
Strong approximation for the empirical process in the
dependent setting
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Introduction

• Let X = (Xi)i∈Z be a strictly stationary sequence of real-valued
random variables with common distribution function F . Define the
empirical process of X by

RX(s, t) =
∑

1≤k≤t

(
1Xk≤s − F (s)

)
, s ∈ R , t ∈ R

+ .
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empirical process of X by

RX(s, t) =
∑

1≤k≤t

(
1Xk≤s − F (s)

)
, s ∈ R , t ∈ R

+ .

• For iid r.v’s Xi with uniform distribution over [0, 1], Komlós, Major
and Tusnády (1975) constructed a continuous centered Gaussian
process KX with covariance function

E
(
KX(s, t)KX(s′, t′)

)
= (t ∧ t′)(s ∧ s′ − ss′)

in such a way that

sup
s∈R,t∈[0,1]

|RX(s, [nt])−KX(s, [nt])| = O(log2 n) almost surely.
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Previous results in the dependent case

• Berkes and Philipp (1977)- Yoshihara (1979): If α(n) = O(n−a) for some

a > 3, and if F is continuous, there exists a Gaussian process, KX ,
continuous such that

(∗) sup
s∈R,t∈[0,1]

|RX(s, [nt])−KX(s, [nt])| = O(
√
n(ln(n))−λ) a.s,

for some λ > 0. The covariance function ΓX of KX is given by
ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′) where

ΛX(s, s′) =
∑

k≥0

Cov(1X0≤s,1Xk≤s′) +
∑

k>0

Cov(1X0≤s′ ,1Xk≤s) .
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• Rio (2000): if α(n) = O(n−a) for some a > 1, {n−1/2RX(s, n), s ∈ R}
converges weakly to G in D(R).

Strong approximation for the empirical process in the dependent setting – p. 3



Previous results in the dependent case

• Berkes and Philipp (1977)- Yoshihara (1979): If α(n) = O(n−a) for some

a > 3, and if F is continuous, there exists a Gaussian process, KX ,
continuous such that

(∗) sup
s∈R,t∈[0,1]

|RX(s, [nt])−KX(s, [nt])| = O(
√
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ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′) where

ΛX(s, s′) =
∑

k≥0

Cov(1X0≤s,1Xk≤s′) +
∑

k>0

Cov(1X0≤s′ ,1Xk≤s) .

• Rio (2000): if α(n) = O(n−a) for some a > 1, {n−1/2RX(s, n), s ∈ R}
converges weakly to G in D(R).

• Berkes, Hörmann and Shauer (2009): They obtained (∗) under a S−
mixing condition well adapted to function of iid sequences.
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Dependence coefficients.

• We define (here F0 = σ(Xi, i ≤ 0))

b(X0, k) = sup
t∈R

|P(Xk ≤ t|X0)− P(Xk ≤ t)|

b(F0, i, j) = sup
(s,t)∈R2

|P(Xi ≤ t,Xj ≤ s|F0)− P(Xi ≤ t,Xj ≤ s)|

β(σ(X0), Xk) = E(b(X0, k)) et β2,Y (k) = sup
i≥j≥k

E(b(F0, i, j)) .
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• Dedecker (2010): If β2,Y (k) = O(n−a) for some a > 1,
{n−1/2RX(s, n), s ∈ R} ⇒ G in D(R).
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β(σ(X0), Xk) = E(b(X0, k)) et β2,Y (k) = sup
i≥j≥k

E(b(F0, i, j)) .

• Dedecker (2010): If β2,Y (k) = O(n−a) for some a > 1,
{n−1/2RX(s, n), s ∈ R} ⇒ G in D(R).

