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t → λ(m)(t) where λ(m)(t)dt represents the probability to have a
point in N(m) at time t conditionally to the past before t (x < t).

An intensity is a predictable process wrt a filtration that defines
”past”. If it exists,

∫

t

0 λ(x)dx is the compensator of Nt , ie

Mt = Nt −
∫

t

0
λ(x)dx

is a (local) martingale.
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The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez
(2008)). Estimating the interaction functions and finding out
which one is zero gives a picture of the synergy between the
different processes (neurons, elements)
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The multivariate Hawkes process(3)

We want to estimate s =
(

(νr , (h
(r)
ℓ )ℓ=1,...,M)r=1,...,M

)

in

L2 =
{

f =
(

(µr , (g
(r)
ℓ )ℓ=1,...,M)r=1,...,M

)

/ g
(r)
ℓ with support in

(0,A] and ||f ||2 =
∑

r

(µr )
2 +

∑

r

∑

ℓ

∫

A

0
(g

(r)
ℓ )2(x)dx <∞

}

.

6/13



The multivariate Hawkes process(3)

We want to estimate s =
(

(νr , (h
(r)
ℓ )ℓ=1,...,M)r=1,...,M

)

in

L2 =
{

f =
(

(µr , (g
(r)
ℓ )ℓ=1,...,M)r=1,...,M

)

/ g
(r)
ℓ with support in

(0,A] and ||f ||2 =
∑

r

(µr )
2 +

∑

r

∑

ℓ

∫

A

0
(g

(r)
ℓ )2(x)dx <∞

}

.

Intensity candidate per mark

ψ
(r)
f

(t) = µr +
∑

ℓ

∫

t

−∞ g
(r)
ℓ (t − u)dN

(ℓ)
u .
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∫

T

0
[Ψ

(m)
f

(t)]2dt

)

.

to minimize in order to find a good estimate.

since γ(f ) ≃ −2
∑

m

∫

Ψ
(m)
f

(t)Ψ
(m)
s (t)dt +

∑

m

∫

[Ψ
(m)
f

(t)]2dt

minimal when Ψ
(m)
f

= Ψ
(m)
s  f = s
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∫

T

0
[Ψ

(m)
f

(t)]2dt

)

.

to minimize in order to find a good estimate.

γ(f ) = −2a′b + a′Ga with

bλ1
=

M
∑

m=1

∫

T

0
Ψ(m,λ1)dN

(m)
t , Gλ1,λ2

=
M
∑

m=1

∫

T

0
Ψ(m,λ1)Ψ(m,λ2)dt.
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where d , vector with positive coordinates.
Because of the ℓ1 penalty, the resulting estimator ŝ =

∑

λ âλφλ
will be sparse (very few non zeros coordinates).
Main point: How to choose d to have a good estimator ?
Quadratic form (norm ?)

||f ||2T ,M =

M
∑

m=1

∫

T

0
[Ψ

(m)
f

(t)]2dt.

8/13



An analytical result

Theorem

Let c > 0. If

1 inf
x∈R

|Λ|
∗

x ′Gx

||x ||2
ℓ2

≥ c ,

2 ∀λ ∈ Λ, |bλ − b̄λ| ≤ dλ, where

b̄λ =
∑

M

m=1

∫

T

0 Ψ(m,λ)(t)Ψ
(m)
s (t)dt,

then, there exists an absolute constant C such that

||ŝ − s||2T ,M ≤ C inf
a∈R|Λ|







∥

∥

∥

∥

∥

s −
∑

λ∈Λ

aλφλ

∥

∥

∥

∥

∥

2

T ,M

+ c−1
∑

λ∈S(a)

(dλ)
2







,

where S(a) is the support of a.
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,

where S(a) is the support of a.

Oracle inequality (see also Tsybakov (et al.), Bertin, Le Pennec,
Rivoirard (2011))
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∗

x ′Gx

||x ||2
ℓ2

≥ c .

In particular this shows that ||f ||T ,M is a norm with high
probability on the dictionary.
c important for theory, not for practice ....

2 ∀λ ∈ Λ, |∑M

m=1

∫

T

0 Ψ(m,λ)(t)(dN
(m)
t −Ψ

(m)
s (t)dt)| ≤ dλ,

Choice of dλ crucial to have a full data-driven procedure
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Rivoirard, Tuleau-Malot) in other settings (v̂ unbiased
estimate of v)

such a d =
√
2γv̂ x is definitely bad for the estimation

procedure when γ < 1.
is good for moderate γ
becomes bad again if γ too large
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Existing exponential inequalities

(classical, van de Geer (1995))
P
(

Mτ ≥ √
2ρx + Bx/3 and

∫ τ

0 H2
t λ(t)dt ≤ ρ and supt≤τ |Ht | ≤ B

)

e−x

12/13



Existing exponential inequalities

(classical, van de Geer (1995))
P
(

Mτ ≥ √
2ρx + Bx/3 and

∫ τ

0 H2
t λ(t)dt ≤ ρ and supt≤τ |Ht | ≤ B

)

e−x

(Dzhaparidze and van Zanten (2001))

P

(

Mτ ≥
√
2θx and

∫ τ

0 H2
t λ(t)dt +

∫ τ

0 H2
t dNt ≤ θ

)

≤ e−x .
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P

(

Mτ ≥
√
2θx and

∫ τ

0 H2
t λ(t)dt +

∫ τ

0 H2
t dNt ≤ θ

)

≤ e−x .

(Dzhaparidze and van Zanten (2001), Barlow, Jacka, Yor
(1986), de la Peña (1999) and Bercu and Touati (2008)) If
symetric (or heavy on the left)
P
(

Mτ ≥
√
2ξx and

∫ τ

0 H2
t dNt ≤ ξ

)

≤ e−x ,
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One satisfying exponential inequality

Theorem

Let B > 0 and v > w > 0. For every x > 0 and µ > 0 such that

µ > φ(µ), define

V̂
µ
t =

µ

µ− φ(µ)

∫

t

0
H2
s dNs +

B2x

µ− φ(µ)
,

where φ(u) = exp(u)− 1− u. Then for any almost surely finite

stopping time τ and any ε > 0

P

(

Mτ ≥
√

2(1 + ε)V̂ µ
τ x +

Bx

3
and w ≤ V̂ µ

τ ≤ v and sup
t∈[0,τ ]

|Ht | ≤ B

)

≤ 2
log(v/w)

log(1 + ε)
e−x .

inspired by Lipster and Spokoiny (2000)
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