Tail bounds and extremal behavior of light-tailed perpetuities

Paweł Hitczenko
Drexel University
HDP 2011, Banff, Canada

October 13, 2011

Perpetuities

By perpetuity we mean a random variable R which satisfies the following distributional equation:

$$
R \stackrel{d}{=} M R+Q
$$

where on the right-hand side (Q, M) is a fixed pair of random variables independent of R.

Perpetuities

By perpetuity we mean a random variable R which satisfies the following distributional equation:

$$
R \stackrel{d}{=} M R+Q
$$

where on the right-hand side (Q, M) is a fixed pair of random variables independent of R.
R often appears as a limit of $\left(R_{n}\right)$ given by

$$
R_{n}=M_{n} R_{n-1}+Q_{n}
$$

where R_{0} is arbitrary and $\left(Q_{n}, M_{n}\right), n \geq 1$ are independent copies of (Q, M) such that $\left(Q_{n}, M_{n}\right)$ are independent of R_{n-1}.

Perpetuities

By perpetuity we mean a random variable R which satisfies the following distributional equation:

$$
R \stackrel{d}{=} M R+Q
$$

where on the right-hand side (Q, M) is a fixed pair of random variables independent of R.
R often appears as a limit of $\left(R_{n}\right)$ given by

$$
R_{n}=M_{n} R_{n-1}+Q_{n}
$$

where R_{0} is arbitrary and $\left(Q_{n}, M_{n}\right), n \geq 1$ are independent copies of (Q, M) such that $\left(Q_{n}, M_{n}\right)$ are independent of R_{n-1}. Iterating the above equation yields

$$
\begin{aligned}
R_{n} & =M_{n} M_{n-1} R_{n-2}+M_{n} Q_{n-1}+Q_{n} \\
& =M_{n} \ldots M_{1} R_{0}+\sum_{i=1}^{n} Q_{i} \prod_{j=i+1}^{n} M_{j}
\end{aligned}
$$

Perpetuities

By perpetuity we mean a random variable R which satisfies the following distributional equation:

$$
R \stackrel{d}{=} M R+Q
$$

where on the right-hand side (Q, M) is a fixed pair of random variables independent of R.
R often appears as a limit of $\left(R_{n}\right)$ given by

$$
R_{n}=M_{n} R_{n-1}+Q_{n}
$$

where R_{0} is arbitrary and $\left(Q_{n}, M_{n}\right), n \geq 1$ are independent copies of (Q, M) such that $\left(Q_{n}, M_{n}\right)$ are independent of R_{n-1}. Iterating the above equation yields

$$
\begin{aligned}
R_{n} & =M_{n} M_{n-1} R_{n-2}+M_{n} Q_{n-1}+Q_{n} \\
& =M_{n} \ldots M_{1} R_{0}+\sum_{i=1}^{n} Q_{i} \prod_{j=i+1}^{n} M_{j}
\end{aligned}
$$

Assuming the first term is negligible and re-numbering $\left(Q_{n}, M_{n}\right)$

Convergence in distribution

we see that R may be defined as

$$
R \stackrel{d}{=} \sum_{i=1}^{\infty} Q_{i} \prod_{j=1}^{i-1} M_{j}
$$

provided that the series converges at least in distribution.

Convergence in distribution

we see that R may be defined as

$$
R \stackrel{d}{=} \sum_{i=1}^{\infty} Q_{i} \prod_{j=1}^{i-1} M_{j}
$$

provided that the series converges at least in distribution. Kesten (1973) showed that

$$
E \log ^{+}|Q|<\infty \quad \text { and } \quad E \log |M|<0
$$

suffice for the almost sure convergence of the series

$$
\sum_{j=1}^{\infty} Q_{j} \prod_{k=1}^{j-1} M_{k}
$$

Convergence in distribution

we see that R may be defined as

$$
R \stackrel{d}{=} \sum_{i=1}^{\infty} Q_{i} \prod_{j=1}^{i-1} M_{j}
$$

provided that the series converges at least in distribution. Kesten (1973) showed that

$$
E \log ^{+}|Q|<\infty \quad \text { and } \quad E \log |M|<0
$$

suffice for the almost sure convergence of the series

$$
\sum_{j=1}^{\infty} Q_{j} \prod_{k=1}^{j-1} M_{k}
$$

And for the almost sure convergence to 0 of

$$
R_{0} \prod_{j=1}^{n} M_{j}
$$

Tail behavior of R

Tail behavior of R

- HEAVY TAILS: Kesten (1973) showed that if $P(|M|>1)>0$, then R is heavy-tailed.

