Strong approximation for the empirical process in the dependent setting

Florence Merlevède, LAMA, Université Paris-Est-Marne-La-Vallée (joint work with J. Dedecker and E. Rio) *Hight Dimensional Probability meeting, Banff, October 2011*

Introduction

Let X = (X_i)_{i∈Z} be a strictly stationary sequence of real-valued random variables with common distribution function *F*. Define the empirical process of X by

$$R_X(s,t) = \sum_{1 \le k \le t} \left(\mathbf{1}_{X_k \le s} - F(s) \right), \ s \in \mathbb{R}, \ t \in \mathbb{R}^+.$$

Introduction

 Let X = (X_i)_{i∈Z} be a strictly stationary sequence of real-valued random variables with common distribution function F. Define the empirical process of X by

$$R_X(s,t) = \sum_{1 \le k \le t} \left(\mathbf{1}_{X_k \le s} - F(s) \right), \ s \in \mathbb{R}, \ t \in \mathbb{R}^+.$$

• For iid r.v's X_i with uniform distribution over [0, 1], Komlós, Major and Tusnády (1975) constructed a continuous centered Gaussian process K_X with covariance function

$$\mathbb{E}(K_X(s,t)K_X(s',t')) = (t \wedge t')(s \wedge s' - ss')$$

in such a way that

 $\sup_{s \in \mathbb{R}, t \in [0,1]} |R_X(s, [nt]) - K_X(s, [nt])| = O(\log^2 n) \quad \text{almost surely.}$

Previous results in the dependent case

Berkes and Philipp (1977)- Yoshihara (1979): If α(n) = O(n^{-a}) for some a > 3, and if F is continuous, there exists a Gaussian process, K_X, continuous such that

(*)
$$\sup_{s \in \mathbb{R}, t \in [0,1]} |R_X(s, [nt]) - K_X(s, [nt])| = O(\sqrt{n}(\ln(n))^{-\lambda})$$
 a.s,

for some $\lambda > 0$. The covariance function Γ_X of K_X is given by $\Gamma_X(s, s', t, t') = \min(t, t') \Lambda_X(s, s')$ where

$$\Lambda_X(s,s') = \sum_{k\geq 0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s},\mathbf{1}_{X_k\leq s'}) + \sum_{k>0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s'},\mathbf{1}_{X_k\leq s}).$$

Previous results in the dependent case

Berkes and Philipp (1977)- Yoshihara (1979): If α(n) = O(n^{-a}) for some a > 3, and if F is continuous, there exists a Gaussian process, K_X, continuous such that

(*)
$$\sup_{s \in \mathbb{R}, t \in [0,1]} |R_X(s, [nt]) - K_X(s, [nt])| = O(\sqrt{n}(\ln(n))^{-\lambda})$$
 a.s,

for some $\lambda > 0$. The covariance function Γ_X of K_X is given by $\Gamma_X(s, s', t, t') = \min(t, t') \Lambda_X(s, s')$ where

$$\Lambda_X(s,s') = \sum_{k\geq 0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s},\mathbf{1}_{X_k\leq s'}) + \sum_{k>0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s'},\mathbf{1}_{X_k\leq s}).$$

• Rio (2000): if $\alpha(n) = O(n^{-a})$ for some a > 1, $\{n^{-1/2}R_X(s,n), s \in \mathbf{R}\}$ converges weakly to G in $D(\mathbb{R})$.

Previous results in the dependent case

Berkes and Philipp (1977)- Yoshihara (1979): If α(n) = O(n^{-a}) for some a > 3, and if F is continuous, there exists a Gaussian process, K_X, continuous such that

(*)
$$\sup_{s \in \mathbb{R}, t \in [0,1]} |R_X(s, [nt]) - K_X(s, [nt])| = O(\sqrt{n}(\ln(n))^{-\lambda})$$
 a.s.

for some $\lambda > 0$. The covariance function Γ_X of K_X is given by $\Gamma_X(s, s', t, t') = \min(t, t')\Lambda_X(s, s')$ where

$$\Lambda_X(s,s') = \sum_{k\geq 0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s},\mathbf{1}_{X_k\leq s'}) + \sum_{k>0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s'},\mathbf{1}_{X_k\leq s}).$$

- Rio (2000): if $\alpha(n) = O(n^{-a})$ for some a > 1, $\{n^{-1/2}R_X(s,n), s \in \mathbf{R}\}$ converges weakly to G in $D(\mathbb{R})$.
- Berkes, Hörmann and Shauer (2009): They obtained (*) under a Smixing condition well adapted to function of iid sequences.

