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Part I: Empirical Process CLTs, KKZ

ABSTRACT. For stochastic processes {Xt : t ∈ E}, we establish
sufficient conditions for the empirical process based on
{IXt≤y − P(Xt ≤ y): t ∈ E , y ∈ R} to satisfy the CLT uniformly in
t ∈ E , y ∈ R. Typically E = [0,T ], or a finite product of such intervals.
Corollaries of our main result include examples of classical processes
where the CLT holds, and we also show that it fails for Brownian
motion tied down at zero and E = [0,1].
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Part II: Empirical QuantileProcess CLTs, KZ

ABSTRACT. We establish empirical quantile process CLTs based on n
independent copies of a stochastic process {Xt : t ∈ E} that are
uniform in t ∈ E and quantile levels α ∈ I, where I is a closed
sub-interval of (0,1). Also included are additional empirical process
CLTs. The process {Xt : t ∈ E} may be chosen from a broad
collection of Gaussian processes, compound Poisson processes,
stationary independent increment stable processes, and martingales.

Motivation: Weak convergence of the scaled median of independent
Brownian motions, Probab. Theory Relat. Fields (2007) by Jason
Swanson.
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Notation

E is a set, D(E) is a collection of real valued functions on E .

X = {Xt : t ∈ E} is a stochastic process with P(X (·) ∈ D(E)) = 1.

P is the law of X on a sigma algebra of D(E) containing C.

C = {Cs,x : s ∈ E , x ∈ R}, where Cs,x = {z ∈ D(E) : z(s) ≤ x}.

{Xj}∞j=1 are i.i.d. copies of {X (t) : t ∈ E} on a suitable probability
space (Ω,Σ,P).

F (t , y) = P(Xt ≤ y) = P(X ∈ Ct,y ), t ∈ E , y ∈ R.
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The empirical distribution functions built on C ( or built on the process
X ) are

Fn(t , y) =
1
n

n∑
j=1

IXj (t)≤y =
1
n

n∑
j=1

IXj∈Ct,y , (t , y) ∈ E × R.

The empirical processes indexed by C (or just E × R) and built on X
are

{νn(t , y) =
√

n(Fn(t , y)− F (t , y)) : (t , y) ∈ E × R},n ≥ 1,

and X is the input process.
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Part I: The Empirical Process CLT

In the language of empirical process theory, we are asking that the
central limit theorem holds in `∞(C) for the processes

(1)

 1√
n

n∑
j=1

[
IXj∈C − P(X ∈ C)

]
: C ∈ C

 ,

or, equivalently, identifying Ct,y ∈ C with the point (t , y) ∈ E × R, that
the CLT holds in `∞(E × R) for the empirical processes

(2) {
√

n(Fn(t , y)− F (t , y)) : (t , y) ∈ E × R}.
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Remark 1.

(i) To minimize notation we simply write or say that C ∈ CLT (P), or
the CLT holds over C with respect to P. We also emphasize that we
are looking at an empirical CLT for a class of sets, which has
additional structure due to the "time" parameter of X .

(ii) Recall that the limiting Gaussian measure γP in the CLT of (1), or
(2), is required to be Radon on `∞(C), or `∞(E × R). In addition, the
centered Gaussian process {G(t , y) : (t , y) ∈ E × R} having
covariance function
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(3) E(G(s, x)G(t , y)) = P(Xs ≤ x ,Xt ≤ y)− P(Xs ≤ x)P(Xt ≤ y),

and L2-distance

(4) dG((s, x), (t , y)) = E((G(s, x)−G(t , y)))2)
1
2 ,

admits a version all of whose trajectories are uniformly bounded and
uniformly dG continuous on E × R, and induces law γP on `∞(E × R).
Of course, it also is required that for every bounded, continuous
F : `∞(E × R)→ R,

lim
n→∞

E∗F (νn) = EF (G).
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First Guesses on the Influence of the Time Parameter

(i) Since the class of half spaces {(−∞, x ] : x ∈ R} is universal for the
classical empirical CLT, a first guess was that perhaps {X (t) : t ∈ E}
satisfying the CLT would suffice for our empirical CLT.

