Exact asymptotics for linear processes

Magda Peligrad

University of Cincinnati

October 2011

October 2011

(Institute)

Plan of talk

-Central limit theorem for linear processes.

-Functional central limit theorem for linear processes.

-Selfnormalized CLT.

-Exact asymptotic for linear processes

CLT for linear processes with finite second moments

$$X_k = \sum_{j=-\infty}^\infty a_{k+j} \xi_j, \ S_n = \sum_{j=1}^n X_j,$$

Theorem

(Ibragimov and Linnik, 1971) Let (ξ_j) be i.i.d. centered with finite second moment, $\sum_{k=-\infty}^{\infty} a_k^2 < \infty$ and $\sigma_n^2 = var(S_n) \to \infty$. Then

$$S_n/\sigma_n \xrightarrow{D} N(0,1).$$

$$\sigma_n^2 = \sum_{j=-\infty}^\infty b_{nj}^2$$
 , $b_{n,j} = a_{j+1} + ... + a_{j+n}.$

It was conjectured that a similar result might hold without the assumption of finite second moment.

(Institute)

 $(*) \qquad H(x) = \mathbb{E}(\xi_0^2 I(|\xi_0| \le x)) \text{ is a slowly varying function at } \infty.$ X₀ is well defined if

$$\sum_{j\in\mathbb{Z},\mathsf{a}_j
eq 0} \mathsf{a}_j^2 \mathsf{H}(|\mathsf{a}_j|^{-1}) < \infty,$$

Theorem

(P-Sang, 2011) Let $(\xi_k)_{k \in \mathbb{Z}}$ be i.i.d, centered. Then the following statements are equivalent:

(1) ξ_0 is in the domain of attraction of the normal law (i.e. satisfies (*)) (2) For any sequence of constants $(a_n)_{n \in \mathbb{Z}}$ as above and $\sum_{j=-\infty}^{\infty} b_{nj}^2 \to \infty$ the CLT holds. (i.e. $S_n/D_n \to N(0, 1)$)

$$D_{n} = \inf \left\{ s \ge 1 : \sum_{k \ge 1} \frac{b_{n,k}^{2}}{s^{2}} H\left(\frac{s}{|b_{n,k}|}\right) \le 1 \right\} , \inf_{k \ge 1} and D_{n,k}^{2} \simeq \sum_{k \ge 1} b_{n,k}^{2} \xi_{k}^{2} \cdot \sum_{m \ge 1} b_{n,k}^{2} \cdot$$

Functional central limit theorem question.

For $0 \le t \le 1$ define

$$W_n(t) = \frac{\sum_{i=1}^{\lfloor nt \rfloor} X_i}{\sigma_n}$$

where [x] is the integer part of x.

Problem

Let (ξ_j) be i.i.d. centered with finite second moment, $\sum_{k=-\infty}^{\infty} a_k^2 < \infty$ and $\sigma_n^2 = nh(n)$ with h(x) a function slowly varying at ∞ . Is it true that $W_n(t) \Rightarrow W(t)$, where W(t) is the standard Brownian motion?

This will necessarily imply in particular that for every $\varepsilon \geq$ 0,

$$\mathbb{P}(\max_{1\leq i\leq n}|X_i|\geq \varepsilon\sigma_n)\to 0 \text{ as } n\to\infty.$$

Example

There is a linear process (X_k) such that $\sigma_n^2 = nh(n)$ and such that the weak invariance principle does not hold:

$$\mathbb{P}(|\xi_0| > x) \sim \frac{1}{x^2 \log^{3/2} x},$$

$$a_0 = 0, a_1 = \frac{1}{\log 2} \text{ and } a_n = \frac{1}{\log(n+1)} - \frac{1}{\log n}, \text{ for } n \ge 2,$$

$$\sigma_n^2 \sim n/(\log n)^2 \text{ and } \limsup_{n \to \infty} \mathbb{P}(\max_{1 \le i \le n} |\xi_i| \ge \varepsilon \sigma_n) = 1.$$

However, when $\mathbb{E}(|\xi_0|^{2+\delta}) < \infty$ and $\sigma_n^2 = nh(n)$ the functional CLT holds. Woodroofe-Wu (2004) and also Merlevède-P(2006),

Regular weights and infinite variance (long memory).

$$a_n=n^{-lpha}L(n)$$
, where $1/2 , $\mathbb{E}(\xi_0^2 I(|\xi_0|\leq x))=H(x)$$

Example

Fractionally integrated processes. For 0 < d < 1/2 define

$$X_k = (1-B)^{-d} \xi_k = \sum_{i \geq 0} a_i \xi_{k-i}$$
 where $a_i = rac{\Gamma(i+d)}{\Gamma(d)\Gamma(i+1)}$

and *B* is the backward shift operator, $B\varepsilon_k = \varepsilon_{k-1}$.