• Is it possible to obtain a strong approximation result under the
condition: β2,Y (k) = O(n−a) for some a > 1?
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Strong approximation result

• Theorem : If β2,X(n) = O(n−1−δ) for some δ > 0. Then
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• Theorem : If β2,X(n) = O(n−1−δ) for some δ > 0. Then

1. For all (s, s′) ∈ R
2, the following series converges absolutely

ΛX(s, s′) =
∑

k≥0

Cov(1X0≤s,1Xk≤s′) +
∑

k>0

Cov(1X0≤s′ ,1Xk≤s)

2. Let ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′). There exists a centered
Gaussian process KX with covariance function ΓX , whose
sample paths are almost surely uniformly continuous with
respect to the pseudo metric

d((s, t), (s′, t′)) = |F (s)− F (s′)|+ |t− t′| ,

and such that for ε = δ2/(22(δ + 2)2),

sup
s∈R,t∈[0,1]

|RX(s, [nt])−KX(s, [nt])| = O(n1/2−ε) almost surely,
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Sketch of proof (1)

• Let P ∗ the probability on R whose density wrt P (law of X0) is

1 + 4
∑∞

k=1 b(x, k)

C(β)
with C(β) = 1 + 4

∞∑

k=1

β(σ(X0), Xk).
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F−1
P ∗ (Yi) = Xi almost surely
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• Yi = FP ∗(Xi − 0) + ηi(FP ∗(Xi)− FP ∗(Xi − 0)) so that
F−1
P ∗ (Yi) = Xi almost surely

• Then we have RX(·, ·) = RY (FP ∗(·), ·) and it suffices to study

RY (s, t) =
∑

1≤k≤t

(
1Yk≤s − FY (s)

)
, s ∈ [0, 1] , t ∈ R

+ .

• Var
(
KY (u, n)−KY (v, n)

)
≤ C(β)n|u− v|
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Sketch of proof (2)

• Notice that

sup
1≤k≤2N+1

sup
s∈[0,1]

∣∣R(s, k)−K(s, k)
∣∣

≤ sup
s∈[0,1]

∣∣R(s, 1)−K(s, 1)
∣∣+

N∑

L=0

DL .

where

DL := sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣∣(R(s, ℓ)−R(s, 2L))− (K(s, ℓ)−K(s, 2L))
∣∣ .
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N∑

L=0

DL .

where

DL := sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣∣(R(s, ℓ)−R(s, 2L))− (K(s, ℓ)−K(s, 2L))
∣∣ .

• It suffices to prove that for any L ∈ {0, . . . , N},

DL = O(2L( 1
2−ε)) a.s.
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Sketch of proof (3)

• For any K ∈ N and any s ∈ [0, 1], let ΠK(s) = 2−K [2Ks].
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Sketch of proof (3)

• For any K ∈ N and any s ∈ [0, 1], let ΠK(s) = 2−K [2Ks].

• Let r(L) be an increasing sequence of integers

• We have to take care of the quantities

DL,1 := sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣

∣(R(s, ℓ)−R(Πr(L)(s), ℓ))−(R(s, 2L)−R(Πr(L)(s), 2
L))

∣

∣

DL,2 := sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣

∣(K(s, ℓ)−K(Πr(L)(s), ℓ))−(K(s, 2L)−K(Πr(L)(s), 2
L))

∣

∣

and

DL,3 := sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣

∣(R(Πr(L)(s), ℓ)−R(Πr(L)(s), 2
L))

−(K(Πr(L)(s), ℓ)−K(Πr(L)(s), 2
L))

∣

∣
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Proof: construction of the Kiefer process (1).

• Let m(L) ∈ N such that m(L) ≤ L and set sj = j2−r(L)
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• Let m(L) ∈ N such that m(L) ≤ L and set sj = j2−r(L)

• For any ℓ ∈ {1, · · · , 2L−m(L)},

IL,ℓ =]2L+(ℓ−1)2m(L), 2L+ℓ2m(L)]∩N ; U
(j)
L,ℓ =

∑

i∈IL,ℓ

(
1Yi≤sj−FY (sj)

)
.

and UL,ℓ =
(
U

(1)
L,ℓ, . . . , U

(2r(L))
L,ℓ

)T
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• Let ΛY,L = (ΛY (sj , sj′))j,j′=1,··· ,2r(L) where

ΛY (s, s
′) =

∑

k≥0
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∑

k>0
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(2r(L))
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• Let ΛY,L = (ΛY (sj , sj′))j,j′=1,··· ,2r(L) where

ΛY (s, s
′) =

∑

k≥0

Cov(1Y0≤s,1Yk≤s′) +
∑

k>0

Cov(1Y0≤s′ ,1Yk≤s)

• Let

dr(L)(x, y) = sup
j=1,··· ,2r(L)

|x(j) − y(j)| .
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Proof: construction of the Kiefer process (2).

