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Marginals are normally Gaussian

General phenomenon: if X € RY is a random vector and d is
large, then (under some conditions on £( X)), for a large
measure of § € S~ (X, 6) is approximately Gaussian.

Many authors have observed and contributed to the
understanding of this phenomenon. In particular:

Theorem (Bobkov)
Suppose that X satisfies EX;X; = §; and

A

P \/a— ‘>ed}<ed.

Then

041 {0]05 (0. X).2) > 4eq + 6} < 40¥2e".
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A natural question: if X € RY is a random vector as before, are
k-dimensional marginals close to Gaussian for fixed k?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?
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Main result

Theorem (E.M.)
Let X be a random vector in RY satisfying
> EX =0, E|X|? = 02d, and sup;cgs1 E (£, X)* < L
» E||X|?c2—d| < LVd.
For 6 in the Stiefel manifold 204 «, let Xy denote the projection
of X onto the span of 6. Fix ¢ € (0,2), and let k = 5%.

Then there is a ¢ > 0 depending only on ¢, L and L' such that

o 2 g a
fore = CRICHEL there is a subset ¥ C 2y with

Py k[T¢] < Ce~¢9<, such that for all 6 € %,

dpL(Xg,0Z) < Ce.
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Sharpness

Let X be uniform among S := {+/dey, ..., +Vdey} C RY.
Let ¢ > 2 and let E be a subspace of RY with

: log(d
Define f: E — R by f(x) := (1 — d(x,7(S)))+. Then
Il < 1 and

/ fpirg(s) =1

but
/ foye 9=, 0.

That is, for this choice of k, dg; (Xy,0Z) ~ 1 for all choices of
AS QUd,k.



The example shows that k. = % is a sharp cut-off such

that if X is a random vector in R satisfying some natural
conditions on £(X), then most k-dimensional margins of X are
approximately Gaussian for k < k. and this need not be true for
k > k.
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The Dvoretzky connection

Dvoretzky’s theorem: Let || - || be any norm on R such that the
maximum volume ellipsoid in its unit ball is a dilate of the
sphere. Let ¢ > 0 be fixed. Then there is some rescaling of || - ||
and a constant C(e) such that if kK < C(¢)log(d) and if E is a
random subspace of R? of dimension k, then with probability
tending to 1,

Vi< |ivil < (1 +€)lv]

forallv e E.
That is, if kK < C(e)log(d), then most k-dimensional subspaces

of the normed space (RY, || - ||) look very similar to
k-dimensional Euclidean space (R, | - |).
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Dvoretzky dimension

Under extra assumptions on the norm || - ||, it may be that k can
be larger as a function of d. In particular:

» Figiel, Lindenstrauss and V. Milman showed that if a
d-dimensional Banach space X has cotype g € [2, o),

then X has subspaces of dimension of the order dc% which
are approximately Euclidean.

» Szarek showed that if X has bounded volume ratio, then X
has nearly Euclidean subspaces of dimension g.

This is analogous to the difference between the main theorem
and a result of Klartag, showing that if the random vector X has
a log-concave distribution, then most projections are close to
Gaussian for k = d° for a specific value of e.
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Outline of the proof of the main theorem

» The mean projection Xg = (X, ©), when both X and © are
random and independent, is approximately Gaussian.
This is shown using Stein’s method.

» The mean bounded-Lipschitz distance Eydg,(Xy, Xo) is
small.
The bounded-Lipschitz distance is interpreted as the
supremum of a stochastic process indexed by test
functions. Concentration of measure on the Stiefel
manifold implies that this process has subgaussian
increments, allowing the expected supremum to be
estimated via entropy methods.

» The bounded-Lipschitz distance dg,(Xy, Xo) is tightly
concentrated near its mean.
This also follows from concentration of measure on the
Stiefel manifold.
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More about step 1

Exchangeable pairs with infinitesimal symmetries: If W € R¥ is
a random vector, and a family (W, W,).~o of exchangeable
pairs can be constructed so that, for some deterministic A(e),

» E[W, — W|W]~ -\(e)W
> E[(W, — W)(W. — W)T|W] = 2X(€)o?Ixk
> E|W. — W2 < \e)
Then W ~ oZ, where Z is a standard Gaussian random vector.

Here, we take W = (X, ©), where © € 20, x is uniform and
independent of X.
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W = (X, ©) is approximately Gaussian:

To construct W,, rotate © by ¢ in a random direction: if
© =(01,...,6%),
then
Oc = ([UR1 2(e)UT101, ..., [UR; 2(e)UT]Ok),

where U is an independently chosen random orthogonal matrix
and Ry »(e) rotates by e in the span of the first two basis
elements.

The theorem on the last slide can be applied, and the result is

that
Covk
vd

dpL(Xe,0Z) <
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Concentration of measure

Define the metric p on W, « by

k
p(6,0)) = \| Y _ 16— 62
i=1

There are constants C, ¢ (independent of d, k) such that if
F : 204k — Ris Lipschitz with Lipschitz constant L,

IP’UF(@) ~EF(9)| > Lg} < Ce=o9<,

It's straightforward to show that F(0) := dg,(Xy,0Z) is Lipschitz
with constant v/L’; this is the whole content of step 3.
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Step 2 — Average distance to average

We need to estimate

EedBL(Xe,Xe):E< sup |[E [f(Xp)|6] — Ef X@)D

[l <1

If the stochastic process { X}, <1 is defined by
Xr = E [f(Xy)|0] — Ef(Xo),
then what we want is E supy ¢ ,, <1 Xt-

Applying measure concentration to F(¢) := E [(f — g)(Xy)|0]
shows that the process has the property:

cde?

IP’UX,« — Xg| > e} < Ce 9l&,
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Theorem (Dudley)

If a stochastic process { X:}ic1 satisfies the a sub-Gaussian
increment condition

2

P[|X;— Xs| > ¢] < Ce &0 Ve >0,

then

Esup X; < C/ V910g N(T, 6, ¢€)de,
0

teT

where N(T, ¢, €) is the e-covering number of T with respect to
the distance §.

Recall that our process satisfies

Cdez

IP’UXf —Xg\ > e} < Ce 9lf. |
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The question, then, is: if BLK := {f {RK R‘ IfllsL < 1} , what
is N (BLY, et )2

Bad news: N (BLQ‘, %e) — 0.

But not to worry: approximating Lipschitz functions by
piecewise affine functions and using volumetric estimates in the
resulting finite-dimensional normed space of approximating
functions does the job, and ultimately we get (with the
simplification B = 1)

k + log(d)

EgdpL(Xp, Xo) < C—5——-
k3 d3k+4
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So:

> dBL(X@,UZ) < Covk
= Vd

» P 6
{ ‘dBL(Xe,Xe) —EdBL(Xe,Xe)‘ > 6} <C
< efcdez_




So:

> dg (Xo.0Z) < Covk
bL(Xe,0Z) < =75

> P [9: ‘dBL Xy, Xo) — EdBL(Xg,X@)‘ > e} < Ce—cd¢,

> EodpL(Xp, Xo) < CXH09)
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So:

> dp (Xe,0Z) < Cf/‘a/R

> P [9: ‘dBL Xy, Xo) — EdBL(Xg,X@)‘ > e} < Ce—cd¢,

> EodpL(Xp, Xo) < CXH09)

K5 d3k+4

Choosing k = % and e =

depends on §) finishes the proof.

|og( e (for a particular ¢ which



Thank you.



