# Projections of Probability Distributions: <br> A Measure-theoretic Dvoretzky Theorem 

Elizabeth Meckes

Case Western Reserve University

October 10, 2011

Marginals are normally Gaussian

## Marginals are normally Gaussian

General phenomenon: if $X \in \mathbb{R}^{d}$ is a random vector and $d$ is large, then (under some conditions on $\mathcal{L}(X)$ ), for a large measure of $\theta \in \mathbb{S}^{d-1},\langle X, \theta\rangle$ is approximately Gaussian.

## Marginals are normally Gaussian

General phenomenon: if $X \in \mathbb{R}^{d}$ is a random vector and $d$ is large, then (under some conditions on $\mathcal{L}(X)$ ), for a large measure of $\theta \in \mathbb{S}^{d-1},\langle X, \theta\rangle$ is approximately Gaussian.

Many authors have observed and contributed to the understanding of this phenomenon.

## Marginals are normally Gaussian

General phenomenon: if $X \in \mathbb{R}^{d}$ is a random vector and $d$ is large, then (under some conditions on $\mathcal{L}(X)$ ), for a large measure of $\theta \in \mathbb{S}^{d-1},\langle X, \theta\rangle$ is approximately Gaussian.

Many authors have observed and contributed to the understanding of this phenomenon. In particular:
Theorem (Bobkov)
Suppose that $X$ satisfies $\mathbb{E} X_{i} X_{j}=\delta_{i j}$ and

$$
\mathbb{P}\left[\left|\frac{|X|}{\sqrt{d}}-1\right|>\epsilon_{d}\right] \leq \epsilon_{d}
$$

Then

$$
\sigma_{d-1}\left\{\theta \mid d_{\infty}(\langle\theta, X\rangle, Z) \geq 4 \epsilon_{d}+\delta\right\} \leq 4 d^{3 / 8} e^{-c d \delta^{4}}
$$

## Higher-dimensional marginals

## Higher-dimensional marginals

A natural question: if $X \in \mathbb{R}^{d}$ is a random vector as before, are $k$-dimensional marginals close to Gaussian for fixed $k$ ?

## Higher-dimensional marginals

A natural question: if $X \in \mathbb{R}^{d}$ is a random vector as before, are $k$-dimensional marginals close to Gaussian for fixed $k$ ?

Presumably.

## Higher-dimensional marginals

A natural question: if $X \in \mathbb{R}^{d}$ is a random vector as before, are $k$-dimensional marginals close to Gaussian for fixed $k$ ?

Presumably.
If so, how can $k$ grow with $d$ ? Logarithmically? Polynomially?

Main result

## Main result

Theorem (E.M.)
Let $X$ be a random vector in $\mathbb{R}^{d}$ satisfying

## Main result

Theorem (E.M.)
Let $X$ be a random vector in $\mathbb{R}^{d}$ satisfying

- $\mathbb{E} X=0, \mathbb{E}|X|^{2}=\sigma^{2} d$, and $\sup _{\xi \in \mathbb{S}^{d-1}} \mathbb{E}\langle\xi, X\rangle^{2} \leq L^{\prime}$


## Main result

Theorem (E.M.)
Let $X$ be a random vector in $\mathbb{R}^{d}$ satisfying

- $\mathbb{E} X=0, \mathbb{E}|X|^{2}=\sigma^{2} d$, and $\sup _{\xi \in \mathbb{S}^{d-1}} \mathbb{E}\langle\xi, X\rangle^{2} \leq L^{\prime}$
- $\mathbb{E}\left||X|^{2} \sigma^{-2}-d\right| \leq L \sqrt{d}$.


## Main result

Theorem (E.M.)
Let $X$ be a random vector in $\mathbb{R}^{d}$ satisfying

- $\mathbb{E} X=0, \mathbb{E}|X|^{2}=\sigma^{2} d$, and $\sup _{\xi \in \mathbb{S}^{d-1}} \mathbb{E}\langle\xi, X\rangle^{2} \leq L^{\prime}$
- $\mathbb{E}\left||X|^{2} \sigma^{-2}-d\right| \leq L \sqrt{d}$.

For $\theta$ in the Stiefel manifold $\mathfrak{W}_{d, k}$, let $X_{\theta}$ denote the projection of $X$ onto the span of $\theta$.