(ii) Maybe a Lipshitz condition on {X (t) : t ∈ E} would imply
C ∈ CLT (P).
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A distributional transform:

Given the distribution function F of any real valued random variable,
Y , and V a uniform random variable independent of Y , we define the
distributional transform of F to be

F̃ (x ,V ) = F (x−) + V (F (x)− F (x−)).

Then,
F̃ (Y ,V ) is uniform on [0,1] ,

F̃ (x ,V ) is non-decreasing in x , and F̃ = F if F is continuous.
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Theorem 1.

Let ρ be given by ρ2(s, t) = E(H(s)− H(t))2, for some centered
Gaussian process H that is sample bounded and uniformly
continuous on (E , ρ) with probability one. Let {X (t) : t ∈ E} be such
that for some L <∞, and all ε > 0,

(5) sup
t∈E

P∗( sup
{s:ρ(s,t)≤ε}

|F̃t (Xs)− F̃t (Xt )| > ε2) ≤ Lε2,

where, to simplify notation, we let

F̃t (x) ≡ ˜(Ft )(x ,V ), x ∈ R

be the distributional transform of Ft , the distribution function of Xt .
Then, C ∈ CLT (P), i.e. the empirical CLT holds in `∞(C).



Empirical and Quantile Process CLTs For Time Dependent Data

Remark 2.

(i) A single uniform V , independent of the process {X (t) : t ∈ E}, is
used for all the distributional transforms in (5).

(ii) A situation where the distributional transforms are useful occurs
when one has a point t0 ∈ E such that
P(X (t) = X (t0) for all t in E) = 1, and Ft0 is possibly discontinuous. In
this situation, (5) holds for the Gaussian process H(t) = g for all
t ∈ E , g a standard Gaussian random variable, and X (t0) having any
distribution function Ft0 . Thus Theorem 1 implies the classical
empirical CLT when the class of sets consists of half-lines for all laws
Ft0 on R.
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(iii) The L-condition of (5) may fail when there is only one t ∈ E with
discontinuous distribution function Ft , and also even when C is
P-pregaussian. Furthermore, there are examples where C is
P-pregaussian and X satisfies a modified L-condition, but the CLT of
Theorem 1 over C fails. The modified L-condition used is given as in
(5) with the distributions F̃t replaced by the Ft . Hence, one needs to
assume something more, and our results show the L-condition for the
process {F̃s(Xs) : s ∈ E} is sufficient.

(iv) Our proof depends on Talagrand’s generic chaining version of
necessary and sufficient conditions for the Gaussian process
{H(t) : t ∈ E} to be uniformly continuous and sample bounded on
(E , ρ). Combined with the L-condition, we can then show our process
is P-pregaussian and also verify the conditions to apply the local
conditions sufficient for C ∈ CLT (P) given in Theorem 4.4 of AGOZ.
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The Brownian Motion Example

Let X1, · · · ,Xn be i.i.d. copies of sample continuous Brownian motion
on E = [0,T ], and assume they start at zero when t = 0 with
probability one. In this case we take D(E) = C([0,T ]), P is Wiener
measure on the Borel subsets of D(E), and we show

P(∆CQ ({X1, · · · ,Xn})(6)
≡ card{C ∩ {X1, · · · ,Xn} : C ∈ CQ} = 2n) = 1, n ≥ 1,

where Q is the rational numbers and
CQ = {Ct,y : t ∈ [0,T ] ∩Q, y ∈ R}. Thus CQ /∈ CLT (P), as a
necessary condition for that requires

ln ∆CQ ({X1, . . . ,Xn})√
n

→ 0 in (outer) probability.
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Hence the CLT fails when the input process is standard Brownian
motion tied down at zero. Nevertheless, if Y = {Yt : t ∈ [0,T ]} is
standard tied down Brownian motion on [0,T ], and for t ∈ [0,T ]

