Some Lasso procedure for multivariate counting processes and its particular link with some exponential inequalities for martingales

N.R. Hansen, P. Reynaud-Bouret, V. Rivoirard

Copenhagen, CNRS - LJAD University of Nice, Dauphine

Banff, October 13th 2011

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = シののの

Point process

N= random countable set of points of \mathbb{R} (here).

Point process

N= random countable set of points of \mathbb{R} (here).

Examples : breakdowns, earthquakes, lifetimes (or death) in a certain population,

Point process

N= random countable set of points of \mathbb{R} (here).

Examples : breakdowns, earthquakes, lifetimes (or death) in a certain population, action potentials (detected by an electrode on a particular place of a neuron)

Point process

N= random countable set of points of \mathbb{R} (here).

Examples : breakdowns, earthquakes, lifetimes (or death) in a certain population, action potentials (detected by an electrode on a particular place of a neuron)

• N_A number of points of N in A,

Point process

N= random countable set of points of \mathbb{R} (here).

Examples : breakdowns, earthquakes, lifetimes (or death) in a certain population, action potentials (detected by an electrode on a particular place of a neuron)

- N_A number of points of N in A,
- $N_t = N_{[0,t]}$ counts the number of points between 0 and t =counting process

Point process

N= random countable set of points of \mathbb{R} (here).

Examples : breakdowns, earthquakes, lifetimes (or death) in a certain population, action potentials (detected by an electrode on a particular place of a neuron)

- N_A number of points of N in A,
- $N_t = N_{[0,t]}$ counts the number of points between 0 and t =counting process
- $dN_t = \sum_{T \text{ point of } N} \delta_T = \text{point measure}$

Point process

N= random countable set of points of \mathbb{R} (here).

Examples : breakdowns, earthquakes, lifetimes (or death) in a certain population, action potentials (detected by an electrode on a particular place of a neuron)

- N_A number of points of N in A,
- $N_t = N_{[0,t]}$ counts the number of points between 0 and t =counting process
- $dN_t = \sum_{T \text{ point of } N} \delta_T = \text{point measure}$

Usually \mathbb{R} is thought as time, but also the DNA strand (point= position of transcription regulatory elements).

Point process

N= random countable set of points of \mathbb{R} (here).

Examples : breakdowns, earthquakes, lifetimes (or death) in a certain population, action potentials (detected by an electrode on a particular place of a neuron)

- N_A number of points of N in A,
- $N_t = N_{[0,t]}$ counts the number of points between 0 and t =counting process
- $dN_t = \sum_{T \text{ point of } N} \delta_T = \text{point measure}$

Usually \mathbb{R} is thought as time, but also the DNA strand (point= position of transcription regulatory elements). Sometimes it's marked (or multivariate), ie $(N_t^{(m)})_{m=1,...,M}$.

(Conditional) Intensity

 $t \to \lambda^{(m)}(t)$ where $\lambda^{(m)}(t)dt$ represents the probability to have a point in $N^{(m)}$ at time t conditionally to the past before $t \ (x < t)$.

(Conditional) Intensity

 $t \to \lambda^{(m)}(t)$ where $\lambda^{(m)}(t)dt$ represents the probability to have a point in $N^{(m)}$ at time t conditionally to the past before $t \ (x < t)$.

An intensity is a predictable process wrt a filtration that defines "past". If it exists, $\int_0^t \lambda(x) dx$ is the compensator of N_t , ie

$$M_t = N_t - \int_0^t \lambda(x) dx$$

is a (local) martingale.

(Conditional) Intensity

 $t \to \lambda^{(m)}(t)$ where $\lambda^{(m)}(t)dt$ represents the probability to have a point in $N^{(m)}$ at time t conditionally to the past before $t \ (x < t)$.

Predictable linear transformation

• For any parameter $f \in \mathcal{H}$, $f \mapsto \Psi_f^{(m)}$ is a known predictable linear transformation

(Conditional) Intensity

 $t \to \lambda^{(m)}(t)$ where $\lambda^{(m)}(t)dt$ represents the probability to have a point in $N^{(m)}$ at time t conditionally to the past before $t \ (x < t)$.