• According to Rüschendorf (1985), there exists a random variable
VL,ℓ =

(
V

(j)
L,ℓ

)
j=1,··· ,2r(L) with law N (0, 2m(L)ΛY,L)- that is

measurable wrt σ(δ2L+ℓ2m(L)) ∨ σ(UL,ℓ) ∨ F2L+(ℓ−1)2m(L) ,
independent of F2L+(ℓ−1)2m(L) and such that

E
(
dr(L)(UL,ℓ, VL,ℓ)

)

= E sup
f∈Lip(dr(L))

(
E
(
f(UL,ℓ)|F2L+(ℓ−1)2m(L)

)
− E(f(VL,ℓ))

)

Strong approximation for the empirical process in the dependent setting – p. 10



Proof: construction of the Kiefer process (2).

• According to Rüschendorf (1985), there exists a random variable
VL,ℓ =

(
V

(j)
L,ℓ

)
j=1,··· ,2r(L) with law N (0, 2m(L)ΛY,L)- that is

measurable wrt σ(δ2L+ℓ2m(L)) ∨ σ(UL,ℓ) ∨ F2L+(ℓ−1)2m(L) ,
independent of F2L+(ℓ−1)2m(L) and such that

E
(
dr(L)(UL,ℓ, VL,ℓ)

)

= E sup
f∈Lip(dr(L))

(
E
(
f(UL,ℓ)|F2L+(ℓ−1)2m(L)

)
− E(f(VL,ℓ))

)

• We have then constructed Gaussian random variables
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Strong approximation for the empirical process in the dependent setting – p. 10



Proof: construction of the Kiefer process (2).

• According to Rüschendorf (1985), there exists a random variable
VL,ℓ =

(
V

(j)
L,ℓ

)
j=1,··· ,2r(L) with law N (0, 2m(L)ΛY,L)- that is

measurable wrt σ(δ2L+ℓ2m(L)) ∨ σ(UL,ℓ) ∨ F2L+(ℓ−1)2m(L) ,
independent of F2L+(ℓ−1)2m(L) and such that

E
(
dr(L)(UL,ℓ, VL,ℓ)

)

= E sup
f∈Lip(dr(L))

(
E
(
f(UL,ℓ)|F2L+(ℓ−1)2m(L)

)
− E(f(VL,ℓ))

)

• We have then constructed Gaussian random variables
(VL,ℓ)L∈N,ℓ=1,··· ,2L−m(L) in 2r(L) that are mutually independent

• According to Dudley and Philipp (1983), there exists a Kiefer
process KY with covariance function ΓY such that

VL,ℓ =
(
KY (sj , 2

L+ℓ2m(L))−KY (sj , 2
L+(ℓ−1)2m(L))

)

j=1,··· ,2r(L)−1
.

Strong approximation for the empirical process in the dependent setting – p. 10



Sketch of proof (4)

• Recall that

DL,3 := sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣

∣(R(Πr(L)(s), ℓ)−R(Πr(L)(s), 2
L))

−(K(Πr(L)(s), ℓ)−K(Πr(L)(s), 2
L))

∣

∣
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∣(R(Πr(L)(s), ℓ)−R(Πr(L)(s), 2
L))

−(K(Πr(L)(s), ℓ)−K(Πr(L)(s), 2
L))

∣

∣

• Write that

AL,3 = sup
j∈{1,··· ,2r(L)}

sup
k≤2L−m(L)

∣

∣

∣

k
∑

ℓ=1

(U
(j)
L,ℓ − V

(j)
L,ℓ )

∣

∣

∣
,

BL,3 = sup
j∈{1,··· ,2r(L)}

sup
k≤2L−m(L)

sup
ℓ∈IL,k

∣

∣

∣
R(sj , ℓ)−R(sj , 2

L+(k−1)2m(L))
∣

∣

∣
,

CL,3 = sup
j∈{1,··· ,2r(L)}

sup
k≤2L−m(L)

sup
ℓ∈IL,k

∣

∣

∣
K(sj , ℓ)−K(sj , 2

L+(k−1)2m(L))
∣

∣

∣
,
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Sketch of proof (5)

• We have that

P(AL,3 ≥ 2L( 1
2−ε)