Tail behavior of R

- HEAVY TAILS: Kesten (1973) showed that if $P(|M|>1)>0$, then R is heavy-tailed.
- More precisely, let $\kappa>0$ be such that

$$
E|M|^{\kappa}=1
$$

If

$$
E|M|^{\kappa} \log ^{+}|M|<\infty, \quad E|Q|^{\kappa}<\infty
$$

then there exists a C such that

$$
P(|R| \geq x) \sim C x^{-\kappa}, \quad \text { as } \quad x \rightarrow \infty
$$

Tail behavior of R

- HEAVY TAILS: Kesten (1973) showed that if $P(|M|>1)>0$, then R is heavy-tailed.
- More precisely, let $\kappa>0$ be such that

$$
E|M|^{\kappa}=1
$$

If

$$
E|M|^{\kappa} \log ^{+}|M|<\infty, \quad E|Q|^{\kappa}<\infty
$$

then there exists a C such that

$$
P(|R| \geq x) \sim C x^{-\kappa}, \quad \text { as } \quad x \rightarrow \infty
$$

NOTE: The existence of such κ is assured by the fact that

$$
\lim _{r \rightarrow 0^{+}} E \frac{|M|^{r}-1}{r}=E \ln |M|<0 \quad \text { and } \quad\|M\|_{\infty}>1
$$

Tail behavior of R

- HEAVY TAILS: Kesten (1973) showed that if $P(|M|>1)>0$, then R is heavy-tailed.
- More precisely, let $\kappa>0$ be such that

$$
E|M|^{\kappa}=1
$$

If

$$
E|M|^{\kappa} \log ^{+}|M|<\infty, \quad E|Q|^{\kappa}<\infty
$$

then there exists a C such that

$$
P(|R| \geq x) \sim C x^{-\kappa}, \quad \text { as } \quad x \rightarrow \infty
$$

NOTE: The existence of such κ is assured by the fact that

$$
\lim _{r \rightarrow 0^{+}} E \frac{|M|^{r}-1}{r}=E \ln |M|<0 \quad \text { and } \quad\|M\|_{\infty}>1
$$

- This basic result has been re-proved and extended by a number of researchers, among others Goldie (1991), Grey (1994), Grincievičjus (1975) ...

Light tails

In most applications, $P(\mid M>1)>0$ so that most of the time we are interested in the heavy-tails. However, the complementary case

$$
P(|M| \leq 1)=1
$$

also naturally appears in various situations.

Light tails

In most applications, $P(\mid M>1)>0$ so that most of the time we are interested in the heavy-tails. However, the complementary case

$$
P(|M| \leq 1)=1
$$

also naturally appears in various situations.
For example:

- in the context of record times of random random walks Vervaat (1972) studied the situation in which

$$
Q \equiv 1 \quad \text { and } \quad M \stackrel{d}{=} \operatorname{beta}(\alpha, 1) \stackrel{d}{=} U^{1 / \alpha}
$$

where U is the uniform random variable on $[0,1]$.

Light tails

In most applications, $P(\mid M>1)>0$ so that most of the time we are interested in the heavy-tails. However, the complementary case

$$
P(|M| \leq 1)=1
$$

also naturally appears in various situations.
For example:

- in the context of record times of random random walks Vervaat (1972) studied the situation in which

$$
Q \equiv 1 \quad \text { and } \quad M \stackrel{d}{=} \operatorname{beta}(\alpha, 1) \stackrel{d}{=} U^{1 / \alpha}
$$

where U is the uniform random variable on $[0,1]$.