Predictable linear transformation

- For any parameter $f \in \mathcal{H}$, $f \mapsto \Psi_f^{(m)}$ is a known predictable linear transformation
- (statistical model) $\lambda^{(m)}(t) = \Psi_s^{(m)}$ for some unknown parameter s.

(Conditional) Intensity

 $t \to \lambda^{(m)}(t)$ where $\lambda^{(m)}(t)dt$ represents the probability to have a point in $N^{(m)}$ at time t conditionally to the past before $t \ (x < t)$.

Predictable linear transformation

- For any parameter $f \in \mathcal{H}$, $f \mapsto \Psi_f^{(m)}$ is a known predictable linear transformation
- (statistical model) $\lambda^{(m)}(t) = \Psi_s^{(m)}$ for some unknown parameter s.

Examples:

• m = 1, $\Psi_f = f$ with $f \in \mathbb{L}^2(\mathbb{R}) = \text{Poisson}$

(Conditional) Intensity

 $t \to \lambda^{(m)}(t)$ where $\lambda^{(m)}(t)dt$ represents the probability to have a point in $N^{(m)}$ at time t conditionally to the past before $t \ (x < t)$.

Predictable linear transformation

- For any parameter $f \in \mathcal{H}$, $f \mapsto \Psi_f^{(m)}$ is a known predictable linear transformation
- (statistical model) $\lambda^{(m)}(t) = \Psi_s^{(m)}$ for some unknown parameter s.

Examples:

- m = 1, $\Psi_f = f$ with $f \in \mathbb{L}^2(\mathbb{R}) = \text{Poisson}$
- $\Psi_f^{(m)} = Y_t f(t, X_m)$ with $f \in \mathbb{L}^2(\mathbb{R} \times \mathcal{X}) =$ Aalen multiplicative intensity (right censored survival data, Cox processes etc)

(Conditional) Intensity

 $t \to \lambda^{(m)}(t)$ where $\lambda^{(m)}(t)dt$ represents the probability to have a point in $N^{(m)}$ at time t conditionally to the past before $t \ (x < t)$.

Predictable linear transformation

- For any parameter $f \in \mathcal{H}$, $f \mapsto \Psi_f^{(m)}$ is a known predictable linear transformation
- (statistical model) $\lambda^{(m)}(t) = \Psi_s^{(m)}$ for some unknown parameter s.

Examples:

- m = 1, $\Psi_f = f$ with $f \in \mathbb{L}^2(\mathbb{R}) = \mathsf{Poisson}$
- $\Psi_f^{(m)} = Y_t f(t, X_m)$ with $f \in \mathbb{L}^2(\mathbb{R} \times \mathcal{X}) =$ Aalen multiplicative intensity (right censored survival data,
 - Cox processes etc)
- Hawkes ...

One observes $N^{(1)}, ..., N^{(r)}, ..., N^{(M)}$ processes such that

Multivariate Hawkes processes One observes $N^{(1)}, ..., N^{(r)}, ..., N^{(M)}$ processes such that $\lambda^{(1)}(t) =$ $\lambda^{(2)}(t) =$ $\lambda^{(r)}(t) =$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - わえぐ

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 - のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲口 > ▲母 > ▲臣 > ▲臣 > ▲臣 = の Q @

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez (2008)). Estimating the interaction functions and finding out which one is zero gives a picture of the synergy between the different processes (neurons, elements)

The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez (2008)). Estimating the interaction functions and finding out which one is zero gives a picture of the synergy between the different processes (neurons, elements)

The multivariate Hawkes process(3)