)
≤ 2L−m(L)2L(ε− 1

2 )E
(
dr(L)(UL,1, VL,1)

)
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Sketch of proof (5)

• We have that

P(AL,3 ≥ 2L( 1
2−ε)

)
≤ 2L−m(L)2L(ε− 1

2 )E
(
dr(L)(UL,1, VL,1)

)

• Proposition: If β2,X(n) = O(n−1−δ) for some δ > 0 and if
4r(L) ≤ m(L) ≤ L, for any ℓ ∈ {1 . . . , 2L−m(L)},

E
(
dr(L)(UL,ℓ, VL,ℓ)

)
≪ 2

m(L)+2r(L)
(2+δ)∧3 L2 .
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• Proposition: If β2,X(n) = O(n−1−δ) for some δ > 0 and if
4r(L) ≤ m(L) ≤ L, for any ℓ ∈ {1 . . . , 2L−m(L)},

E
(
dr(L)(UL,ℓ, VL,ℓ)

)
≪ 2

m(L)+2r(L)
(2+δ)∧3 L2 .

• We will choose (for L large enough)

22εL−1L5 ≤ 2r(L) ≤ 22εLL5

and

2L(1−2ε)L−5 ≤ 2m(L) ≤ 21+L(1−2ε)L−5
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On the proof of the Gaussian approximation

• Let (Ni,L)i∈Z be a sequence of iid ∼ N (0,ΛL). Assume that
(Ni,L)i∈Z is independent of F∞ ∨ σ(ηi, i ∈ Z).
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• Let (Ni,L)i∈Z be a sequence of iid ∼ N (0,ΛL). Assume that
(Ni,L)i∈Z is independent of F∞ ∨ σ(ηi, i ∈ Z).

• Set ÑL = N1,L +N2,L + . . .+N2m(L),L.

• Let Lip(dr(L),F2L) be the set of measurable functions

g : R2r(L)

× Ω → R wrt the σ-fields B(R2r(L)

)⊗ F2L and B(R), such
that g(·, ω) ∈ Lip(dr(L)) and g(0, ω) = 0 for any ω ∈ Ω.
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• Set ÑL = N1,L +N2,L + . . .+N2m(L),L.

• Let Lip(dr(L),F2L) be the set of measurable functions

g : R2r(L)

× Ω → R wrt the σ-fields B(R2r(L)

)⊗ F2L and B(R), such
that g(·, ω) ∈ Lip(dr(L)) and g(0, ω) = 0 for any ω ∈ Ω.

• Then we have

E
(
dr(L)(UL,1, VL,1)

)

= sup
g∈Lip(dr(L),F2L)

E(g(UL,1, ω))− E(g(ÑL, ω)) .
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On the optimality of the result

• There exists a Markov chain such that β2,X(k) > ck−1 for some
positive constant c such that the finite dimensional marginals of the
process {(n lnn)−1/2RT (·, n)} converge in distribution to those of
the degenerated Gaussian process G defined by

for any t ∈ [0, 1], G(t) = f(t)1t 6=0Z ,

where Z is a standard normal.
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On the optimality of the result

• There exists a Markov chain such that β2,X(k) > ck−1 for some
positive constant c such that the finite dimensional marginals of the
process {(n lnn)−1/2RT (·, n)} converge in distribution to those of
the degenerated Gaussian process G defined by

for any t ∈ [0, 1], G(t) = f(t)1t 6=0Z ,

where Z is a standard normal.

• This shows that an approximation by a Kiefer process as in our
main result cannot hold for this chain.
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With a stronger coefficient!

• Let Xk = (Xj , j ≥ k) and

β(k) = ‖ sup
‖f‖∞≤1

PXk|F0
(f)− PXk

(f)‖1

Strong approximation for the empirical process in the dependent setting – p. 15



With a stronger coefficient!

• Let Xk = (Xj , j ≥ k) and

β(k) = ‖ sup
‖f‖∞≤1

PXk|F0
(f)− PXk

(f)‖1

• If β(n) = O(n−1−δ) for some δ > 0, the rate in the strong
approximation result should be

n
1

(2+δ)∧3 (logn)7(d+1)/3

if the variables are in R
d.
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Thank you for your attention!
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