- Such perpetuities are nowadays called Vervaat perpetuities.

Light tails, cont.

- in the special case $\alpha=1$ the density of Vervaat perpetuity is (up to normalizing constant) the Dickman function $\rho(u)$ appearing in number theory:

$$
\rho(u)=\lim _{n \rightarrow \infty} \frac{k_{n}(u)}{n}
$$

where $k_{n}(u)$ is the number of positive integers $\leq n$ with the largest prime factor no more than $n^{1 / u}, u \geq 1$.

Light tails, cont.

- in the special case $\alpha=1$ the density of Vervaat perpetuity is (up to normalizing constant) the Dickman function $\rho(u)$ appearing in number theory:

$$
\rho(u)=\lim _{n \rightarrow \infty} \frac{k_{n}(u)}{n}
$$

where $k_{n}(u)$ is the number of positive integers $\leq n$ with the largest prime factor no more than $n^{1 / u}, u \geq 1$.

- other appearances of Dickman function are discussed in Hwang and Tsai (2001) and include the analysis of Quickselect algorithm, the degree of the largest irreducible factor in a random polynomial over finite field, and allele frequencies in some biological models.

Light tails, cont.

However, much less precise information is available in this case.

- For Vervaat perpetuities R Vervaat (1972) showed that

$$
\frac{\log P(R>x)}{x \log x} \sim-1, \quad \text { as } \quad x \rightarrow \infty
$$

- this was earlier established for Dickman function by de Bruijn (1951)
- Goldie and Grübel (1996) were the first to study light-tailed case in some generality (apparently, they were unaware of those earlier special results). They showed that:

Light tails, cont.

However, much less precise information is available in this case.

- For Vervaat perpetuities R Vervaat (1972) showed that

$$
\frac{\log P(R>x)}{x \log x} \sim-1, \quad \text { as } \quad x \rightarrow \infty
$$

- this was earlier established for Dickman function by de Bruijn (1951)
- Goldie and Grübel (1996) were the first to study light-tailed case in some generality (apparently, they were unaware of those earlier special results). They showed that:
- the tails are no heavier than exponential

Light tails, cont.

However, much less precise information is available in this case.

- For Vervaat perpetuities R Vervaat (1972) showed that

$$
\frac{\log P(R>x)}{x \log x} \sim-1, \quad \text { as } \quad x \rightarrow \infty
$$

- this was earlier established for Dickman function by de Bruijn (1951)
- Goldie and Grübel (1996) were the first to study light-tailed case in some generality (apparently, they were unaware of those earlier special results). They showed that:
- the tails are no heavier than exponential
- if $Q \equiv q>0$ and $0 \leq M \leq 1$ satisfies:

$$
c \delta \leq P(1-\delta \leq M \leq 1) \leq C \delta
$$

for some $\epsilon>0,0<c, C<\infty$ and for all $\delta \in(0, \epsilon]$

Light tails, cont.

However, much less precise information is available in this case.

- For Vervaat perpetuities R Vervaat (1972) showed that

$$
\frac{\log P(R>x)}{x \log x} \sim-1, \quad \text { as } \quad x \rightarrow \infty
$$

- this was earlier established for Dickman function by de Bruijn (1951)
- Goldie and Grübel (1996) were the first to study light-tailed case in some generality (apparently, they were unaware of those earlier special results). They showed that:
- the tails are no heavier than exponential
- if $Q \equiv q>0$ and $0 \leq M \leq 1$ satisfies:

$$
c \delta \leq P(1-\delta \leq M \leq 1) \leq C \delta
$$

for some $\epsilon>0,0<c, C<\infty$ and for all $\delta \in(0, \epsilon]$ then

$$
\lim _{x \rightarrow \infty} \frac{\ln (P(R \geq x))}{x \ln x}=-\frac{1}{q} .
$$

Light tails, cont.