Dependence coefficients.

• We define (here
$$\mathcal{F}_0 = \sigma(X_i, i \leq 0)$$
)

$$b(X_0, k) = \sup_{t \in \mathbf{R}} |\mathbb{P}(X_k \leq t | X_0) - \mathbb{P}(X_k \leq t)|$$

$$b(\mathcal{F}_0, i, j) = \sup_{(s,t) \in \mathbf{R}^2} |\mathbb{P}(X_i \leq t, X_j \leq s | \mathcal{F}_0) - \mathbb{P}(X_i \leq t, X_j \leq s)|$$

$$\beta(\sigma(X_0), X_k) = \mathbb{E}(b(X_0, k)) \text{ et } \beta_{2,Y}(k) = \sup_{i \ge j \ge k} \mathbb{E}(b(\mathcal{F}_0, i, j)).$$

Dependence coefficients.

• We define (here
$$\mathcal{F}_0 = \sigma(X_i, i \leq 0)$$
)

$$b(X_0, k) = \sup_{t \in \mathbf{R}} |\mathbb{P}(X_k \leq t | X_0) - \mathbb{P}(X_k \leq t)|$$

$$b(\mathcal{F}_0, i, j) = \sup_{(s,t) \in \mathbf{R}^2} |\mathbb{P}(X_i \leq t, X_j \leq s | \mathcal{F}_0) - \mathbb{P}(X_i \leq t, X_j \leq s)|$$

$$\beta(\sigma(X_0), X_1) = \mathbb{E}(b(X_0, k)) \text{ of } \beta_{0,M}(k) = \sup_{t \in \mathbf{R}} \mathbb{E}(b(\mathcal{F}_0, i, i))$$

$$\beta(\sigma(X_0), X_k) = \mathbb{E}(b(X_0, k)) \text{ et } \beta_{2,Y}(k) = \sup_{i \ge j \ge k} \mathbb{E}(b(\mathcal{F}_0, i, j)).$$

• Dedecker (2010): If $\beta_{2,Y}(k) = O(n^{-a})$ for some a > 1, $\{n^{-1/2}R_X(s,n), s \in \mathbf{R}\} \Rightarrow G \text{ in } D(\mathbb{R}).$

Dependence coefficients.

• We define (here
$$\mathcal{F}_0 = \sigma(X_i, i \leq 0)$$
)

$$b(X_0, k) = \sup_{t \in \mathbf{R}} |\mathbb{P}(X_k \leq t | X_0) - \mathbb{P}(X_k \leq t)|$$

$$b(\mathcal{F}_0, i, j) = \sup_{(s,t) \in \mathbf{R}^2} |\mathbb{P}(X_i \leq t, X_j \leq s | \mathcal{F}_0) - \mathbb{P}(X_i \leq t, X_j \leq s)|$$

$$\beta(\sigma(X_0), X_k) = \mathbb{E}(b(X_0, k)) \text{ et } \beta_{2,Y}(k) = \sup_{i \ge j \ge k} \mathbb{E}(b(\mathcal{F}_0, i, j)).$$

- Dedecker (2010): If $\beta_{2,Y}(k) = O(n^{-a})$ for some a > 1, $\{n^{-1/2}R_X(s,n), s \in \mathbf{R}\} \Rightarrow G \text{ in } D(\mathbb{R}).$
- Is it possible to obtain a strong approximation result under the condition: β_{2,Y}(k) = O(n^{-a}) for some a > 1?