Xt = Yt + Z ,

where Z is independent of the process Y and has bounded density
function, then the CLT holds.
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The proof of (6) depends on the LIL for Brownian motion at t = 0, and
a similar result also holds for fractional Brownian motions and
the Brownian sheet, i.e the CLT fails for tied down inputs, but it
holds when we add a Z as above. For Brownian motion, as well as
other processes with stationary independent increments, one can use
the Hewitt-Savage zero-one law instead of the LIL to verify (6).
However, for fractional Brownian motions that approach is not
applicable. The proof that the empirical CLT holds when we add Z in
these situations, as well as for some other examples, was done in
KKZ, and depends on verifying the L-condition of Theorem 1.
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Part II: The Empirical Quantile Process CLT

The quantiles and empirical quantiles are defined as the
left-continuous inverses of F (t , x) and Fn(t , x) in the variable x ,
respectively:

τα(t) = inf{x : F (t , x) ≥ α}

and
τn
α(t) = inf{x : Fn(t , x) ≥ α}.

The empirical quantile processes are defined as
√

n
(
τn
α(t)− τα(t)

)
,

for these processes.
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Remark 4.

Since we are seeking limit theorems with non-degenerate Gaussian
limits, it is appropriate to mention that for α ∈ (0,1) and t fixed, that
is, for a one-dimensional situation, a necessary condition for the weak
convergence of

(7)
√

n
(
τn
α(t)− τα(t)

)
=⇒ ξ,

where ξ has a strictly increasing, continuous distribution, is that the
distribution function F (t , ·) be differentiable at τα(t) and
F ′(t , τα(t)) ∈ (0,∞). Hence F (t , ·) is strictly increasing near τα(t) as
a function of x , and if we keep t fixed, but ask that (7) holds for all
α ∈ (0,1), then F (t , x) will be differentiable, with strictly positive
derivative F ′(t , x) on the the set Jt = {x : 0 < F (t , x) < 1}.
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Moreover, if F ′(t , x) is locally in L1 with respect to Lebesgue measure
on Jt , then a standard real analysis fact implies F ′(t , x) is the density
of F (t , ·) and it is strictly positive on Jt . For many of the base
processes we study, Jt = R for all t ∈ E , but should that not be the
case, it can always be arranged by adding an independent random
variable Z with strictly positive density to our base process in order to
have a suitable input process.
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Theorem 2.
Assume for all t ∈ E that the distribution functions F (t , x) are strictly
increasing, their densities f (t , ·) satisfy

(8) lim
δ→0

sup
t∈E

sup
|u−v |≤δ

|f (t ,u)− f (t , v)| = 0,

and for every closed interval I in (0,1) there is an θ(I) > 0 such that

(9) inf
t∈E,α∈I,|x−τα(t)|≤θ(I)

f (t , x) ≡ cI,θ(I) > 0.

In addition, assume the CLT holds on C with respect to P and has
centered Gaussian limit process {G(t , x) : (t , x) ∈ E ×R}. Then, for I
a closed subinterval of (0,1), the quantile processes
{
√

n(τn
α(t)− τα(t)) : n ≥ 1} satisfy the CLT in `∞(E × I) with respect

to P and have Gaussian limit process

(10) {G(t , τα(t))

f (t , τα(t))
: (t , α) ∈ E × I}.
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Remark 5.

(i) The proof of Theorem 2 involves the almost sure version of the
CLT for empirical processes as presented, for example, in D. This is
applicable since we are assuming C ∈ CLT (P), and the perfect
mappings obtained are important for our proof. Then, using an idea of
Vervaat, we are able pass from the CLT for empirical processes, to a
CLT for their "inverses"(actually difference of inverses), the empirical
quantile processes.