We want to estimate $s = \left((\nu_r, (h_\ell^{(r)})_{\ell=1,...,M})_{r=1,...,M} \right)$ in

$$\mathbb{L}_{2} = \left\{ f = \left((\mu_{r}, (g_{\ell}^{(r)})_{\ell=1,...,M})_{r=1,...,M} \right) \ / \ g_{\ell}^{(r)} \text{ with support in}$$
$$(0, A] \text{ and } \|f\|^{2} = \sum_{r} (\mu_{r})^{2} + \sum_{r} \sum_{\ell} \int_{0}^{A} (g_{\ell}^{(r)})^{2}(x) dx < \infty \right\}.$$

The multivariate Hawkes process(3)

We want to estimate $s = \left((\nu_r, (h_\ell^{(r)})_{\ell=1,...,M})_{r=1,...,M} \right)$ in

$$\mathbb{L}_{2} = \left\{ f = \left((\mu_{r}, (g_{\ell}^{(r)})_{\ell=1,\dots,M})_{r=1,\dots,M} \right) \ / \ g_{\ell}^{(r)} \text{ with support in}$$
$$(0, A] \text{ and } \|f\|^{2} = \sum_{r} (\mu_{r})^{2} + \sum_{r} \sum_{\ell} \int_{0}^{A} (g_{\ell}^{(r)})^{2}(x) dx < \infty \right\}.$$

Intensity candidate per mark $\psi_{f}^{(r)}(t) = \mu_{r} + \sum_{\ell} \int_{-\infty}^{t} g_{\ell}^{(r)}(t-u) dN_{u}^{(\ell)}.$

6/13

• $\Phi = (\phi_{\lambda})_{\lambda \in \Lambda}$ = dictionary in $\mathcal{H}(\text{Orthonormal family ...})$ and $f = \sum_{\lambda \in \Lambda} a_{\lambda} \phi_{\lambda}$. (Hope : decomposition of *s* sparse)

• $\Phi = (\phi_{\lambda})_{\lambda \in \Lambda}$ = dictionary in $\mathcal{H}(\text{Orthonormal family ...})$ and $f = \sum_{\lambda \in \Lambda} a_{\lambda} \phi_{\lambda}$. (Hope : decomposition of *s* sparse) • $\Psi_{f}^{(m)} = \sum_{\lambda=0}^{\Lambda} a_{\lambda} \Psi^{(m,\lambda)}$ and $\Psi^{(m,\lambda)} = \Psi_{\phi_{\lambda}}^{(m)}$.

Least-square contrast

$$\gamma(f) = \sum_{m=1}^{M} \left(-2 \int_{0}^{T} \Psi_{f}^{(m)}(t) dN_{t}^{(m)} + \int_{0}^{T} [\Psi_{f}^{(m)}(t)]^{2} dt \right).$$

to minimize in order to find a good estimate.

Least-square contrast

$$\gamma(f) = \sum_{m=1}^{M} \left(-2 \int_{0}^{T} \Psi_{f}^{(m)}(t) dN_{t}^{(m)} + \int_{0}^{T} [\Psi_{f}^{(m)}(t)]^{2} dt \right).$$

to minimize in order to find a good estimate.

Least-square contrast

$$\gamma(f) = \sum_{m=1}^{M} \left(-2 \int_{0}^{T} \Psi_{f}^{(m)}(t) dN_{t}^{(m)} + \int_{0}^{T} [\Psi_{f}^{(m)}(t)]^{2} dt \right).$$

to minimize in order to find a good estimate.

since $\gamma(f) \simeq -2\sum_{m} \int \Psi_{f}^{(m)}(t) \Psi_{s}^{(m)}(t) dt + \sum_{m} \int [\Psi_{f}^{(m)}(t)]^{2} dt$ minimal when $\Psi_{f}^{(m)} = \Psi_{s}^{(m)} \rightsquigarrow f = s$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

 Φ = (φ_λ)_{λ∈Λ} = dictionary in H(Orthonormal family ...) and f = Σ_{λ∈Λ} a_λφ_λ. (Hope : decomposition of s sparse)
 Ψ^(m)_f = Σ^Λ_{λ=0} a_λΨ^(m,λ) and Ψ^(m,λ) = Ψ^(m)_{φ_λ}.