Strong approximation result

• Theorem : If $\beta_{2,X}(n) = O(n^{-1-\delta})$ for some $\delta > 0$. Then

Strong approximation result

- Theorem : If $\beta_{2,X}(n) = O(n^{-1-\delta})$ for some $\delta > 0$. Then
 - 1. For all $(s, s') \in \mathbb{R}^2$, the following series converges absolutely

$$\Lambda_X(s,s') = \sum_{k\geq 0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s},\mathbf{1}_{X_k\leq s'}) + \sum_{k>0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s'},\mathbf{1}_{X_k\leq s})$$

Strong approximation result

- Theorem : If $\beta_{2,X}(n) = O(n^{-1-\delta})$ for some $\delta > 0$. Then
 - 1. For all $(s, s') \in \mathbb{R}^2$, the following series converges absolutely

$$\Lambda_X(s,s') = \sum_{k\geq 0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s},\mathbf{1}_{X_k\leq s'}) + \sum_{k>0} \operatorname{Cov}(\mathbf{1}_{X_0\leq s'},\mathbf{1}_{X_k\leq s})$$

2. Let $\Gamma_X(s, s', t, t') = \min(t, t')\Lambda_X(s, s')$. There exists a centered Gaussian process K_X with covariance function Γ_X , whose sample paths are almost surely uniformly continuous with respect to the pseudo metric

$$d((s,t),(s',t')) = |F(s) - F(s')| + |t - t'|,$$

and such that for $\varepsilon = \delta^2/(22(\delta+2)^2)$,

 $\sup_{s \in \mathbb{R}, t \in [0,1]} |R_X(s, [nt]) - K_X(s, [nt])| = O(n^{1/2 - \varepsilon}) \quad \text{almost surely,}$

• Let P^* the probability on \mathbb{R} whose density wrt P (law of X_0) is

$$\frac{1 + 4\sum_{k=1}^{\infty} b(x,k)}{C(\beta)} \text{ with } C(\beta) = 1 + 4\sum_{k=1}^{\infty} \beta(\sigma(X_0), X_k).$$

• Let P^* the probability on \mathbb{R} whose density wrt P (law of X_0) is

$$\frac{1 + 4\sum_{k=1}^{\infty} b(x,k)}{C(\beta)} \text{ with } C(\beta) = 1 + 4\sum_{k=1}^{\infty} \beta(\sigma(X_0), X_k).$$

• Let $(\eta_i)_{i \in \mathbb{Z}}$ a sequence of iid r.v. $\sim \mathcal{U}([0,1])$ independent of $(X_i)_{i \in \mathbb{Z}}$

• Let P^* the probability on \mathbb{R} whose density wrt P (law of X_0) is

$$\frac{1 + 4\sum_{k=1}^{\infty} b(x,k)}{C(\beta)} \text{ with } C(\beta) = 1 + 4\sum_{k=1}^{\infty} \beta(\sigma(X_0), X_k).$$

- Let $(\eta_i)_{i\in\mathbb{Z}}$ a sequence of iid r.v. $\sim \mathcal{U}([0,1])$ independent of $(X_i)_{i\in\mathbb{Z}}$
- $Y_i = F_{P^*}(X_i 0) + \eta_i(F_{P^*}(X_i) F_{P^*}(X_i 0))$ so that $F_{P^*}^{-1}(Y_i) = X_i$ almost surely

• Let P^* the probability on \mathbb{R} whose density wrt P (law of X_0) is

$$\frac{1 + 4\sum_{k=1}^{\infty} b(x,k)}{C(\beta)} \text{ with } C(\beta) = 1 + 4\sum_{k=1}^{\infty} \beta(\sigma(X_0), X_k).$$

- Let $(\eta_i)_{i\in\mathbb{Z}}$ a sequence of iid r.v. $\sim \mathcal{U}([0,1])$ independent of $(X_i)_{i\in\mathbb{Z}}$
- $Y_i = F_{P^*}(X_i 0) + \eta_i(F_{P^*}(X_i) F_{P^*}(X_i 0))$ so that $F_{P^*}^{-1}(Y_i) = X_i$ almost surely
- Then we have $R_X(\cdot, \cdot) = R_Y(F_{P^*}(\cdot), \cdot)$ and it suffices to study

$$R_Y(s,t) = \sum_{1 \le k \le t} \left(\mathbf{1}_{Y_k \le s} - F_Y(s) \right), \, s \in [0,1], \, t \in \mathbb{R}^+.$$

