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Introduction

Let T be an index set and {G(x), x ∈ T} be a mean zero
Gaussian process with covariance u(x , y), x , y ∈ T . The
process G2 can be defined by the Laplace transform of its finite
joint distributions

E

(
exp

(
−1

2

n∑
i=1

αiG2(xi)

))
=

1
|I + αU|1/2 (1)

for all x1, . . . , xn in T , where I is the n × n identity matrix, α is the
diagonal matrix with (αi,i = αi), αi ∈ R+ and U = {u(xi , xj)} is an
n × n matrix, that is symmetric and positive definite. (It is the
covariance of (G(x1), . . . ,G(xn)).)
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In 1997, D. Vere-Jones introduced the permanental
process θ := {θx , x ∈ T}, which is a real valued positive
stochastic process with finite joint distributions that satisfy

E

(
exp

(
−1

2

n∑
i=1

αiθxi

))
=

1
|I + αΓ|β

, (2)

where Γ = {Γ(xi , xj)}n
i,j=1 is an n × n matrix and β > 0. (We refer

to this as a β–permanental process.)
The generalization here is that Γ need not be symmetric.
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For n = 2, and β = 1/2, (2) takes the form

E
(

exp
(
−1

2
(α1θx + α2θy )

))
=

1
|I + αΓ|1/2 = (1 + α1Γ(x , x) + α2Γ(y , y)

+α1α2 (Γ(x , x)Γ(y , y)− Γ(x , y)Γ(y , x)))−1/2 .

For permanental processes

Γ(x , x) ≥ 0, Γ(x , y)Γ(y , x) ≥ 0.

and
Γ(x , x)Γ(y , y)− Γ(x , y)Γ(y , x) ≥ 0.
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Therefore, the matrix[
Γ(x , x) (Γ(x , y)Γ(y , x))1/2

(Γ(x , y)Γ(y , x))1/2 Γ(y , y)

]

is positive definite, so that we can construct a mean zero
Gaussian vector {G(x),G(y)} with covariance matrix

E (G(x)G(y)) = (Γ(x , y)Γ(y , x))1/2 . (3)

WE MAY HAVE Γ(x , y) 6= Γ(y , x)
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Set

d(x , y) =
(
E(G(x)−G(y))2)1/2

=
(

Γ(x , x) + Γ(y , y)− 2 (Γ(x , y)Γ(y , x))1/2
)1/2

.

Lemma

Suppose that θ := {θx , x ∈ T} is a 1/2-permanental process with
kernel Γ. Then for any pair x , y,

{θx , θy}
law
= {G2(x),G2(y)} (4)

where {G(x),G(y)} is a mean zero Gaussian random variable
with covariance matrix given by (3).
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The function d(x , y) is a metric, or pseudo-metric, on T ,
(although (Γ(x , y)Γ(y , x))1/2 may not be positive definite.)

Let (T ,d) be a separable metric or pseudometric space.
Let Bd (t ,u) denote the closed ball in (T ,d) with radius u and
center t . For any probability measure µ on (T ,d) we define

JT ,d ,µ(a) = sup
t∈T

∫ a

0

(
log

1
µ(Bd (t ,u))

)1/2

du.
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A sufficient condition for continuity

Theorem
Let θ = {θx : x ∈ T} be a 1/2-permanental process, with kernel Γ
satisfying supx∈T Γ(x , x) <∞. Let D denote the d diameter of T
and assume that T is separable for d, and that there exists a
probability measure µ on B(T ,d) such that

Jd (D) <∞.

Then there exists a version θ′ = {θ′x , x ∈ T} of θ which is
bounded almost surely.
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Theorem (continued)
If

lim
δ→0

Jd (δ) = 0,

there exists a version θ′ = {θ′x , x ∈ T} of θ such that

lim
δ→0

sup
s,t∈T

d(s,t)≤δ

|θ′s(ω)− θ′t(ω)| = 0, a.s.

If (3) holds and

lim
δ→0

Jd (δ)

δ
=∞,

then
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Theorem (continued)

lim
δ→0

sup
s,t∈T

d(s,t)≤δ

|θ′s − θ′t |
Jd (d(s, t)/2)

≤ 30
(

sup
x∈T

θ′x

)1/2

a.s.

The proof is immediate. It follows from Lemma 1 that

d̂(x , y) := ‖θ1/2
x − θ1/2

y ‖ψ2 = ‖ |Gx | − |Gy | ‖ψ2 (5)
≤ ‖ Gx −Gy ‖ψ2 = d(x , y).