- H. and Wesołowski (2009) extended these ideas to construct M 's for which the corresponding R satisfies, for example:

$$
\frac{\ln P(R>x)}{x \ln x} \sim-\frac{\beta}{q}, \quad \text { as } \quad x \rightarrow \infty, \quad \beta>0
$$

Light tails, cont.

- H. and Wesołowski (2009) extended these ideas to construct M's for which the corresponding R satisfies, for example:

$$
\frac{\ln P(R>x)}{x \ln x} \sim-\frac{\beta}{q}, \quad \text { as } \quad x \rightarrow \infty, \quad \beta>0
$$

- Or, for which

$$
\frac{\ln P(R>x)}{-x^{r}}=\Theta(1), \quad 1<r<\infty
$$

(and a few similar things).

Light tails, cont.

- H. and Wesołowski (2009) extended these ideas to construct M's for which the corresponding R satisfies, for example:

$$
\frac{\ln P(R>x)}{x \ln x} \sim-\frac{\beta}{q}, \quad \text { as } \quad x \rightarrow \infty, \quad \beta>0
$$

- Or, for which

$$
\frac{\ln P(R>x)}{-x^{r}}=\Theta(1), \quad 1<r<\infty
$$

(and a few similar things).

- From a different perspective Jurek (1999) showed that every c-decomposable random variable X can be written as a perpetuity:

$$
X \stackrel{d}{=} e^{-\tau} X+X_{\tau},
$$

where $\tau \geq 0$ and (τ, X_{τ}) is independent of X on the rhs.

Light tails, cont.

- H. and Wesołowski (2009) extended these ideas to construct M's for which the corresponding R satisfies, for example:

$$
\frac{\ln P(R>x)}{x \ln x} \sim-\frac{\beta}{q}, \quad \text { as } \quad x \rightarrow \infty, \quad \beta>0
$$

- Or, for which

$$
\frac{\ln P(R>x)}{-x^{r}}=\Theta(1), \quad 1<r<\infty
$$

(and a few similar things).

- From a different perspective Jurek (1999) showed that every c-decomposable random variable X can be written as a perpetuity:

$$
X \stackrel{d}{=} e^{-\tau} X+X_{\tau},
$$

where $\tau \geq 0$ and (τ, X_{τ}) is independent of X on the rhs. X is c-decomposable if $\forall c \in[0,1] \exists X_{c}: X \stackrel{d}{=} c X+X_{c}$, with X and X_{c} independent on the rhs.

Tail behavior: light tails

- Lower bound: Goldie-Grübel (1996) in their work established the general lower bound:

Tail behavior: light tails

- Lower bound: Goldie-Grübel (1996) in their work established the general lower bound:
for $\delta \in(0,1)$ let $p_{\delta}:=P(1-\delta \leq M \leq 1)$.
Then, when $Q \equiv q>0$, for $c \in(0,1)$ and $x>q$ we have

$$
P(R \geq x) \geq \exp \left(-\frac{\ln (1-c)}{c} x \ln \left(p_{\frac{c q}{x}}\right)\right)
$$

Tail behavior: light tails

- Lower bound: Goldie-Grübel (1996) in their work established the general lower bound:
for $\delta \in(0,1)$ let $p_{\delta}:=P(1-\delta \leq M \leq 1)$.
Then, when $Q \equiv q>0$, for $c \in(0,1)$ and $x>q$ we have

$$
P(R \geq x) \geq \exp \left(-\frac{\ln (1-c)}{c} x \ln \left(p_{\frac{c q}{x}}\right)\right)
$$

- Upper bound: Theorem (H. (2010)): There exist constants c_{1}, c_{2} such that if $|Q| \leq q$ and $|M| \leq 1$ then for sufficiently large x :

$$
P(|R|>x) \leq \exp \left(\frac{c_{1}}{q} x \ln p_{c_{2} q / x}\right)
$$

Tail behavior: light tails

- Lower bound: Goldie-Grübel (1996) in their work established the general lower bound:
for $\delta \in(0,1)$ let $p_{\delta}:=P(1-\delta \leq M \leq 1)$.
Then, when $Q \equiv q>0$, for $c \in(0,1)$ and $x>q$ we have

$$
P(R \geq x) \geq \exp \left(-\frac{\ln (1-c)}{c} x \ln \left(p_{\frac{c q}{x}}\right)\right)
$$