## Main result

Theorem (E.M.)
Let $X$ be a random vector in $\mathbb{R}^{d}$ satisfying

- $\mathbb{E} X=0, \mathbb{E}|X|^{2}=\sigma^{2} d$, and $\sup _{\xi \in \mathbb{S}^{d-1}} \mathbb{E}\langle\xi, X\rangle^{2} \leq L^{\prime}$
- $\mathbb{E}\left||X|^{2} \sigma^{-2}-d\right| \leq L \sqrt{d}$.

For $\theta$ in the Stiefel manifold $\mathfrak{W}_{d, k}$, let $X_{\theta}$ denote the projection of $X$ onto the span of $\theta$. Fix $\delta \in(0,2)$, and let $k=\delta \frac{\log (d)}{\log (\log (d))}$.

## Main result

Theorem (E.M.)
Let $X$ be a random vector in $\mathbb{R}^{d}$ satisfying

- $\mathbb{E} X=0, \mathbb{E}|X|^{2}=\sigma^{2} d$, and $\sup _{\xi \in \mathbb{S}^{d-1}} \mathbb{E}\langle\xi, X\rangle^{2} \leq L^{\prime}$
- $\mathbb{E}\left||X|^{2} \sigma^{-2}-d\right| \leq L \sqrt{d}$.

For $\theta$ in the Stiefel manifold $\mathfrak{W}_{d, k}$, let $X_{\theta}$ denote the projection of $X$ onto the span of $\theta$. Fix $\delta \in(0,2)$, and let $k=\delta \frac{\log (d)}{\log (\log (d))}$. Then there is a $c>0$ depending only on $\delta, L$ and $L^{\prime}$ such that for $\epsilon=\frac{2}{[\log (d)] c}$, there is a subset $\mathfrak{T} \subseteq \mathfrak{W}_{d, k}$ with
$\mathbb{P}_{d, k}\left[\mathfrak{T}^{c}\right] \leq C e^{-c^{\prime} d \epsilon^{2}}$, such that for all $\theta \in \mathfrak{T}$,

$$
d_{B L}\left(X_{\theta}, \sigma Z\right) \leq C^{\prime} \epsilon .
$$

## Sharpness

## Sharpness

Let $X$ be uniform among $S:=\left\{ \pm \sqrt{d} e_{1}, \ldots, \pm \sqrt{d} e_{d}\right\} \subseteq \mathbb{R}^{d}$.

## Sharpness

Let $X$ be uniform among $S:=\left\{ \pm \sqrt{d} e_{1}, \ldots, \pm \sqrt{d} e_{d}\right\} \subseteq \mathbb{R}^{d}$. Let $c>2$ and let $E$ be a subspace of $\mathbb{R}^{d}$ with $\operatorname{dim}(E)=c_{\frac{\log (d)}{\log (\log (d))}}$.

## Sharpness

Let $X$ be uniform among $S:=\left\{ \pm \sqrt{d} e_{1}, \ldots, \pm \sqrt{d} e_{d}\right\} \subseteq \mathbb{R}^{d}$.
Let $c>2$ and let $E$ be a subspace of $\mathbb{R}^{d}$ with
$\operatorname{dim}(E)=c_{\frac{\log (d)}{\log (\log (d))}}$.
Define $f: E \rightarrow \mathbb{R}$ by $f(x):=\left(1-d\left(x, \pi_{E}(S)\right)\right)_{+}$.

## Sharpness

Let $X$ be uniform among $S:=\left\{ \pm \sqrt{d} e_{1}, \ldots, \pm \sqrt{d} e_{d}\right\} \subseteq \mathbb{R}^{d}$.
Let $c>2$ and let $E$ be a subspace of $\mathbb{R}^{d}$ with
$\operatorname{dim}(E)=c_{\frac{\log (d)}{\log (\log (d))}}$.
Define $f: E \rightarrow \mathbb{R}$ by $f(x):=\left(1-d\left(x, \pi_{E}(S)\right)\right)_{+}$. Then
$\|f\|_{B L} \leq 1$ and

$$
\int f d \mu_{\pi_{E}(S)}=1
$$

but

$$
\int f d \gamma_{E} \xrightarrow{d \rightarrow \infty} 0 .
$$

That is, for this choice of $k, d_{B L}\left(X_{\theta}, \sigma Z\right) \approx 1$ for all choices of $\theta \in \mathfrak{W}_{d, k}$.

The example shows that $k_{c}=\frac{2 \log (d)}{\log (\log (d))}$ is a sharp cut-off such that if $X$ is a random vector in $\mathbb{R}^{d}$ satisfying some natural conditions on $\mathcal{L}(X)$, then most $k$-dimensional margins of $X$ are approximately Gaussian for $k<k_{c}$ and this need not be true for $k>k_{c}$.