• Let P^* the probability on \mathbb{R} whose density wrt P (law of X_0) is

$$\frac{1 + 4\sum_{k=1}^{\infty} b(x,k)}{C(\beta)} \text{ with } C(\beta) = 1 + 4\sum_{k=1}^{\infty} \beta(\sigma(X_0), X_k).$$

- Let $(\eta_i)_{i\in\mathbb{Z}}$ a sequence of iid r.v. $\sim \mathcal{U}([0,1])$ independent of $(X_i)_{i\in\mathbb{Z}}$
- $Y_i = F_{P^*}(X_i 0) + \eta_i(F_{P^*}(X_i) F_{P^*}(X_i 0))$ so that $F_{P^*}^{-1}(Y_i) = X_i$ almost surely
- Then we have $R_X(\cdot, \cdot) = R_Y(F_{P^*}(\cdot), \cdot)$ and it suffices to study

$$R_Y(s,t) = \sum_{1 \le k \le t} \left(\mathbf{1}_{Y_k \le s} - F_Y(s) \right), \, s \in [0,1], \, t \in \mathbb{R}^+ \, .$$

• $\operatorname{Var}(K_Y(u,n) - K_Y(v,n)) \leq C(\beta)n|u-v|$

• Notice that

$$\sup_{1 \le k \le 2^{N+1}} \sup_{s \in [0,1]} |R(s,k) - K(s,k)|$$

$$\le \sup_{s \in [0,1]} |R(s,1) - K(s,1)| + \sum_{L=0}^{N} D_L.$$

where

$$D_L := \sup_{2^L < \ell \le 2^{L+1}} \sup_{s \in [0,1]} \left| \left(R(s,\ell) - R(s,2^L) \right) - \left(K(s,\ell) - K(s,2^L) \right) \right|.$$

Notice that

$$\sup_{1 \le k \le 2^{N+1}} \sup_{s \in [0,1]} |R(s,k) - K(s,k)|$$

$$\le \sup_{s \in [0,1]} |R(s,1) - K(s,1)| + \sum_{L=0}^{N} D_L.$$

where

$$D_L := \sup_{2^L < \ell \le 2^{L+1}} \sup_{s \in [0,1]} \left| \left(R(s,\ell) - R(s,2^L) \right) - \left(K(s,\ell) - K(s,2^L) \right) \right|.$$

• It suffices to prove that for any $L \in \{0, \dots, N\}$,

$$D_L = O(2^{L(\frac{1}{2}-\varepsilon)})$$
 a.s.

• For any $K \in \mathbb{N}$ and any $s \in [0,1]$, let $\Pi_K(s) = 2^{-K}[2^K s]$.

- For any $K \in \mathbb{N}$ and any $s \in [0,1]$, let $\Pi_K(s) = 2^{-K}[2^K s]$.
- Let r(L) be an increasing sequence of integers

- For any $K \in \mathbb{N}$ and any $s \in [0,1]$, let $\Pi_K(s) = 2^{-K}[2^K s]$.
- Let r(L) be an increasing sequence of integers
- We have to take care of the quantities

 $D_{L,1} := \sup_{2^L < \ell \le 2^{L+1}} \sup_{s \in [0,1]} \left| (R(s,\ell) - R(\Pi_{r(L)}(s),\ell)) - (R(s,2^L) - R(\Pi_{r(L)}(s),2^L)) \right|$

 $D_{L,2} := \sup_{2^L < \ell \le 2^{L+1}} \sup_{s \in [0,1]} \left| (K(s,\ell) - K(\Pi_{r(L)}(s),\ell)) - (K(s,2^L) - K(\Pi_{r(L)}(s),2^L)) \right|$

and

$$D_{L,3} := \sup_{2^L < \ell \le 2^{L+1}} \sup_{s \in [0,1]} \left| \left(R(\Pi_{r(L)}(s), \ell) - R(\Pi_{r(L)}(s), 2^L) \right) - \left(K(\Pi_{r(L)}(s), \ell) - K(\Pi_{r(L)}(s), 2^L) \right) \right|$$