- Upper bound: Theorem (H. (2010)): There exist constants c_{1}, c_{2} such that if $|Q| \leq q$ and $|M| \leq 1$ then for sufficiently large x :

$$
P(|R|>x) \leq \exp \left(\frac{c_{1}}{q} x \ln p_{c_{2} q / x}\right)
$$

- In particular, if $Q \equiv q>0$ and $0 \leq M \leq 1$ then

$$
\exp \left(\frac{2 \ln 2}{q} x \ln p_{q /(2 x)}\right) \leq P(R>x) \leq \exp \left(\frac{1}{4 q} x \ln p_{2 q / x}\right)
$$

Comments on proof

- techniques for the cases $0 \leq M \leq 1$ and $P(M>1)>0$ are completely different.
- techniques previously used for an upper bound in the case $0 \leq M \leq 1$ were generally based on an iteration of the equation $R_{n} \stackrel{d}{=} M_{n} R_{n-1}+Q_{n}$ and they don't seem to work.
- However, a proof of a lower bound of Goldie-Grübel may be used to yield an upper bound.

Comments on proof

- techniques for the cases $0 \leq M \leq 1$ and $P(M>1)>0$ are completely different.
- techniques previously used for an upper bound in the case $0 \leq M \leq 1$ were generally based on an iteration of the equation $R_{n} \stackrel{d}{=} M_{n} R_{n-1}+Q_{n}$ and they don't seem to work.
- However, a proof of a lower bound of Goldie-Grübel may be used to yield an upper bound.
- Rough idea for the lower bound: for a small δ, wait for the first time when $M_{k} \leq 1-\delta$. Up to that time bound the partial sums forming R_{n} below by a geometric sum.
- For the upper bound: keep recording consecutive times when $M_{k} \leq 1-\delta$, bound above the partial sums by weighted sums of geometric r.v.'s and use exponential bounds for such sums (Goh, H. (2008)).

Extremal behavior: heavy tails

We want to analyze the extremal behavior of $\left(R_{n}\right)$ i.e. look at the normalizing constant a_{n} and b_{n} so that

$$
a_{n}\left(\max _{0 \leq k \leq n} R_{n}-b_{n}\right)
$$

converges in distribution to a non-degenerate random variable. The theory for i.i.d. sequences $\left(R_{n}\right)$ is completely developed and goes back to Fisher-Tippett (1928) and Gnedenko (1943) and is presented e.g. in a classic Leadbetter, Lindren and Rootzén (1988). The situation is also well understood when $\left(R_{n}\right)$ is a stationary sequence. In our case, if $\left(R_{n}\right)$ converges in distribution to R we can take $R_{0} \stackrel{d}{=} R$ and turn $\left(R_{n}\right)$ into a stationary sequence.

Extremal behavior: heavy tails, cont.

de Haan, Resnick, Rootzén, de Vries (1989) showed that

- for $M, Q \geq 0$ under Kesten's conditions for the convergence of $\left(R_{n}\right)$ and $P(M>1)>0$ (which implies that $\left.P(R>x) \sim c x^{-\kappa}\right)$ we have

$$
\lim _{n \rightarrow \infty} P\left(\frac{R_{n}^{*}}{n^{1 / \kappa}} \leq x\right)=\exp \left(-c \theta x^{-1 / \kappa}\right)
$$

where $R_{n}^{*}=\max _{1 \leq k \leq n} R_{k}$.

- That is, there is a convergence to Type II (Frechét) distribution with normalizing constants $a_{n}=1 / n^{1 / \kappa}$ and $b_{n}=0$.