## The Dvoretzky connection

## The Dvoretzky connection

Dvoretzky's theorem: Let $\|\cdot\|$ be any norm on $\mathbb{R}^{d}$ such that the maximum volume ellipsoid in its unit ball is a dilate of the sphere. Let $\epsilon>0$ be fixed. Then there is some rescaling of $\|\cdot\|$ and a constant $C(\epsilon)$ such that if $k \leq C(\epsilon) \log (d)$ and if $E$ is a random subspace of $\mathbb{R}^{d}$ of dimension $k$, then with probability tending to 1 ,

$$
|v| \leq\|v\| \leq(1+\epsilon)|v|
$$

for all $v \in E$.

## The Dvoretzky connection

Dvoretzky's theorem: Let $\|\cdot\|$ be any norm on $\mathbb{R}^{d}$ such that the maximum volume ellipsoid in its unit ball is a dilate of the sphere. Let $\epsilon>0$ be fixed. Then there is some rescaling of $\|\cdot\|$ and a constant $C(\epsilon)$ such that if $k \leq C(\epsilon) \log (d)$ and if $E$ is a random subspace of $\mathbb{R}^{d}$ of dimension $k$, then with probability tending to 1 ,

$$
|v| \leq\|v\| \leq(1+\epsilon)|v|
$$

for all $v \in E$.
That is, if $k \leq C(\epsilon) \log (d)$, then most $k$-dimensional subspaces of the normed space $\left(\mathbb{R}^{d},\|\cdot\|\right)$ look very similar to $k$-dimensional Euclidean space $\left(\mathbb{R}^{k},|\cdot|\right)$.

## Dvoretzky dimension

## Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that $k$ can be larger as a function of $d$. In particular:

## Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that $k$ can be larger as a function of $d$. In particular:

- Figiel, Lindenstrauss and V. Milman showed that if a $d$-dimensional Banach space $X$ has cotype $q \in[2, \infty)$, then $X$ has subspaces of dimension of the order $d^{\frac{2}{9}}$ which are approximately Euclidean.


## Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that $k$ can be larger as a function of $d$. In particular:

- Figiel, Lindenstrauss and V. Milman showed that if a $d$-dimensional Banach space $X$ has cotype $q \in[2, \infty)$, then $X$ has subspaces of dimension of the order $d^{\frac{2}{9}}$ which are approximately Euclidean.
- Szarek showed that if $X$ has bounded volume ratio, then $X$ has nearly Euclidean subspaces of dimension $\frac{d}{2}$.


## Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that $k$ can be larger as a function of $d$. In particular:

- Figiel, Lindenstrauss and V. Milman showed that if a $d$-dimensional Banach space $X$ has cotype $q \in[2, \infty)$, then $X$ has subspaces of dimension of the order $d^{\frac{2}{9}}$ which are approximately Euclidean.
- Szarek showed that if $X$ has bounded volume ratio, then $X$ has nearly Euclidean subspaces of dimension $\frac{d}{2}$.

This is analogous to the difference between the main theorem and a result of Klartag, showing that if the random vector $X$ has a log-concave distribution, then most projections are close to Gaussian for $k=d^{\epsilon}$ for a specific value of $\epsilon$.

Outline of the proof of the main theorem

## Outline of the proof of the main theorem

- The mean projection $X_{\Theta}=\langle X, \Theta\rangle$, when both $X$ and $\Theta$ are random and independent, is approximately Gaussian. This is shown using Stein's method.


## Outline of the proof of the main theorem

- The mean projection $X_{\Theta}=\langle X, \Theta\rangle$, when both $X$ and $\Theta$ are random and independent, is approximately Gaussian. This is shown using Stein's method.
- The mean bounded-Lipschitz distance $\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is small.
The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by test functions. Concentration of measure on the Stiefel manifold implies that this process has subgaussian increments, allowing the expected supremum to be estimated via entropy methods.


## Outline of the proof of the main theorem

- The mean projection $X_{\Theta}=\langle X, \Theta\rangle$, when both $X$ and $\Theta$ are random and independent, is approximately Gaussian. This is shown using Stein's method.
- The mean bounded-Lipschitz distance $\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is small.
The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by test functions. Concentration of measure on the Stiefel manifold implies that this process has subgaussian increments, allowing the expected supremum to be estimated via entropy methods.
- The bounded-Lipschitz distance $d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is tightly concentrated near its mean.
This also follows from concentration of measure on the Stiefel manifold.