• Let $m(L) \in \mathbb{N}$ such that $m(L) \leq L$ and set $s_j = j2^{-r(L)}$

• Let $m(L) \in \mathbb{N}$ such that $m(L) \leq L$ and set $s_j = j2^{-r(L)}$

• For any
$$\ell \in \{1, \cdots, 2^{L-m(L)}\}$$
,

$$I_{L,\ell} =]2^L + (\ell - 1)2^{m(L)}, 2^L + \ell 2^{m(L)}] \cap \mathbb{N} ; U_{L,\ell}^{(j)} = \sum_{i \in I_{L,\ell}} \left(\mathbf{1}_{Y_i \le s_j} - F_Y(s_j) \right).$$

and
$$U_{L,\ell} = \left(U_{L,\ell}^{(1)}, \dots, U_{L,\ell}^{(2^{r(L)})}\right)^T$$

• Let $m(L) \in \mathbb{N}$ such that $m(L) \leq L$ and set $s_j = j2^{-r(L)}$

• For any
$$\ell \in \{1, \cdots, 2^{L-m(L)}\}$$
,

$$I_{L,\ell} =]2^L + (\ell-1)2^{m(L)}, 2^L + \ell 2^{m(L)}] \cap \mathbb{N} ; \ U_{L,\ell}^{(j)} = \sum_{i \in I_{L,\ell}} \left(\mathbf{1}_{Y_i \le s_j} - F_Y(s_j) \right).$$

and
$$U_{L,\ell} = \left(U_{L,\ell}^{(1)}, \dots, U_{L,\ell}^{(2^{r(L)})}\right)^T$$

• Let
$$\Lambda_{Y,L} = (\Lambda_Y(s_j, s_{j'}))_{j,j'=1,\cdots,2^{r(L)}}$$
 where

$$\Lambda_Y(s,s') = \sum_{k\geq 0} \operatorname{Cov}(\mathbf{1}_{Y_0\leq s},\mathbf{1}_{Y_k\leq s'}) + \sum_{k>0} \operatorname{Cov}(\mathbf{1}_{Y_0\leq s'},\mathbf{1}_{Y_k\leq s})$$

• Let $m(L) \in \mathbb{N}$ such that $m(L) \leq L$ and set $s_j = j2^{-r(L)}$

• For any
$$\ell \in \{1, \cdots, 2^{L-m(L)}\},\$$

$$I_{L,\ell} =]2^L + (\ell-1)2^{m(L)}, 2^L + \ell 2^{m(L)}] \cap \mathbb{N} ; \ U_{L,\ell}^{(j)} = \sum_{i \in I_{L,\ell}} \left(\mathbf{1}_{Y_i \le s_j} - F_Y(s_j) \right).$$

and
$$U_{L,\ell} = \left(U_{L,\ell}^{(1)}, \dots, U_{L,\ell}^{(2^{r(L)})}\right)^T$$

• Let
$$\Lambda_{Y,L} = (\Lambda_Y(s_j, s_{j'}))_{j,j'=1,\cdots,2^{r(L)}}$$
 where

$$\Lambda_Y(s,s') = \sum_{k \ge 0} \operatorname{Cov}(\mathbf{1}_{Y_0 \le s}, \mathbf{1}_{Y_k \le s'}) + \sum_{k > 0} \operatorname{Cov}(\mathbf{1}_{Y_0 \le s'}, \mathbf{1}_{Y_k \le s})$$

• Let

$$d_{r(L)}(x,y) = \sup_{j=1,\cdots,2^{r(L)}} |x^{(j)} - y^{(j)}|.$$

• According to Rüschendorf (1985), there exists a random variable $V_{L,\ell} = \left(V_{L,\ell}^{(j)}\right)_{j=1,\cdots,2^{r(L)}}$ with law $\mathcal{N}(0, 2^{m(L)}\Lambda_{Y,L})$ - that is measurable wrt $\sigma(\delta_{2^L+\ell 2^{m(L)}}) \vee \sigma(U_{L,\ell}) \vee \mathcal{F}_{2^L+(\ell-1)2^{m(L)}}$, independent of $\mathcal{F}_{2^L+(\ell-1)2^{m(L)}}$ and such that