Least-square contrast

$$\gamma(f) = \sum_{m=1}^{M} \left(-2 \int_{0}^{T} \Psi_{f}^{(m)}(t) dN_{t}^{(m)} + \int_{0}^{T} [\Psi_{f}^{(m)}(t)]^{2} dt \right).$$

to minimize in order to find a good estimate.

$$\gamma(f) = -2a'b + a'Ga \text{ with}$$

$$b_{\lambda_1} = \sum_{m=1}^M \int_0^T \Psi^{(m,\lambda_1)} dN_t^{(m)}, \quad G_{\lambda_1,\lambda_2} = \sum_{m=1}^M \int_0^T \Psi^{(m,\lambda_1)} \Psi^{(m,\lambda_2)} dt.$$

Lasso estimate

$$\hat{a} \in \operatorname{argmin}_{a \in \mathbb{R}^{|\Lambda|}} \{-2a'b + a'Ga + 2d'|a|\}$$

where d, vector with positive coordinates.

Lasso estimate

$$\hat{a} \in \operatorname{argmin}_{a \in \mathbb{R}^{|\Lambda|}} \{-2a'b + a'Ga + 2d'|a|\}$$

where d, vector with positive coordinates.

Because of the ℓ_1 penalty, the resulting estimator $\hat{s} = \sum_{\lambda} \hat{a}_{\lambda} \phi_{\lambda}$ will be sparse (very few non zeros coordinates).

Lasso estimate

$$\hat{a} \in \operatorname{argmin}_{a \in \mathbb{R}^{|\Lambda|}} \{-2a'b + a'Ga + 2d'|a|\}$$

where d, vector with positive coordinates.

Because of the ℓ_1 penalty, the resulting estimator $\hat{s} = \sum_{\lambda} \hat{a}_{\lambda} \phi_{\lambda}$ will be sparse (very few non zeros coordinates).

Main point: How to choose d to have a good estimator ?

Lasso estimate

$$\hat{a} \in \operatorname{argmin}_{a \in \mathbb{R}^{|\Lambda|}} \{-2a'b + a'Ga + 2d'|a|\}$$

where d, vector with positive coordinates.

Because of the ℓ_1 penalty, the resulting estimator $\hat{s} = \sum_{\lambda} \hat{a}_{\lambda} \phi_{\lambda}$ will be sparse (very few non zeros coordinates).

Main point: How to choose d to have a good estimator ? Quadratic form (norm ?)

$$\|f\|_{T,M}^2 = \sum_{m=1}^M \int_0^T [\Psi_f^{(m)}(t)]^2 dt.$$

An analytical result

$$\|\hat{s}-s\|_{T,M}^2 \leq C \inf_{a\in\mathbb{R}^{|\Lambda|}} \left\{ \left\|s-\sum_{\lambda\in\Lambda}a_\lambda\phi_\lambda\right\|_{T,M} + c^{-1}\sum_{\lambda\in S(a)}(d_\lambda)^2 \right\},$$

where S(a) is the support of a.

An analytical result

where *S*(*a*) is the support of *a*.

Oracle inequality (see also Tsybakov (et al.), Bertin, Le Pennec, Rivoirard (2011))

One needs to control in probability,

1
$$\inf_{x \in \mathbb{R}^{|\Lambda|}_*} \frac{x' G_x}{\|x\|_{\ell^2}^2} \ge c.$$

One needs to control in probability,

• inf $_{x \in \mathbb{R}_{*}^{|\Lambda|}} \frac{x'G_{X}}{\|x\|_{\ell^{2}}^{2}} \geq c$. In particular this shows that $\|f\|_{T,M}$ is a norm with high probability on the dictionary.