More about step 1

## More about step 1

Exchangeable pairs with infinitesimal symmetries:

## More about step 1

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^{k}$ is a random vector, and a family $\left(W, W_{\epsilon}\right)_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

## More about step 1

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^{k}$ is a random vector, and a family $\left(W, W_{\epsilon}\right)_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

- $\mathbb{E}\left[W_{\epsilon}-W \mid W\right] \approx-\lambda(\epsilon) W$


## More about step 1

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^{k}$ is a random vector, and a family $\left(W, W_{\epsilon}\right)_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

- $\mathbb{E}\left[W_{\epsilon}-W \mid W\right] \approx-\lambda(\epsilon) W$
- $\mathbb{E}\left[\left(W_{\epsilon}-W\right)\left(W_{\epsilon}-W\right)^{T} \mid W\right] \approx 2 \lambda(\epsilon) \sigma^{2} \mathbf{I}_{k \times k}$


## More about step 1

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^{k}$ is a random vector, and a family $\left(W, W_{\epsilon}\right)_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

- $\mathbb{E}\left[W_{\epsilon}-W \mid W\right] \approx-\lambda(\epsilon) W$
- $\mathbb{E}\left[\left(W_{\epsilon}-W\right)\left(W_{\epsilon}-W\right)^{T} \mid W\right] \approx 2 \lambda(\epsilon) \sigma^{2} \mathrm{I}_{k \times k}$
- $\mathbb{E}\left|W_{\epsilon}-W\right|^{3} \ll \lambda(\epsilon)$


## More about step 1

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^{k}$ is a random vector, and a family $\left(W, W_{\epsilon}\right)_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

- $\mathbb{E}\left[W_{\epsilon}-W \mid W\right] \approx-\lambda(\epsilon) W$
- $\mathbb{E}\left[\left(W_{\epsilon}-W\right)\left(W_{\epsilon}-W\right)^{T} \mid W\right] \approx 2 \lambda(\epsilon) \sigma^{2} \mathbf{I}_{k \times k}$
- $\mathbb{E}\left|W_{\epsilon}-W\right|^{3} \ll \lambda(\epsilon)$

Then $W \approx \sigma Z$, where $Z$ is a standard Gaussian random vector.

## More about step 1

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^{k}$ is a random vector, and a family $\left(W, W_{\epsilon}\right)_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

- $\mathbb{E}\left[W_{\epsilon}-W \mid W\right] \approx-\lambda(\epsilon) W$
- $\mathbb{E}\left[\left(W_{\epsilon}-W\right)\left(W_{\epsilon}-W\right)^{T} \mid W\right] \approx 2 \lambda(\epsilon) \sigma^{2} \mathbf{I}_{k \times k}$
- $\mathbb{E}\left|W_{\epsilon}-W\right|^{3} \ll \lambda(\epsilon)$

Then $W \approx \sigma Z$, where $Z$ is a standard Gaussian random vector.
Here, we take $W=\langle X, \Theta\rangle$, where $\Theta \in \mathfrak{W}_{d, k}$ is uniform and independent of $X$.
$W=\langle X, \Theta\rangle$ is approximately Gaussian:

## $W=\langle X, \Theta\rangle$ is approximately Gaussian:

To construct $W_{\epsilon}$, rotate $\Theta$ by $\epsilon$ in a random direction: if

$$
\Theta=\left(\Theta_{1}, \ldots, \Theta_{k}\right)
$$

then

$$
\Theta=\left(\quad \Theta_{1}, \ldots, \quad \Theta_{k}\right)
$$

where $U$ is an independently chosen random orthogonal matrix and $R_{1,2}(\epsilon)$ rotates by $\epsilon$ in the span of the first two basis elements.

## $W=\langle X, \Theta\rangle$ is approximately Gaussian:

To construct $W_{\epsilon}$, rotate $\Theta$ by $\epsilon$ in a random direction: if

$$
\Theta=\left(\Theta_{1}, \ldots, \Theta_{k}\right)
$$

then

$$
\Theta_{\epsilon}=\left(\left[U R_{1,2}(\epsilon) U^{T}\right] \Theta_{1}, \ldots,\left[U R_{1,2}(\epsilon) U^{T}\right] \Theta_{k}\right)
$$

where $U$ is an independently chosen random orthogonal matrix and $R_{1,2}(\epsilon)$ rotates by $\epsilon$ in the span of the first two basis elements.