 $\mathbb{E}\big(d_{r(L)}(U_{L,\ell}, V_{L,\ell})\big)$

$$= \mathbb{E} \sup_{f \in \operatorname{Lip}(d_{r(L)})} \left(\mathbb{E} \left(f(U_{L,\ell}) | \mathcal{F}_{2^{L} + (\ell-1)2^{m(L)}} \right) - \mathbb{E} (f(V_{L,\ell})) \right)$$

• According to Rüschendorf (1985), there exists a random variable $V_{L,\ell} = \left(V_{L,\ell}^{(j)}\right)_{j=1,\cdots,2^{r(L)}}$ with law $\mathcal{N}(0, 2^{m(L)}\Lambda_{Y,L})$ - that is measurable wrt $\sigma(\delta_{2^L+\ell 2^{m(L)}}) \vee \sigma(U_{L,\ell}) \vee \mathcal{F}_{2^L+(\ell-1)2^{m(L)}}$, independent of $\mathcal{F}_{2^L+(\ell-1)2^{m(L)}}$ and such that

 $\mathbb{E}\big(d_{r(L)}(U_{L,\ell},V_{L,\ell})\big)$

$$= \mathbb{E} \sup_{f \in \operatorname{Lip}(d_{r(L)})} \left(\mathbb{E} \left(f(U_{L,\ell}) | \mathcal{F}_{2^{L} + (\ell-1)2^{m(L)}} \right) - \mathbb{E} (f(V_{L,\ell})) \right)$$

• We have then constructed Gaussian random variables $(V_{L,\ell})_{L\in\mathbb{N},\ell=1,\cdots,2^{L-m(L)}}$ in $2^{r(L)}$ that are mutually independent

• According to Rüschendorf (1985), there exists a random variable $V_{L,\ell} = \left(V_{L,\ell}^{(j)}\right)_{j=1,\cdots,2^{r(L)}}$ with law $\mathcal{N}(0, 2^{m(L)}\Lambda_{Y,L})$ - that is measurable wrt $\sigma(\delta_{2^L+\ell 2^{m(L)}}) \vee \sigma(U_{L,\ell}) \vee \mathcal{F}_{2^L+(\ell-1)2^{m(L)}}$, independent of $\mathcal{F}_{2^L+(\ell-1)2^{m(L)}}$ and such that

 $\mathbb{E}\big(d_{r(L)}(U_{L,\ell},V_{L,\ell})\big)$

$$= \mathbb{E} \sup_{f \in \operatorname{Lip}(d_{r(L)})} \left(\mathbb{E} \left(f(U_{L,\ell}) | \mathcal{F}_{2^{L} + (\ell-1)2^{m(L)}} \right) - \mathbb{E} (f(V_{L,\ell})) \right)$$

- We have then constructed Gaussian random variables $(V_{L,\ell})_{L\in\mathbb{N},\ell=1,\cdots,2^{L-m(L)}}$ in $2^{r(L)}$ that are mutually independent
- According to Dudley and Philipp (1983), there exists a Kiefer process K_Y with covariance function Γ_Y such that

$$V_{L,\ell} = \left(K_Y(s_j, 2^L + \ell 2^{m(L)}) - K_Y(s_j, 2^L + (\ell - 1)2^{m(L)}) \right)_{j=1,\dots,2^{r(L)-1}}$$

• Recall that

$$D_{L,3} := \sup_{2^L < \ell \le 2^{L+1}} \sup_{s \in [0,1]} \left| \left(R(\Pi_{r(L)}(s), \ell) - R(\Pi_{r(L)}(s), 2^L) \right) - \left(K(\Pi_{r(L)}(s), \ell) - K(\Pi_{r(L)}(s), 2^L) \right) \right|$$

• Recall that

$$D_{L,3} := \sup_{2^L < \ell \le 2^{L+1}} \sup_{s \in [0,1]} \left| \left(R(\Pi_{r(L)}(s), \ell) - R(\Pi_{r(L)}(s), 2^L) \right) - \left(K(\Pi_{r(L)}(s), \ell) - K(\Pi_{r(L)}(s), 2^L) \right) \right|$$

