Concentration and convergence rates for spectral measures
 Joint work with Elizabeth Meckes

Mark Meckes

Case Western Reserve University
High Dimensional Probability VI
BIRS, October 14, 2011

Background

Given an $n \times n$ matrix M,

$$
\mu_{M}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(M)}
$$

is the empirical spectral distribution of M.
$\nu=$ uniform measure on $\mathbb{T}=\{z:|z|=1\}$.

Background

Given an $n \times n$ matrix M,

$$
\mu_{M}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(M)}
$$

is the empirical spectral distribution of M.
$\nu=$ uniform measure on $\mathbb{T}=\{z:|z|=1\}$.

Theorem (Diaconis-Shahshahani (1994))

For each n, let U_{n} be uniformly distributed in $\mathbb{U}(n), \mathbb{O}(n)$, or $\mathbb{S p}(2 n)$. Then $\mu U_{n} \Rightarrow \nu$ in probability.

Background

Theorem (Hiai-Petz (2006))

For each n, let U_{n} be uniformly distributed in $\mathbb{U}(n)$. Then μU_{n} satisfies the LDP in the scale n^{-2} with rate function

$$
I(\mu)=-\iint \log |x-y| d \mu(x) d \mu(y)
$$

Roughly, if A is a set of measures on \mathbb{T}, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathbb{P}[\mu \in A]=-\inf \{I(\rho): \rho \in A\}
$$

Background

Theorem (Hiai-Petz (2006))

For each n, let U_{n} be uniformly distributed in $\mathbb{U}(n)$. Then μU_{n} satisfies the LDP in the scale n^{-2} with rate function

$$
I(\mu)=-\iint \log |x-y| d \mu(x) d \mu(y)
$$

Roughly, if A is a set of measures on \mathbb{T}, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathbb{P}[\mu \in A]=-\inf \{I(\rho): \rho \in A\} .
$$

Corollary

For each n, let U_{n} be uniformly distributed in $\mathbb{U}(n)$. Then $\mu_{U_{n}} \Rightarrow \nu$ almost surely.

Similar results for $\mathbb{S U}(n)$ were proved by Hiai-Petz-Ueda (2006).

Main results

The Wasserstein distance between μ_{1}, μ_{2} is

$$
d_{W}\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\mu_{1}(f)-\mu_{2}(f) \mid f: \mathbb{C} \rightarrow \mathbb{R} \text { is } 1 \text {-Lipschitz }\right\}
$$

Main results

The Wasserstein distance between μ_{1}, μ_{2} is

$$
d_{W}\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\mu_{1}(f)-\mu_{2}(f) \mid f: \mathbb{C} \rightarrow \mathbb{R} \text { is } 1 \text {-Lipschitz }\right\}
$$

Theorem (E. Meckes and M. M. (2011))

Let U be uniformly distributed in $\mathbb{U}(n), \mathbb{S U}(n), \mathbb{O}(n), \mathbb{S O}(n)$, or $\operatorname{Sp}(2 n)$. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{U}, \nu\right) \geq C n^{-2 / 3}+t\right] \leq e^{-c n^{2} t^{2}}
$$

Main results

The Wasserstein distance between μ_{1}, μ_{2} is

$$
d_{W}\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\mu_{1}(f)-\mu_{2}(f) \mid f: \mathbb{C} \rightarrow \mathbb{R} \text { is } 1 \text {-Lipschitz }\right\}
$$

Theorem (E. Meckes and M. M. (2011))

Let U be uniformly distributed in $\mathbb{U}(n), \mathbb{S U}(n), \mathbb{O}(n), \mathbb{S O}(n)$, or $\operatorname{Sp}(2 n)$. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{U}, \nu\right) \geq C n^{-2 / 3}+t\right] \leq e^{-C n^{2} t^{2}}
$$

Corollary

For each n, let U_{n} be uniformly distributed in $\mathbb{U}(n), \mathbb{S U}(n), \mathbb{O}(n)$, $\mathbb{S O}(n)$, or $\mathbb{S p}(2 n)$. Then almost surely, for large enough n,

$$
d_{w}\left(\mu_{U_{n}}, \nu\right) \leq C n^{-2 / 3} .
$$

Not quite correct sketch of proof

Not quite correct sketch of proof

Step 1: By symmetry, $\mathbb{E} \mu_{U}=\nu$.