## $W=\langle X, \Theta\rangle$ is approximately Gaussian:

To construct $W_{\epsilon}$, rotate $\Theta$ by $\epsilon$ in a random direction: if

$$
\Theta=\left(\Theta_{1}, \ldots, \Theta_{k}\right)
$$

then

$$
\Theta_{\epsilon}=\left(\left[U R_{1,2}(\epsilon) U^{T}\right] \Theta_{1}, \ldots,\left[U R_{1,2}(\epsilon) U^{T}\right] \Theta_{k}\right)
$$

where $U$ is an independently chosen random orthogonal matrix and $R_{1,2}(\epsilon)$ rotates by $\epsilon$ in the span of the first two basis elements.
The theorem on the last slide can be applied, and the result is that

$$
d_{B L}\left(X_{\Theta}, \sigma Z\right) \leq \frac{C \sigma \sqrt{k}}{\sqrt{d}}
$$

## Concentration of measure

## Concentration of measure

Define the metric $\rho$ on $\mathfrak{W}_{d, k}$ by

$$
\rho\left(\theta, \theta^{\prime}\right)=\sqrt{\sum_{i=1}^{k}\left|\theta_{i}-\theta_{i}^{\prime}\right|^{2}}
$$

## Concentration of measure

Define the metric $\rho$ on $\mathfrak{W}_{d, k}$ by

$$
\rho\left(\theta, \theta^{\prime}\right)=\sqrt{\sum_{i=1}^{k}\left|\theta_{i}-\theta_{i}^{\prime}\right|^{2}}
$$

There are constants $C, c$ (independent of $d, k$ ) such that if $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ is Lipschitz with Lipschitz constant $L$,

$$
\mathbb{P}[|F(\Theta)-\mathbb{E} F(\Theta)|>L \epsilon] \leq C e^{-c d \epsilon^{2}}
$$

## Concentration of measure

Define the metric $\rho$ on $\mathfrak{W}_{d, k}$ by

$$
\rho\left(\theta, \theta^{\prime}\right)=\sqrt{\sum_{i=1}^{k}\left|\theta_{i}-\theta_{i}^{\prime}\right|^{2}}
$$

There are constants $C, c$ (independent of $d, k$ ) such that if $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ is Lipschitz with Lipschitz constant $L$,

$$
\mathbb{P}[|F(\Theta)-\mathbb{E} F(\Theta)|>L \epsilon] \leq C e^{-c d \epsilon^{2}}
$$

It's straightforward to show that $F(\theta):=d_{B L}\left(X_{\theta}, \sigma Z\right)$ is Lipschitz with constant $\sqrt{L^{\prime}}$; this is the whole content of step 3 .

## Step 2 - Average distance to average

## Step 2 - Average distance to average

We need to estimate

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)=\mathbb{E}\left(\sup _{\|f\|_{B L} \leq 1}\left|\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\ominus}\right)\right|\right)
$$

## Step 2 - Average distance to average

We need to estimate

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)=\mathbb{E}\left(\sup _{\|f\|_{B L} \leq 1}\left|\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)\right|\right)
$$

If the stochastic process $\left\{X_{f}\right\}_{\|f\|_{B L} \leq 1}$ is defined by

$$
X_{f}:=\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)
$$

then what we want is $\mathbb{E} \sup _{\|f\|_{B L} \leq 1} X_{f}$.

## Step 2 - Average distance to average

We need to estimate

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)=\mathbb{E}\left(\sup _{\|f\|_{B L} \leq 1}\left|\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)\right|\right)
$$

If the stochastic process $\left\{X_{f}\right\}_{\|f\|_{B L} \leq 1}$ is defined by

$$
X_{f}:=\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)
$$

then what we want is $\mathbb{E} \sup _{\|f\|_{B L} \leq 1} X_{f}$.
Applying measure concentration to $F(\theta):=\mathbb{E}\left[(f-g)\left(X_{\theta}\right) \mid \theta\right]$ shows that the process has the property:

$$
\mathbb{P}\left[\left|X_{f}-X_{g}\right|>\epsilon\right] \leq C e^{-\frac{c d \epsilon^{2}}{\|f-g\|_{B L}^{2}}}
$$

## Theorem (Dudley)

If a stochastic process $\left\{X_{t}\right\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$
\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2 \delta^{2}(s, t)}} \quad \forall \epsilon>0
$$

then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \sqrt{\log N(T, \delta, \epsilon)} d \epsilon
$$

where $N(T, \delta, \epsilon)$ is the $\epsilon$-covering number of $T$ with respect to the distance $\delta$.