• Write that

$$A_{L,3} = \sup_{j \in \{1, \cdots, 2^{r(L)}\}} \sup_{k \le 2^{L-m(L)}} \left| \sum_{\ell=1}^{k} (U_{L,\ell}^{(j)} - V_{L,\ell}^{(j)}) \right|,$$

$$B_{L,3} = \sup_{j \in \{1, \cdots, 2^{r(L)}\}} \sup_{k \le 2^{L-m(L)}} \sup_{\ell \in I_{L,k}} \left| R(s_j, \ell) - R(s_j, 2^L + (k-1)2^{m(L)}) \right|,$$

$$C_{L,3} = \sup_{j \in \{1, \cdots, 2^{r(L)}\}} \sup_{k \le 2^{L-m(L)}} \sup_{\ell \in I_{L,k}} \left| K(s_j, \ell) - K(s_j, 2^L + (k-1)2^{m(L)}) \right|,$$

• We have that

$$\mathbb{P}(A_{L,3} \ge 2^{L(\frac{1}{2}-\varepsilon)}) \le 2^{L-m(L)} 2^{L(\varepsilon-\frac{1}{2})} \mathbb{E}(d_{r(L)}(U_{L,1}, V_{L,1}))$$

• We have that

$$\mathbb{P}(A_{L,3} \ge 2^{L(\frac{1}{2}-\varepsilon)}) \le 2^{L-m(L)} 2^{L(\varepsilon-\frac{1}{2})} \mathbb{E}(d_{r(L)}(U_{L,1}, V_{L,1}))$$

• *Proposition:* If $\beta_{2,X}(n) = O(n^{-1-\delta})$ for some $\delta > 0$ and if $4r(L) \le m(L) \le L$, for any $\ell \in \{1 \dots, 2^{L-m(L)}\}$,

$$\mathbb{E}(d_{r(L)}(U_{L,\ell}, V_{L,\ell})) \ll 2^{\frac{m(L)+2r(L)}{(2+\delta)\wedge 3}}L^2.$$

• We have that

$$\mathbb{P}(A_{L,3} \ge 2^{L(\frac{1}{2}-\varepsilon)}) \le 2^{L-m(L)} 2^{L(\varepsilon-\frac{1}{2})} \mathbb{E}(d_{r(L)}(U_{L,1}, V_{L,1}))$$

• *Proposition:* If $\beta_{2,X}(n) = O(n^{-1-\delta})$ for some $\delta > 0$ and if $4r(L) \le m(L) \le L$, for any $\ell \in \{1 \dots, 2^{L-m(L)}\}$,

$$\mathbb{E}(d_{r(L)}(U_{L,\ell}, V_{L,\ell})) \ll 2^{\frac{m(L)+2r(L)}{(2+\delta)\wedge 3}}L^2.$$

• We will choose (for *L* large enough)

$$2^{2\varepsilon L-1}L^5 \le 2^{r(L)} \le 2^{2\varepsilon L}L^5$$

and

$$2^{L(1-2\varepsilon)}L^{-5} \le 2^{m(L)} \le 2^{1+L(1-2\varepsilon)}L^{-5}$$

• Let $(N_{i,L})_{i\in\mathbb{Z}}$ be a sequence of iid $\sim \mathcal{N}(0, \Lambda_L)$. Assume that $(N_{i,L})_{i\in\mathbb{Z}}$ is independent of $\mathcal{F}_{\infty} \vee \sigma(\eta_i, i\in\mathbb{Z})$.

• Let $(N_{i,L})_{i\in\mathbb{Z}}$ be a sequence of iid $\sim \mathcal{N}(0, \Lambda_L)$. Assume that $(N_{i,L})_{i\in\mathbb{Z}}$ is independent of $\mathcal{F}_{\infty} \vee \sigma(\eta_i, i\in\mathbb{Z})$.

• Set
$$\widetilde{N}_L = N_{1,L} + N_{2,L} + \ldots + N_{2^{m(L)},L}$$
.