Extremal behavior: heavy tails, cont.

de Haan, Resnick, Rootzén, de Vries (1989) showed that

- for $M, Q \geq 0$ under Kesten's conditions for the convergence of $\left(R_{n}\right)$ and $P(M>1)>0$ (which implies that $\left.P(R>x) \sim c x^{-\kappa}\right)$ we have

$$
\lim _{n \rightarrow \infty} P\left(\frac{R_{n}^{*}}{n^{1 / \kappa}} \leq x\right)=\exp \left(-c \theta x^{-1 / \kappa}\right)
$$

where $R_{n}^{*}=\max _{1 \leq k \leq n} R_{k}$.

- That is, there is a convergence to Type II (Frechét) distribution with normalizing constants $a_{n}=1 / n^{1 / \kappa}$ and $b_{n}=0$.
- $\theta=\kappa \int_{1}^{\infty} P\left(\sup _{j \geq 1} \prod_{i=1}^{j} M_{i} \leq \frac{1}{y}\right) \frac{d y}{y^{k+1}}$, is the extremal index of the sequence $\left(R_{n}\right)$.
- the existence of such $\theta \in[0,1]$ (NOT assured in general even for stationary sequences) says that R_{n}^{*} behaves like max of $\sim \theta n$ i.i.d. variables with the same marginal distribution.

Extremal behavior: light tails

Theorem (H. (2010)): Let $R_{n}=M_{n} R_{n-1}+q$ where $q>0$, $0 \leq M \leq 1 M$ is non-degenerate, $P(M=0)=0$, and $\sup \{x: P(M>x)>0\}=1$. Then there exist $\left(a_{n}\right),\left(b_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty} P\left(a_{n}\left(R_{n}^{*}-b_{n}\right) \leq x\right)=\exp \left(-e^{-x}\right)
$$

Extremal behavior: light tails

Theorem (H. (2010)): Let $R_{n}=M_{n} R_{n-1}+q$ where $q>0$, $0 \leq M \leq 1 M$ is non-degenerate, $P(M=0)=0$, and $\sup \{x: P(M>x)>0\}=1$. Then there exist $\left(a_{n}\right),\left(b_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty} P\left(a_{n}\left(R_{n}^{*}-b_{n}\right) \leq x\right)=\exp \left(-e^{-x}\right)
$$

- the assumptions on M are needed to exclude trivial cases and the case when R (and hence each R_{n}) is geometric.
- We may take b_{n} so that $b_{n} \ln p_{c / b_{n}}=-\Theta(\ln n)$ and

$$
a_{n}=\Theta\left(\frac{1}{b_{n} \ln p_{c / b_{n}}} f_{M}\left(1-\frac{c}{b_{n}}\right)-\ln p_{c / b_{n}}\right) \stackrel{*}{\sim}-\Theta\left(\ln p_{c / b_{n}}\right)
$$

where ' $\stackrel{*}{\sim}$ ' means 'often \sim ' and c is a constant.

- the extremal index (built-in in $\left.a_{n}, b_{n}\right)$ is $\theta=1-P(M=1)$.

Open problems: tail behavior

- Get the asymptotics for $P(R>x)$ when $R \stackrel{d}{=} M R+q$, $0 \leq M \leq 1, q>0$.
Knowing the tail behavior would give the asymptotics of the normalizing constants a_{n}, b_{n} in the limit theorem for the extremes.
- Get rid of the assumption $Q \equiv q$ and/or $|Q| \leq q$. Without that some of the basic cases when we know the tail behavior are not covered, e.g. the α-stable distributions:

$$
R \stackrel{d}{=} 2^{-1 / \alpha}\left(R+R^{\prime}\right) \stackrel{d}{=} M R+Q ; M=2^{-1 / \alpha}, Q \stackrel{d}{=} 2^{-1 / \alpha} R
$$

or

$$
M \stackrel{d}{=} \beta\left(\alpha_{1}, \alpha_{2}\right), Q \stackrel{d}{=} \Gamma\left(\alpha_{2}, \gamma\right) \Longrightarrow R \stackrel{d}{=} \Gamma\left(\alpha_{1}+\alpha_{2}, \gamma\right) .
$$

Thank you :)

Analysis and Probability, June 10-16, 2012 conference website: http://www.mimuw.edu.pl/~probanal