(ii) Since the empirical CLT appears as an assumption for the
empirical quantile CLT, we were motivated to broaden the class of
processes where the empirical CLT holds. This has been done, and it
now includes a more general collection of Gaussian processes than
we have already mentioned, compound Poisson processes,
stationary independent increment stable processes(and others), and
a broad collection of martingales.
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(iii) The results in the paper by Jason Swanson mentioned earlier
deal only with the case α = 1/2(medians), and allow the Brownian
motion to start at zero at time zero, whereas the assumptions in (8)
and (9) do not allow us to apply Theorem 2 in that situation. However,
the CLT results obtained here are uniform for (t , α) ∈ E × I for a
whole range of processes. Of course, for stationary independent
increment stable processes on [0,T ], to apply Theorem 2 we must
also add an independent Z if the process started at zero at time zero,
i.e. the Hewitt Savage zero-one law shows the empirical CLT over C
will fail as for Brownian motion. Another difference is that since
Swanson deals only with sample continuous Brownian motions, the
median process is continuous, and his weak convergence is proven in
C([0,T ]), whereas our results are in an `∞-type space.
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Can one prove an empirical quantile CLT that includes stationary
independent increment stable processes on [0,T ] which start at
zero at time zero? Can we obtain Swanson’s result in C([0,T ])
for Brownian motion and in a cadlag space of functions for the
other stable processes?

The answer to both questions is yes, and the scaling property of the
input process emerges in an important way. Hence we only show
these results for the stable processes mentioned, fractional Brownian
motions, and the Brownian sheet. The result for stable processes is
as follows.
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Theorem 3.
Let {X (t) : t ≥ 0} be a symmetric r -stable process with stationary,
independent increments, cadlag sample paths, and such that
P(X (0) = 0) = 1. Also, assume the empirical quantile processes
τn
α(t) are built from i.i.d. copies of {X (t) : t ≥ 0} with cadlag paths,

and I is a closed subinterval of (0,1). Then, the quantile processes

{
√

n(τn
α(t)− τα(t)) : n ≥ 1}

satisfy the CLT in `∞([0,T ]× I) with centered Gaussian limit process

{W (t , α) : (t , α) ∈ [0,T ]× I} ,

where W (0, α) = 0, α ∈ I,

W (t , α) =
G(t , τα(t))

f (t , τα(t))
, (t , α) ∈ (0,T ]× I,

and for (s, β), (t , α) ∈ (0,T ]× I the covariance function is given by

E(W (s, β)W (t , α)) =
P(X (s) ≤ τβ(s),X (t) ≤ τα(t))− αβ

f (s, τβ(s))f (t , τα(t))
.
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Remarks – (The CLT and sample path properties of
the input process X)

(1) If α ∈ (0,1) is fixed in Theorem 3, then the empirical quantile CLT
holds in the Banach subspace Dα([0,T ]) of `∞([0,T ]× {α}), where

Dα([0,T ]) = {f (·, α) : f (·, α) is cadlag on [0,T]}.

Moreover, if r = 2 and the empirical quantile processes τn
α(t) are built

from i.i.d. copies of {X (t) : t ≥ 0} with sample continuous paths, then
for α ∈ (0,1) fixed the empirical quantile CLT holds in the Banach
subspace Cα([0,T ]) of `∞([0,T ]× {α}), where

Cα([0,T ]) = {f (·, α) : f (·, α) is continuous on [0,T]}.

Furthermore, if r = 2, α = 1
2 , the covariance of the limiting Gaussian

process is

E(W (s,
1
2

)W (t ,
1
2

)) =
P(X (s) ≤ 0),X (t) ≤ 0)− 1

4
f (s,0)f (t ,0)

=
√

stsin−1(
s ∧ t√

st
).
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(2) The fact that the empirical quantile CLT holds in these smaller
Banach subspaces for α ∈ (0,1) fixed, can be extended to hold in
[0,T ]× I. For example, if I = [a,b] ⊂ (0,1), in the Brownian motion
situation the subspace can taken to be all the functions f (t , α) that
are continuous in t ∈ [0,T ] for each α ∈ I, and, for each t ∈ [0,T ], left
continuous in α ∈ (a,b], with right limits on [a,b). For stable
processes with 0 < r < 2 and cadlag input processes, the Banach
subspace consists of functions f (t , α) which are in cadlag in t ∈ [0,T ]
for each α ∈ I, and for each t ∈ [0,T ], left continuous in α ∈ (a,b],
with right limits on [a,b).