Also |θs − θt | ≤ |θ1/2
s − θ1/2

t | (supx∈T θ
′
x )1/2
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Verre-Jones shows that a sufficient condition for (2) to hold
is that all the real non-zero eigenvalues of Γ are positive and that
rΓ(I + rΓ)−1 has only non-negative entries for all r > 0.
Eisenbaum and Kaspi note that this is the case when Γ(x , y),
x , y ∈ T , is the potential density of a transient Markov process
on T . This enables them to find a Dynkin type isomorphism for
the local times of Markov processes that are not necessarily
symmetric, in which the role of G2 is taken by the permanental
process θ.
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Permanental processes associated with
Lévy processes

Certain kernels of permanental processes are associated
with Lévy processes. Let X = {Xt , t ∈ R+} be a Lévy process
with characteristic function

EeiλXt = e−ψ(λ)t . (6)

Assume that X has local times {Lx
t , (x , t) ∈ R × R+}. Set

uT0(x , y) = Ex
(

Ly
T0

)
, (7)

where T0 is the first hitting time of X at zero.
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The function uT0(x , y) is the zero potential of the transient
Markov process X̃ = {X̃t}, which is X killed at the first time it
hits zero, and thus is also the kernel of a permanental process.

Lemma

uT0(x , y) = R(x , y) + H(x , y)

and
uT0(y , x) = R(x , y)− H(x , y)

where
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Lemma (continued)

R(x , y) = R(y , x) =
1
π

∫ ∞
0

(1− cosλx − cosλy + cosλ(x − y))Reψ(λ)

|ψ(λ)|2
dλ

and

H(x , y) = −H(y , x) =
1
π

∫ ∞
0

(sinλx − sinλy − sinλ(x − y)) Imψ(λ)

|ψ(λ)|2
dλ.
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Perm. Proc. are Loop Soups

Following Le Jan, (for symmetric Markov processes), we
can identify the peramnental process as an explicit process
called a loop soup local time.

Let S a be locally compact set with a countable base. Let
Y =(Ω,Yt ,Px ,Ft) be a recurrent Markov process with state
space S, and jointly measurable transition densities pt(x , y) with
respect to some σ-finite measure m on S. We assume that the
1-potential densities

u1(x , y) =

∫ ∞
0

e−tpt(x , y) dt (8)

are continuous. We do not require that u1(x , y) is symmetric.
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For all 0 < t <∞, and x ∈ S, there exists a finite measure
Px ,x

t on Ft−, of total mass pt(x , x), such that

Px ,x
t (F ) = Px (F pt−s(Ys, x)) , (9)

for all F ∈ Fs with s < t .
For ∆ /∈ S, let Ω∆ denote the set of right continuous paths

ω in S ∪∆ with ωt = ∆ for all t ≥ ζ. We set Yt(ω) = ωt and

ζ = inf{t > 0 |,Yt = ∆}. (10)

The killing time ζ is determined by an operator
ktω(s) = ω(s) if s < t and ktω(s) = ∆ if s ≥ t .
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We define a σ-finite measure µ on (Ω∆,F) by

µ(A) =

∫ ∞
0

e−t

t

∫
Px ,x

t

(
k−1

t (A)
)

dm(x) dt , A ∈ F . (11)

We refer to µ as the loop measure associated with the Markov
process Y . Under certain regularity assumptions on Y , µ is
supported on

L = {Y : Yζ− = Y0}. (12)

We call µ the loop measure for the Markov process Y .
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Let Lα be a Poisson point process on Ω∆ with intensity
measure αµ. Each realization of the random variable Lα is
countable subset of Ω∆. I.e. let

N(A) := #{Lα ∩ A}, A ⊆ Ω∆. (13)

Then for any disjoint measurable subsets A1, . . . ,An of Ω∆, the
random variables N(A1), . . . ,N(An), are independent, and N(A)
is a Poisson random variable with parameter αµ(A), i.e.

P (N(A) = k) =
(αµ(A))k

k !
e−αµ(A). (14)

The Poisson point process Lα is called the ‘loop soup’ of
the Markov process Y .
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We define the ‘loop soup local time’, L̂x , of Y , by

L̂x
α =

∑
ω∈Lα

`x (ω), (15)

where `x (ω) is the local time of the path ω ∈ Ω∆.

Theorem

Let {L̂x
α, x ∈ S} be the loop soup local time of Y . Then

{2 L̂x
α, x ∈ S}, is an α-permanental process with kernel u1(x , y).
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