One needs to control in probability,

inf_{x∈ℝ^{|Λ|}} ^{x'Gx}/_{|x|²ℓ²} ≥ c.
 In particular this shows that ||f||_{T,M} is a norm with high probability on the dictionary.
 c important for theory, not for practice

One needs to control in probability,

 inf<sub>x∈ℝ<sup>|Λ|</sub> (x'Gx)/|x|²_{ℓ²} ≥ c. In particular this shows that ||f||_{T,M} is a norm with high probability on the dictionary. c important for theory, not for practice
 ∀λ ∈ Λ, |Σ^M_{m=1} ∫₀^T Ψ^(m,λ)(t)(dN^(m)_t - Ψ^(m)_s(t)dt)| ≤ d_λ, Choice of d_λ crucial to have a full data-driven procedure
</sub></sup>

• One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t - \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small - of order e^{-x} .

• One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t - \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small - of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)

- One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)
- If a should be as close as possible to the "CLT" rate if $d(x) \simeq \sqrt{2vx} \text{ with } v \text{ the variance of the process (or bracket).}$

- One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)
- d should be as close as possible to the "CLT" rate ie $d(x) \simeq \sqrt{2vx}$ with v the variance of the process (or bracket). Indeed, (Bertin, Le Pennec, Rivoirard / RB Rivoirard / RB, Rivoirard, Tuleau-Malot) in other settings (\hat{v} unbiased estimate of v)

- One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)
- A should be as close as possible to the "CLT" rate ie
 $d(x) \simeq \sqrt{2vx}$ with v the variance of the process (or bracket).
 Indeed, (Bertin, Le Pennec, Rivoirard / RB Rivoirard / RB,
 Rivoirard, Tuleau-Malot) in other settings (\hat{v} unbiased
 estimate of v)
 - such a $d = \sqrt{2\gamma \hat{v}x}$ is definitely bad for the estimation procedure when $\gamma < 1$.

- One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)
- A should be as close as possible to the "CLT" rate ie
 $d(x) \simeq \sqrt{2vx}$ with v the variance of the process (or bracket).
 Indeed, (Bertin, Le Pennec, Rivoirard / RB Rivoirard / RB,
 Rivoirard, Tuleau-Malot) in other settings (\hat{v} unbiased
 estimate of v)
 - such a $d = \sqrt{2\gamma \hat{v}x}$ is definitely bad for the estimation procedure when $\gamma < 1$.
 - $\bullet\,$ is good for moderate $\gamma\,$

- One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)
- A should be as close as possible to the "CLT" rate ie
 $d(x) \simeq \sqrt{2vx}$ with v the variance of the process (or bracket).
 Indeed, (Bertin, Le Pennec, Rivoirard / RB Rivoirard / RB,
 Rivoirard, Tuleau-Malot) in other settings (\hat{v} unbiased
 estimate of v)
 - such a $d = \sqrt{2\gamma \hat{v}x}$ is definitely bad for the estimation procedure when $\gamma < 1$.
 - $\bullet\,$ is good for moderate $\gamma\,$
 - ${\, \bullet \,}$ becomes bad again if γ too large

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = シのの

- One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)
- A should be as close as possible to the "CLT" rate ie
 $d(x) \simeq \sqrt{2vx}$ with v the variance of the process (or bracket).
 Indeed, (Bertin, Le Pennec, Rivoirard / RB Rivoirard / RB,
 Rivoirard, Tuleau-Malot) in other settings (\hat{v} unbiased
 estimate of v)
 - such a $d = \sqrt{2\gamma \hat{v}x}$ is definitely bad for the estimation procedure when $\gamma < 1$.
 - $\bullet\,$ is good for moderate $\gamma\,$
 - $\bullet\,$ becomes bad again if γ too large
 - ${\, \bullet \, }$ optimal on simulations when $\gamma = 1$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = シのの