- Let $(N_{i,L})_{i\in\mathbb{Z}}$ be a sequence of iid $\sim \mathcal{N}(0, \Lambda_L)$. Assume that $(N_{i,L})_{i\in\mathbb{Z}}$ is independent of $\mathcal{F}_{\infty} \vee \sigma(\eta_i, i\in\mathbb{Z})$.
- Set $\widetilde{N}_L = N_{1,L} + N_{2,L} + \ldots + N_{2^{m(L)},L}$.
- Let $\operatorname{Lip}(d_{r(L)}, \mathcal{F}_{2^L})$ be the set of measurable functions $g: \mathbb{R}^{2^{r(L)}} \times \Omega \to \mathbb{R}$ wrt the σ -fields $\mathcal{B}(\mathbb{R}^{2^{r(L)}}) \otimes \mathcal{F}_{2^L}$ and $\mathcal{B}(\mathbb{R})$, such that $g(\cdot, \omega) \in \operatorname{Lip}(d_{r(L)})$ and $g(0, \omega) = 0$ for any $\omega \in \Omega$.

- Let $(N_{i,L})_{i\in\mathbb{Z}}$ be a sequence of iid $\sim \mathcal{N}(0, \Lambda_L)$. Assume that $(N_{i,L})_{i\in\mathbb{Z}}$ is independent of $\mathcal{F}_{\infty} \vee \sigma(\eta_i, i\in\mathbb{Z})$.
- Set $\widetilde{N}_L = N_{1,L} + N_{2,L} + \ldots + N_{2^{m(L)},L}$.
- Let $\operatorname{Lip}(d_{r(L)}, \mathcal{F}_{2^L})$ be the set of measurable functions $g: \mathbb{R}^{2^{r(L)}} \times \Omega \to \mathbb{R}$ wrt the σ -fields $\mathcal{B}(\mathbb{R}^{2^{r(L)}}) \otimes \mathcal{F}_{2^L}$ and $\mathcal{B}(\mathbb{R})$, such that $g(\cdot, \omega) \in \operatorname{Lip}(d_{r(L)})$ and $g(0, \omega) = 0$ for any $\omega \in \Omega$.
- Then we have

 $\mathbb{E}(d_{r(L)}(U_{L,1}, V_{L,1}))$ = $\sup_{g \in \operatorname{Lip}(d_{r(L)}, \mathcal{F}_{2L})} \mathbb{E}(g(U_{L,1}, \omega)) - \mathbb{E}(g(\widetilde{N}_{L}, \omega)).$

On the optimality of the result

• There exists a Markov chain such that $\beta_{2,X}(k) > ck^{-1}$ for some positive constant c such that the finite dimensional marginals of the process $\{(n \ln n)^{-1/2} R_T(\cdot, n)\}$ converge in distribution to those of the degenerated Gaussian process G defined by

for any $t \in [0, 1]$, $G(t) = f(t) \mathbf{1}_{t \neq 0} Z$,

where Z is a standard normal.

On the optimality of the result

• There exists a Markov chain such that $\beta_{2,X}(k) > ck^{-1}$ for some positive constant c such that the finite dimensional marginals of the process $\{(n \ln n)^{-1/2} R_T(\cdot, n)\}$ converge in distribution to those of the degenerated Gaussian process G defined by

for any
$$t \in [0, 1]$$
, $G(t) = f(t) \mathbf{1}_{t \neq 0} Z$,

where Z is a standard normal.

 This shows that an approximation by a Kiefer process as in our main result cannot hold for this chain. With a stronger coefficient!

• Let
$$\mathbf{X}_k = (X_j, j \ge k)$$
 and

$$\beta(k) = \| \sup_{\|f\|_{\infty} \le 1} P_{\mathbf{X}_{k}|\mathcal{F}_{0}}(f) - P_{\mathbf{X}_{k}}(f) \|_{1}$$

With a stronger coefficient!

• Let $\mathbf{X}_k = (X_j, j \ge k)$ and

$$\beta(k) = \| \sup_{\|f\|_{\infty} \le 1} P_{\mathbf{X}_{k}|\mathcal{F}_{0}}(f) - P_{\mathbf{X}_{k}}(f) \|_{1}$$

• If $\beta(n) = O(n^{-1-\delta})$ for some $\delta > 0$, the rate in the strong approximation result should be

$$n^{\frac{1}{(2+\delta)\wedge 3}} (\log n)^{7(d+1)/3}$$

if the variables are in \mathbb{R}^d .

Thank you for your attention!

Thank you for your attention!