Not quite correct sketch of proof

Step 1: By symmetry, $\mathbb{E} \mu_{U}=\nu$.
Step 2: $M \mapsto \mu_{M}$ is a $n^{-1 / 2}$-Lipschitz map from \{normal matrices\} with the Hilbert-Schmidt norm to $\{$ probability measures on $\mathbb{C}\}$ with d_{W}.
This follows from the Hoffmann-Wielandt inequality for normal matrices and (most easily) the dual definition

$$
d_{w}\left(\mu_{1}, \mu_{2}\right)=\inf \left\{\int|x-y| d \pi(x, y) \mid \pi \text { has marginals } \mu_{1}, \mu_{2}\right\}
$$

Not quite correct sketch of proof

Step 1: By symmetry, $\mathbb{E} \mu_{U}=\nu$.
Step 2: $M \mapsto \mu_{M}$ is a $n^{-1 / 2}$-Lipschitz map from \{normal matrices\} with the Hilbert-Schmidt norm to $\{$ probability measures on $\mathbb{C}\}$ with d_{w}.
This follows from the Hoffmann-Wielandt inequality for normal matrices and (most easily) the dual definition

$$
d_{w}\left(\mu_{1}, \mu_{2}\right)=\inf \left\{\int|x-y| d \pi(x, y) \mid \pi \text { has marginals } \mu_{1}, \mu_{2}\right\} .
$$

Two particular consequences:

- $M \mapsto \mu_{M}(f)$ is $n^{-1 / 2}|f|_{L}$-Lipschitz.
- $M \mapsto d_{W}\left(\mu_{M}, \mu\right)$ is $n^{-1 / 2}$-Lipschitz.

Not quite correct sketch of proof, continued

Step 3: For random U, define $X_{f}=\mu_{U}(f)-\nu(f)$. The Gromov-Milman concentration phenomenon for classical matrix groups shows that

$$
\mathbb{P}\left[\left|X_{f}-X_{g}\right| \geq t\right] \leq 2 e^{-c n^{2} t^{2}| | f-\left.g\right|_{L} ^{2}} .
$$

The mean Wasserstein distance

$$
\mathbb{E} d_{W}\left(\mu_{U}, \nu\right)=\mathbb{E} \sup _{|f|_{L} \leq 1} X_{f}
$$

can now be estimated by classical entropy methods.

Not quite correct sketch of proof, continued

Step 3: For random U, define $X_{f}=\mu_{U}(f)-\nu(f)$. The Gromov-Milman concentration phenomenon for classical matrix groups shows that

$$
\mathbb{P}\left[\left|X_{f}-X_{g}\right| \geq t\right] \leq 2 e^{-c n^{2} t^{2}| | f-\left.g\right|_{L} ^{2}} .
$$

The mean Wasserstein distance

$$
\mathbb{E} d_{W}\left(\mu_{U}, \nu\right)=\mathbb{E} \sup _{|f|_{L} \leq 1} X_{f}
$$

can now be estimated by classical entropy methods.
Step 4: Gromov-Milman again shows that

$$
\mathbb{P}\left[d_{W}\left(\mu_{U}, \nu\right) \geq \mathbb{E} d_{W}\left(\mu_{U}, \nu\right)+t\right] \leq e^{-c n^{2} t^{2}}
$$

Problems, and how to fix them

Step 1: The symmetry argument that $\mathbb{E} \mu_{U}=\nu$ only works for
$\mathbb{U}(n)$. For the other groups, we need to estimate

$$
\left(\mathbb{E} \mu_{U}\right)(f)=\mathbb{E}\left(\mu_{U}(f)\right)=\frac{1}{n} \mathbb{E} \operatorname{Tr} f(U)
$$

Results of Diaconis-Mallows, Diaconis-Shahshahani, and Rains show that if $1 \leq|k|<n,\left|\mathbb{E} \operatorname{Tr} U^{k}\right| \leq 1$.

