Kihn'11: L, and L, case
EX;Xs = e o It=sli®, t,seRY
@ A./Gao/Kihn/Li/Shao’11+: L, and L., case

22B+1 (ts)a

B =

t,s>0
@ Karol’/Nazarov’'11+: rather general spectral measure, R indexed,

L, case
dF(u) = ey
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Relation of the main theorem to the entropy method

@ with the fractional integration operator /,

t
X; = L(XO), ::/(t—s)71XS(7)ds
0

@ u, — generating operator of X; Uy o I; = u generates X
@ The multiplicativity property of the entropy numbers yields:

en(u) = en(uy o L) < luyl| - en(l;)
@ Now, ||u,|| is finite by assumption and as is well-studied:

en(l,) < n /277

@ The relation between e, and ¢x gives

ox(e) <,

i.e. the main result.



Relation to entropy method: remarks, open questions

@ Main result can also be proved via the entropy method.
However, there is a purely probabilistic proof.

@ The probabilistic proof can be extended to the setup of
non-Gaussian stable processes.

@ How about a reverse result? E.g. if forany § > 0

lim &° (— log P [ sup |Xi| < s]) =0.
e—0 0<t<1

then (ex. a modif. of) X € C> ?
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@ the smoother the process, the slower the increase of the small
deviation function (quantified)
A

€

YT
/

@ parallels the entropy method: small deviations vs. entropy
numbers of the related operator

@ entropy tools: here multiplicativity property vs.
probabilistic tools: here Chen/Li’99 inequality



Thank you for your attention!

Frank Aurzada
Technische Universitdt Berlin
page.math.tu-berlin.de/~aurzada/
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