## Theorem (Dudley)

If a stochastic process $\left\{X_{t}\right\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$
\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2 \delta^{2}(s, t)}} \quad \forall \epsilon>0
$$

then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \sqrt{\log N(T, \delta, \epsilon)} d \epsilon
$$

where $N(T, \delta, \epsilon)$ is the $\epsilon$-covering number of $T$ with respect to the distance $\delta$.

Recall that our process satisfies

$$
\mathbb{P}\left[\left|X_{f}-X_{g}\right|>\epsilon\right] \leq C e^{-\frac{c d \epsilon^{2}}{\|f-g\|_{B L}^{2}}}
$$

The question, then, is: if $B L_{1}^{k}:=\left\{f: \mathbb{R}^{k} \rightarrow \mathbb{R} \mid\|f\|_{B L} \leq 1\right\}$, what is $N\left(B L_{1}^{k}, \frac{\|\cdot\| B L}{\sqrt{d}}, \epsilon\right)$ ?

The question, then, is: if $B L_{1}^{k}:=\left\{f: \mathbb{R}^{k} \rightarrow \mathbb{R} \mid\|f\|_{B L} \leq 1\right\}$, what is $N\left(B L_{1}^{k}, \frac{\|\cdot\| B L}{\sqrt{d}}, \epsilon\right)$ ?

Bad news: $N\left(B L_{1}^{k}, \frac{\|\cdot\| b L}{\sqrt{d}}, \epsilon\right)=\infty$.

The question, then, is: if $B L_{1}^{k}:=\left\{f: \mathbb{R}^{k} \rightarrow \mathbb{R} \mid\|f\|_{B L} \leq 1\right\}$, what is $N\left(B L_{1}^{k}, \frac{\| \| \| b L}{\sqrt{d}}, \epsilon\right)$ ?

Bad news: $N\left(B L_{1}^{k}, \frac{\|\cdot\| b l}{\sqrt{d}}, \epsilon\right)=\infty$.
But not to worry: approximating Lipschitz functions by piecewise affine functions and using volumetric estimates in the resulting finite-dimensional normed space of approximating functions does the job, and ultimately we get (with the simplification $B=1$ )

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right) \leq C \frac{k+\log (d)}{k^{\frac{2}{3}} d^{\frac{2}{3 k+4}}} .
$$

## So：

$$
\text { 《ロ〉4吕 } \downarrow 4 \equiv>4 \equiv \Rightarrow \text { 三 }
$$

## So:

$-d_{B L}\left(X_{\Theta}, \sigma Z\right) \leq \frac{C \sigma \sqrt{k}}{\sqrt{d}}$

## So:

- $d_{B L}\left(X_{\Theta}, \sigma Z\right) \leq \frac{C_{\sigma} \sqrt{k}}{\sqrt{d}}$
- $\mathbb{P}\left[\theta:\left|d_{B L}\left(X_{\theta}, X_{\Theta}\right)-\mathbb{E} d_{B L}\left(X_{\theta}, X_{\Theta}\right)\right|>\epsilon\right] \leq C e^{-c d \epsilon^{2}}$.


## So:

- $d_{B L}\left(X_{\theta}, \sigma Z\right) \leq \frac{C_{\sigma} \sqrt{K}}{\sqrt{d}}$
$-\mathbb{P}\left[\theta:\left|d_{B L}\left(X_{\theta}, X_{\theta}\right)-\mathbb{E} d_{B L}\left(X_{\theta}, X_{\theta}\right)\right|>\epsilon\right] \leq C e^{-c d \epsilon^{2}}$.
- $\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\theta}\right) \leq C \frac{k+\log (d)}{k_{d}^{2} \sigma z^{2}+4}$.


## So:

- $d_{B L}\left(X_{\Theta}, \sigma Z\right) \leq \frac{\sigma \sigma \sqrt{K}}{\sqrt{d}}$
- $\mathbb{P}\left[\theta:\left|d_{B L}\left(X_{\theta}, X_{\Theta}\right)-\mathbb{E} d_{B L}\left(X_{\theta}, X_{\Theta}\right)\right|>\epsilon\right] \leq C e^{-c d \epsilon^{2}}$.
- $\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right) \leq C \frac{k+\log (d)}{k^{\frac{2}{3}} d^{\frac{2}{2 k+4}}}$.

Choosing $k=\frac{\delta \log (d)}{\log (\log (d))}$ and $\epsilon=\frac{2}{\log (d)^{c}}$ (for a particular $c$ which depends on $\delta$ ) finishes the proof.

Thank you.

