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Perpetuities

By perpetuity we mean a random variable R which satisfies the
following distributional equation:

R
d
= MR + Q,

where on the right–hand side (Q,M) is a fixed pair of random
variables independent of R.

R often appears as a limit of (Rn) given by

Rn = MnRn−1 + Qn,

where R0 is arbitrary and (Qn,Mn), n ≥ 1 are independent copies
of (Q,M) such that (Qn,Mn) are independent of Rn−1.
Iterating the above equation yields

Rn = MnMn−1Rn−2 + MnQn−1 + Qn

= Mn . . .M1R0 +
n∑

i=1

Qi

n∏
j=i+1

Mj .

Assuming the first term is negligible and re–numbering (Qn,Mn)
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Convergence in distribution

we see that R may be defined as

R
d
=

∞∑
i=1

Qi

i−1∏
j=1

Mj ,

provided that the series converges at least in distribution.

Kesten (1973) showed that

E log+ |Q| < ∞ and E log |M| < 0

suffice for the almost sure convergence of the series

∞∑
j=1

Qj

j−1∏
k=1

Mk .

And for the almost sure convergence to 0 of

R0

n∏
j=1

Mj .



Convergence in distribution

we see that R may be defined as

R
d
=

∞∑
i=1

Qi

i−1∏
j=1

Mj ,

provided that the series converges at least in distribution.
Kesten (1973) showed that

E log+ |Q| < ∞ and E log |M| < 0

suffice for the almost sure convergence of the series

∞∑
j=1

Qj

j−1∏
k=1

Mk .

And for the almost sure convergence to 0 of

R0

n∏
j=1

Mj .



Convergence in distribution

we see that R may be defined as

R
d
=

∞∑
i=1

Qi

i−1∏
j=1

Mj ,

provided that the series converges at least in distribution.
Kesten (1973) showed that

E log+ |Q| < ∞ and E log |M| < 0

suffice for the almost sure convergence of the series

∞∑
j=1

Qj

j−1∏
k=1

Mk .

And for the almost sure convergence to 0 of

R0

n∏
j=1

Mj .



Tail behavior of R

I HEAVY TAILS: Kesten (1973) showed that if
P(|M| > 1) > 0, then R is heavy–tailed.

I More precisely, let κ > 0 be such that

E |M|κ = 1.

If
E |M|κ log+ |M| < ∞, E |Q|κ < ∞,

then there exists a C such that

P(|R| ≥ x) ∼ Cx−κ, as x →∞.

NOTE: The existence of such κ is assured by the fact that

lim
r→0+

E
|M|r − 1

r
= E ln |M| < 0 and ‖M‖∞ > 1.

I This basic result has been re–proved and extended by a
number of researchers, among others Goldie (1991), Grey
(1994), Grincievičjus (1975) ...
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Light tails

In most applications, P(|M > 1) > 0 so that most of the time we
are interested in the heavy-tails. However, the complementary case

P(|M| ≤ 1) = 1,

also naturally appears in various situations.

For example:

I in the context of record times of random random walks
Vervaat (1972) studied the situation in which

Q ≡ 1 and M
d
= beta(α, 1)

d
= U1/α,

where U is the uniform random variable on [0, 1].

I Such perpetuities are nowadays called Vervaat perpetuities.
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Light tails, cont.

I in the special case α = 1 the density of Vervaat perpetuity is
(up to normalizing constant) the Dickman function ρ(u)
appearing in number theory:

ρ(u) = lim
n→∞

kn(u)

n

where kn(u) is the number of positive integers ≤ n with the
largest prime factor no more than n1/u, u ≥ 1.

I other appearances of Dickman function are discussed in
Hwang and Tsai (2001) and include the analysis of
Quickselect algorithm, the degree of the largest irreducible
factor in a random polynomial over finite field, and allele
frequencies in some biological models.
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Light tails, cont.

However, much less precise information is available in this case.
I For Vervaat perpetuities R Vervaat (1972) showed that

log P(R > x)

x log x
∼ −1, as x →∞.

I this was earlier established for Dickman function by de Bruijn
(1951)

I Goldie and Grübel (1996) were the first to study light–tailed
case in some generality (apparently, they were unaware of
those earlier special results). They showed that:

I the tails are no heavier than exponential
I if Q ≡ q > 0 and 0 ≤ M ≤ 1 satisfies:

cδ ≤ P(1− δ ≤ M ≤ 1) ≤ Cδ,

for some ε > 0, 0 < c ,C < ∞ and for all δ ∈ (0, ε] then

lim
x→∞

ln(P(R ≥ x))

x ln x
= −1

q
.
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Light tails, cont.

I H. and Weso lowski (2009) extended these ideas to construct
M’s for which the corresponding R satisfies, for example:

ln P(R > x)

x ln x
∼ −β

q
, as x →∞, β > 0.

I Or, for which

ln P(R > x)

−x r
= Θ(1), 1 < r < ∞,

(and a few similar things).
I From a different perspective Jurek (1999) showed that every

c-decomposable random variable X can be written as a
perpetuity:

X
d
= e−τX + Xτ ,

where τ ≥ 0 and (τ,Xτ ) is independent of X on the rhs.

