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Background

Given an n × n matrix M,

µM =
1
n

n∑
j=1

δλj (M)

is the empirical spectral distribution of M.

ν = uniform measure on T = {z : |z| = 1}.

Theorem (Diaconis–Shahshahani (1994))
For each n, let Un be uniformly distributed in U(n), O(n), or
Sp(2n). Then µUn ⇒ ν in probability.
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Background

Theorem (Hiai–Petz (2006))
For each n, let Un be uniformly distributed in U(n). Then µUn

satisfies the LDP in the scale n−2 with rate function

I(µ) = −
∫ ∫

log |x − y | dµ(x) dµ(y).

Roughly, if A is a set of measures on T, then

lim
n→∞

1
n2 log P

[
µ ∈ A

]
= − inf{I(ρ) : ρ ∈ A}.

Corollary
For each n, let Un be uniformly distributed in U(n). Then
µUn ⇒ ν almost surely.

Similar results for SU(n) were proved by Hiai–Petz–Ueda
(2006).
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Main results
The Wasserstein distance between µ1, µ2 is

dW (µ1, µ2) = sup {µ1(f )− µ2(f ) | f : C → R is 1-Lipschitz} .

Theorem (E. Meckes and M. M. (2011))
Let U be uniformly distributed in U(n), SU(n), O(n), SO(n), or
Sp(2n). Then for t > 0,

P
[
dW (µU , ν) ≥ Cn−2/3 + t

]
≤ e−cn2t2

.

Corollary
For each n, let Un be uniformly distributed in U(n), SU(n), O(n),
SO(n), or Sp(2n). Then almost surely, for large enough n,

dW (µUn , ν) ≤ Cn−2/3.
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Not quite correct sketch of proof

Step 1: By symmetry, EµU = ν.

Step 2: M 7→ µM is a n−1/2-Lipschitz map from
{normal matrices} with the Hilbert–Schmidt norm to
{probability measures on C} with dW .

This follows from the Hoffmann–Wielandt inequality for normal
matrices and (most easily) the dual definition

dW (µ1, µ2) = inf
{∫

|x − y | dπ(x , y)

∣∣∣∣π has marginals µ1, µ2

}
.

Two particular consequences:
M 7→ µM(f ) is n−1/2 |f |L-Lipschitz.
M 7→ dW (µM , µ) is n−1/2-Lipschitz.
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Not quite correct sketch of proof, continued

Step 3: For random U, define Xf = µU(f )− ν(f ). The
Gromov–Milman concentration phenomenon for classical
matrix groups shows that

P
[∣∣Xf − Xg

∣∣ ≥ t
]
≤ 2e−cn2t2/|f−g|2L .

The mean Wasserstein distance

EdW (µU , ν) = E sup
|f |L≤1

Xf

can now be estimated by classical entropy methods.

Step 4: Gromov–Milman again shows that

P
[
dW (µU , ν) ≥ EdW (µU , ν) + t

]
≤ e−cn2t2

.
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Problems, and how to fix them

Step 1: The symmetry argument that EµU = ν only works for
U(n). For the other groups, we need to estimate

(EµU)(f ) = E(µU(f )) =
1
n

E Tr f (U).

Results of Diaconis–Mallows, Diaconis–Shahshahani, and
Rains show that if 1 ≤ |k | < n,

∣∣E Tr Uk
∣∣ ≤ 1.

Classical results on approximation of Lipschitz functions on T
by polynomials imply that

dW (EµU , ν) ≤ C
log n

n
.

For SU(n), the log n can be removed.
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Problems, and how to fix them, continued

Step 2 is correct as stated.

Steps 3 and 4: The Gromov–Milman theorem doesn’t apply to
U(n) or O(n).

This can be addressed by conditioning on det U. Alternatively,
for U(n), a coupling argument shows that

dW (µU , ν)

has the same distribution for U ∈ U(n) and U ∈ SU(n).
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Problems, and how to fix them, concluded

Step 3: Gromov–Milman shows that the stochastic process

Xf = µU(f )− EµU(f )

indexed by {|f |L ≤ 1} has subgaussian increments w.r.t. the
seminorm |·|L. But the metric entropy of the ball of an
infinite-dimensional space w.r.t. its own norm is infinite, so
entropy methods don’t directly apply.

We first approximate f in the sup norm by, say, a piecewise
affine function.

Up to constants, the estimate on E sup Xf appears to be the
only nonoptimal part of our results.
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Circular ensembles
Let U ∈ U(n) be uniformly distributed.

The Circular Unitary Ensemble is distributed as U.
The Circular Orthogonal Ensemble is distributed as UT U.
The Circular Symplectic Ensemble is distributed as
JUT JU, J =

[ 0 −1
1 0

]
⊕ · · · ⊕

[ 0 −1
1 0

]
. (Here U ∈ U(2n).)

Theorem
Let V be drawn from the COE(n), CUE(n), or CSE(2n). Then
for t > 0,

P
[
dW (µV , ν) ≥ Cn−2/3 + t

]
≤ e−cn2t2

.

Corollary
For each n, let Vn be drawn from the COE(n), CUE(n), or
CSE(2n). Then almost surely, for large enough n,

dW (µVn , ν) ≤ Cn−2/3.
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Randomized sums

Theorem
Fix Hermitian n × n matrices A, B with ‖A‖ , ‖B‖ < K , and
define

M = UAU∗ + B,

where U ∈ U(n) is uniformly distributed. Then for t > 0,

P
[
dW (µM , EµM) ≥ Cn−2/3 + t

]
≤ e−cn2t2

.

This also holds for random A and B satisfying a concentration
hypothesis.

A similar result (for fixed A and B) was proved by Kargin (2011).
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Random compressions

Theorem
Fix a Hermitian n × n matrix A with ‖A‖ < K , and define

M = PkUAU∗P∗k ,

where U ∈ U(n) is uniformly distributed and Pk : Rn → Rk is the
usual projection. Then for t > 0,

P
[
dW (µM , EµM) ≥ Cn−2/3 + t

]
≤ e−cn2t2

.

This also holds for random A satisfying a concentration
hypothesis.
This improves an earlier result of Meckes–M. (2011). When
k = n and A is random, this sharpens results of
Guionnet–Zeitouni (2000). When k = n and A is a Wigner
matrix sharper results were proved by Götze–Tikhomirov
(2011).
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Thank you.