- One needs to find a data-driven bound d(x) such that if $M_T = \int_0^T H_t(dN_t \lambda(t)dt)$ and H_s predictable, $\mathbb{P}(M_T \ge d(x))$ exponentially small of order e^{-x} . Indeed, we will control $|\Lambda| \simeq T^{\alpha}$ of them, $x \simeq \log(T)$ (not the large deviation regime !)
- A should be as close as possible to the "CLT" rate ie
 $d(x) \simeq \sqrt{2vx}$ with v the variance of the process (or bracket).
 Indeed, (Bertin, Le Pennec, Rivoirard / RB Rivoirard / RB,
 Rivoirard, Tuleau-Malot) in other settings (\hat{v} unbiased
 estimate of v)
 - such a $d = \sqrt{2\gamma \hat{v}x}$ is definitely bad for the estimation procedure when $\gamma < 1$.
 - $\bullet\,$ is good for moderate $\gamma\,$
 - $\bullet\,$ becomes bad again if γ too large
 - ${\, \bullet \, }$ optimal on simulations when $\gamma = 1$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = シのの

Existing exponential inequalities

• (classical, van de Geer (1995)) $\mathbb{P}\left(M_{\tau} \geq \sqrt{2\rho x} + Bx/3 \text{ and } \int_{0}^{\tau} H_{t}^{2}\lambda(t)dt \leq \rho \text{ and } \sup_{t \leq \tau} |H_{t}| \leq B\right)$ e^{-x}

Existing exponential inequalities

- (classical, van de Geer (1995)) $\mathbb{P}\left(M_{\tau} \geq \sqrt{2\rho x} + Bx/3 \text{ and } \int_{0}^{\tau} H_{t}^{2}\lambda(t)dt \leq \rho \text{ and } \sup_{t \leq \tau} |H_{t}| \leq B\right)$ e^{-x}
- (Dzhaparidze and van Zanten (2001)) $\mathbb{P}\left(M_{\tau} \geq \sqrt{2\theta x} \text{ and } \int_{0}^{\tau} H_{t}^{2} \lambda(t) dt + \int_{0}^{\tau} H_{t}^{2} dN_{t} \leq \theta\right) \leq e^{-x}.$

Existing exponential inequalities

- (classical, van de Geer (1995)) $\mathbb{P}\left(M_{\tau} \geq \sqrt{2\rho x} + Bx/3 \text{ and } \int_{0}^{\tau} H_{t}^{2}\lambda(t)dt \leq \rho \text{ and } \sup_{t \leq \tau} |H_{t}| \leq B\right)$ e^{-x}
- (Dzhaparidze and van Zanten (2001)) $\mathbb{P}\left(M_{\tau} \geq \sqrt{2\theta x} \text{ and } \int_{0}^{\tau} H_{t}^{2} \lambda(t) dt + \int_{0}^{\tau} H_{t}^{2} dN_{t} \leq \theta\right) \leq e^{-x}.$
- (Dzhaparidze and van Zanten (2001), Barlow, Jacka, Yor (1986), de la Peña (1999) and Bercu and Touati (2008)) If symetric (or heavy on the left)
 P (M_τ ≥ √2ξx and ∫₀^τ H_t² dN_t ≤ ξ) ≤ e^{-x},

One satisfying exponential inequality

Theorem

Let B > 0 and v > w > 0. For every x > 0 and $\mu > 0$ such that $\mu > \phi(\mu)$, define

$$\hat{V}_{t}^{\mu} = rac{\mu}{\mu - \phi(\mu)} \int_{0}^{t} H_{s}^{2} dN_{s} + rac{B^{2}x}{\mu - \phi(\mu)},$$

where $\phi(u) = \exp(u) - 1 - u$. Then for any almost surely finite stopping time τ and any $\varepsilon > 0$

$$\mathbb{P}\left(M_{\tau} \geq \sqrt{2(1+\varepsilon)\hat{V}_{\tau}^{\mu}x} + \frac{Bx}{3} \text{ and } w \leq \hat{V}_{\tau}^{\mu} \leq v \text{ and } \sup_{t \in [0,\tau]} |H_t| \leq B\right)$$
$$\leq 2\frac{\log(v/w)}{\log(1+\varepsilon)}e^{-x}.$$

inspired by Lipster and Spokoiny (2000)