X is c-decomposable if ∀c ∈ [0, 1] ∃Xc : X
d
= cX + Xc , with

X and Xc independent on the rhs.
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Tail behavior: light tails

I Lower bound: Goldie-Grübel (1996) in their work established
the general lower bound:

for δ ∈ (0, 1) let pδ := P(1− δ ≤ M ≤ 1).
Then, when Q ≡ q > 0, for c ∈ (0, 1) and x > q we have

P(R ≥ x) ≥ exp

(
− ln(1− c)

c
x ln(p cq

x
)

)
.

I Upper bound: Theorem (H. (2010)): There exist constants
c1, c2 such that if |Q| ≤ q and |M| ≤ 1 then for sufficiently
large x:

P(|R| > x) ≤ exp(
c1

q
x ln pc2q/x).

I In particular, if Q ≡ q > 0 and 0 ≤ M ≤ 1 then

exp(
2 ln 2

q
x ln pq/(2x)) ≤ P(R > x) ≤ exp(

1

4q
x ln p2q/x).



Tail behavior: light tails
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Comments on proof

I techniques for the cases 0 ≤ M ≤ 1 and P(M > 1) > 0 are
completely different.

I techniques previously used for an upper bound in the case
0 ≤ M ≤ 1 were generally based on an iteration of the

equation Rn
d
= MnRn−1 + Qn and they don’t seem to work.

I However, a proof of a lower bound of Goldie–Grübel may be
used to yield an upper bound.

I Rough idea for the lower bound: for a small δ, wait for the
first time when Mk ≤ 1− δ. Up to that time bound the
partial sums forming Rn below by a geometric sum.

I For the upper bound: keep recording consecutive times when
Mk ≤ 1− δ, bound above the partial sums by weighted sums
of geometric r.v.’s and use exponential bounds for such sums
(Goh, H. (2008)).
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Extremal behavior: heavy tails

We want to analyze the extremal behavior of (Rn) i.e. look at the
normalizing constant an and bn so that

an( max
0≤k≤n

Rn − bn)

converges in distribution to a non-degenerate random variable.
The theory for i.i.d. sequences (Rn) is completely developed and
goes back to Fisher-Tippett (1928) and Gnedenko (1943) and is
presented e.g. in a classic Leadbetter, Lindren and Rootzén
(1988). The situation is also well understood when (Rn) is a
stationary sequence. In our case, if (Rn) converges in distribution

to R we can take R0
d
= R and turn (Rn) into a stationary sequence.



Extremal behavior: heavy tails, cont.

de Haan, Resnick, Rootzén, de Vries (1989) showed that

I for M,Q ≥ 0 under Kesten’s conditions for the convergence of
(Rn) and P(M > 1) > 0 (which implies that
P(R > x) ∼ cx−κ) we have

lim
n→∞

P(
R∗n
n1/κ

≤ x) = exp(−cθx−1/κ),

where R∗n = max1≤k≤n Rk .

I That is, there is a convergence to Type II (Frechét)
distribution with normalizing constants an = 1/n1/κ and
bn = 0.

I θ = κ
∫∞
1 P(supj≥1

∏j
i=1 Mi ≤ 1

y ) dy
yκ+1 , is the extremal index

of the sequence (Rn).

I the existence of such θ ∈ [0, 1] (NOT assured in general even
for stationary sequences) says that R∗n behaves like max of
∼ θn i.i.d. variables with the same marginal distribution.
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Extremal behavior: light tails

Theorem (H. (2010)): Let Rn = MnRn−1 + q where q > 0,
0 ≤ M ≤ 1 M is non-degenerate, P(M = 0) = 0, and
sup{x : P(M > x) > 0} = 1. Then there exist (an), (bn) such
that

lim
n→∞

P(an(R∗n − bn) ≤ x) = exp(−e−x).

I the assumptions on M are needed to exclude trivial cases and
the case when R (and hence each Rn) is geometric.

I We may take bn so that bn ln pc/bn
= −Θ(ln n) and

an = Θ

(
1

bn ln pc/bn

fM(1− c

bn
)− ln pc/bn

)
∗∼ −Θ(ln pc/bn

),

where ’
∗∼’ means ’often ∼’ and c is a constant.

I the extremal index (built-in in an, bn) is θ = 1− P(M = 1).
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Open problems: tail behavior

I Get the asymptotics for P(R > x) when R
d
= MR + q,

0 ≤ M ≤ 1, q > 0.
Knowing the tail behavior would give the asymptotics of the
normalizing constants an, bn in the limit theorem for the
extremes.

I Get rid of the assumption Q ≡ q and/or |Q| ≤ q.
Without that some of the basic cases when we know the tail
behavior are not covered, e.g. the α–stable distributions:

R
d
= 2−1/α(R + R ′)

d
= MR + Q; M = 2−1/α,Q

d
= 2−1/αR

or

M
d
= β(α1, α2),Q

d
= Γ(α2, γ) =⇒ R

d
= Γ(α1 + α2, γ).



Thank you :)

Analysis and Probability, June 10-16, 2012 conference website:
http://www.mimuw.edu.pl/∼probanal