Problems, and how to fix them

Step 1: The symmetry argument that $\mathbb{E} \mu_{U}=\nu$ only works for $\mathbb{U}(n)$. For the other groups, we need to estimate

$$
\left(\mathbb{E} \mu_{U}\right)(f)=\mathbb{E}\left(\mu_{U}(f)\right)=\frac{1}{n} \mathbb{E} \operatorname{Tr} f(U)
$$

Results of Diaconis-Mallows, Diaconis-Shahshahani, and Rains show that if $1 \leq|k|<n,\left|\mathbb{E} \operatorname{Tr} U^{k}\right| \leq 1$.

Classical results on approximation of Lipschitz functions on \mathbb{T} by polynomials imply that

$$
d_{W}\left(\mathbb{E} \mu_{U}, \nu\right) \leq C \frac{\log n}{n}
$$

For $\mathbb{S U}(n)$, the $\log n$ can be removed.

Problems, and how to fix them, continued

Step 2 is correct as stated.

Problems, and how to fix them, continued

Step 2 is correct as stated.

Steps 3 and 4: The Gromov-Milman theorem doesn't apply to $\mathbb{U}(n)$ or $\mathbb{O}(n)$.

This can be addressed by conditioning on $\operatorname{det} U$. Alternatively, for $\mathbb{U}(n)$, a coupling argument shows that

$$
d_{w}\left(\mu_{U}, \nu\right)
$$

has the same distribution for $U \in \mathbb{U}(n)$ and $U \in \mathbb{S U}(n)$.

Problems, and how to fix them, concluded

Step 3: Gromov-Milman shows that the stochastic process

$$
X_{f}=\mu_{U}(f)-\mathbb{E} \mu_{U}(f)
$$

indexed by $\left\{|f|_{L} \leq 1\right\}$ has subgaussian increments w.r.t. the seminorm $|\cdot|_{L}$. But the metric entropy of the ball of an infinite-dimensional space w.r.t. its own norm is infinite, so entropy methods don't directly apply.

Problems, and how to fix them, concluded

Step 3: Gromov-Milman shows that the stochastic process

$$
X_{f}=\mu_{U}(f)-\mathbb{E} \mu_{U}(f)
$$

indexed by $\left\{|f|_{L} \leq 1\right\}$ has subgaussian increments w.r.t. the seminorm $|\cdot|_{L}$. But the metric entropy of the ball of an infinite-dimensional space w.r.t. its own norm is infinite, so entropy methods don't directly apply.

We first approximate f in the sup norm by, say, a piecewise affine function.

Problems, and how to fix them, concluded

Step 3: Gromov-Milman shows that the stochastic process

$$
X_{f}=\mu_{U}(f)-\mathbb{E} \mu_{U}(f)
$$

indexed by $\left\{|f|_{L} \leq 1\right\}$ has subgaussian increments w.r.t. the seminorm $|\cdot|_{L}$. But the metric entropy of the ball of an infinite-dimensional space w.r.t. its own norm is infinite, so entropy methods don't directly apply.

We first approximate f in the sup norm by, say, a piecewise affine function.

Up to constants, the estimate on \mathbb{E} sup X_{f} appears to be the only nonoptimal part of our results.

Circular ensembles

Let $U \in \mathbb{U}(n)$ be uniformly distributed.

- The Circular Unitary Ensemble is distributed as U.
- The Circular Orthogonal Ensemble is distributed as $U^{T} U$.
- The Circular Symplectic Ensemble is distributed as $J U^{T} J U, J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. (Here $U \in \mathbb{U}(2 n)$.)

Circular ensembles

Let $U \in \mathbb{U}(n)$ be uniformly distributed.

- The Circular Unitary Ensemble is distributed as U.
- The Circular Orthogonal Ensemble is distributed as $U^{T} U$.
- The Circular Symplectic Ensemble is distributed as $J U^{T} J U, J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. (Here $U \in \mathbb{U}(2 n)$.)

Theorem

Let V be drawn from the $\operatorname{COE}(n), \operatorname{CUE}(n)$, or $\operatorname{CSE}(2 n)$. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{V}, \nu\right) \geq C n^{-2 / 3}+t\right] \leq e^{-c n^{2} t^{2}}
$$

Circular ensembles

Let $U \in \mathbb{U}(n)$ be uniformly distributed.

- The Circular Unitary Ensemble is distributed as U.
- The Circular Orthogonal Ensemble is distributed as $U^{T} U$.
- The Circular Symplectic Ensemble is distributed as $J U^{T} J U, J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. (Here $U \in \mathbb{U}(2 n)$.)

Theorem

Let V be drawn from the $\operatorname{COE}(n), \operatorname{CUE}(n)$, or $\operatorname{CSE}(2 n)$. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{V}, \nu\right) \geq C n^{-2 / 3}+t\right] \leq e^{-c n^{2} t^{2}}
$$

Corollary

For each n, let V_{n} be drawn from the $\operatorname{COE}(n)$, $\operatorname{CUE}(n)$, or CSE(2n). Then almost surely, for large enough n,

$$
d_{W}\left(\mu_{v_{n}}, \nu\right) \leq C n^{-2 / 3}
$$

Randomized sums

Theorem

Fix Hermitian $n \times n$ matrices A, B with $\|A\|,\|B\|<K$, and define

$$
M=U A U^{*}+B
$$

where $U \in \mathbb{U}(n)$ is uniformly distributed. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{M}, \mathbb{E} \mu_{M}\right) \geq C n^{-2 / 3}+t\right] \leq e^{-c n^{2} t^{2}}
$$

Randomized sums

Theorem

Fix Hermitian $n \times n$ matrices A, B with $\|A\|,\|B\|<K$, and define

$$
M=U A U^{*}+B
$$

where $U \in \mathbb{U}(n)$ is uniformly distributed. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{M}, \mathbb{E} \mu_{M}\right) \geq C n^{-2 / 3}+t\right] \leq e^{-c n^{2} t^{2}}
$$

This also holds for random A and B satisfying a concentration hypothesis.

A similar result (for fixed A and B) was proved by Kargin (2011).

Random compressions

Theorem

Fix a Hermitian $n \times n$ matrix A with $\|A\|<K$, and define

$$
M=P_{k} U A U^{*} P_{k}^{*}
$$

where $U \in \mathbb{U}(n)$ is uniformly distributed and $P_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the usual projection. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{M}, \mathbb{E} \mu_{M}\right) \geq C n^{-2 / 3}+t\right] \leq e^{-c n^{2} t^{2}}
$$

Random compressions

Theorem

Fix a Hermitian $n \times n$ matrix A with $\|A\|<K$, and define

$$
M=P_{k} U A U^{*} P_{k}^{*},
$$

where $U \in \mathbb{U}(n)$ is uniformly distributed and $P_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is the usual projection. Then for $t>0$,

$$
\mathbb{P}\left[d_{W}\left(\mu_{M}, \mathbb{E} \mu_{M}\right) \geq C n^{-2 / 3}+t\right] \leq e^{-c n^{2} t^{2}} .
$$

This also holds for random A satisfying a concentration hypothesis.
This improves an earlier result of Meckes-M. (2011). When $k=n$ and A is random, this sharpens results of Guionnet-Zeitouni (2000). When $k=n$ and A is a Wigner matrix sharper results were proved by Götze-Tikhomirov (2011).

Thank you.