For any real x, $\lim_{n\to\infty} \Gamma(n+x)/n^x \Gamma(n) = 1$ and so

$$\lim_{n\to\infty}a_n/n^{d-1}=1/\Gamma(d).$$

Define
$$b = \inf \{x \ge 1 : H(x) > 0\}$$

 $\eta_j = \inf \{s : s \ge b + 1, H(s)/s^2 \le j^{-1}\}, \quad j = 1, 2, \cdots$
 $B_n^2 := c_\alpha H_n n^{3-2\alpha} L^2(n) \text{ with } H_n = H(\eta_n)$

where

$$c_{\alpha} = \{\int_{0}^{\infty} [x^{1-\alpha} - \max(x-1,0)^{1-\alpha}]^2 dx\}/(1-\alpha)^2$$
.

Invariance principle for regular weights and infinite variance (long memory).

 $a_n = n^{-\alpha}L(n)$, where $1/2 < \alpha < 1$, $n \ge 1$, $\mathbb{E}(\xi_0^2 I(|\xi_0| \le x)) = H(x)$, L(n) and H(x) are both slowly varying at ∞ .

Theorem

(P-Sang 2011) Define $W_n(t) = S_{[nt]}/B_n$. Then, $W_n(t)$ converges weakly to the fractional Brownian motion W_H with Hurst index $3/2 - \alpha$, $(1/2 < \alpha < 1)$.

Fractional Brownian motion with Hurst index $3/2 - 2\alpha$, i.e. is a Gaussian process with covariance structure $\frac{1}{2}(t^{3-2\alpha} + s^{3-2\alpha} - (t-s)^{3-2\alpha})$ for $0 \le s < t \le 1$.

Theorem

(P-Sang 2011) Under the same conditions we have

$$rac{1}{nH_n}\sum_{i=1}^n X_i^2 \xrightarrow{P} A^2$$
 where $A^2 = \sum_i a_i^2$

and therefore

$$\frac{S_{[nt]}}{na_n\sqrt{\sum_{i=1}^n X_i^2}} \Rightarrow \frac{\sqrt{c_\alpha}}{A}W_H(t) \; .$$

In particular

$$\frac{S_n}{na_n\sqrt{\sum_{i=1}^n X_i^2}} \Rightarrow N(0, \frac{c_\alpha}{A^2}) \ .$$

We aim to find a function $N_n(x)$ such that, as $n \to \infty$,

$$\frac{\mathbb{P}(S_n \ge x\sigma_n)}{N_n(x)} = 1 + o(1), \text{ with } \sigma_n^2 = \|S_n\|_2^2.$$

where $x = x_n \ge 1$ (Typically $x_n \to \infty$).

We call $\mathbb{P}(S_n \ge x_n \sigma_n)$ the probability of *moderate* or *large deviation* probabilities depending on the speed of $x_n \to \infty$.

Exact approximation is more accurate and holds under less restrictive moment conditions than the logarithmic version

$$\frac{\log \mathbb{P}(S_n \ge x\sigma_n)}{\log N_n(x)} = 1 + o(1).$$

For example, suppose $\mathbb{P}(S_n \ge x\sigma_n) = 10^{-4}$ and $N_n(x) = 10^{-5}$; then their logarithmic ratio is 0.8, which does not appear to be very different from 1, while the ratio for the exact version is as big as 10.

Theorem

(Nagaev, 1979) Let (ξ_i) be i.i.d. with

$$\mathbb{P}(\xi_0 \geq x) = rac{h(x)}{x^t}(1+o(1))$$
 as $x o \infty$ for some $t>2$,

and for some p > 2, ξ_0 has absolute moment of order p. Then

$$\mathbb{P}(\sum_{i=1}^{n} \xi_{i} \ge x\sigma_{n}) = (1 - \Phi(x))(1 + o(1)) + n\mathbb{P}(\xi_{0} \ge x\sigma_{n})(1 + o(1))$$

for $n \to \infty$ and x > 1.

· · · · · · · ·

Notice that in this case

$$N_n(x) = (1 - \Phi(x)) + n \mathbb{P}(\xi_0 \ge x \sigma_n).$$

If $1 - \Phi(x) = o[n\mathbb{P}(\xi_0 \ge x\sigma_n)]$ then in we can also choose $N_n(x) = 1 - \Phi(x)$.

If $n\mathbb{P}(\xi_0 \ge x\sigma_n) = o(1 - \Phi(x))$ we have $N_n(x) = n\mathbb{P}(\xi_0 \ge x\sigma_n)$. The critical value of x is about $x_c = (2 \log n)^{1/2}$.

Linear Processes. Moderate and large deviation

Let (ξ_i) be i.i.d. with (h(x) is a slowly varying function at infinite)

$$\mathbb{P}(\xi_0 \ge x) = rac{h(x)}{x^t}(1+o(1))$$
 as $x o \infty$ for some $t>2$,

and for some p > 2, ξ_0 has absolute moment of order p.

Theorem

(P-Sang-Zhong-Wu, 2011) Let $S_n = \sum_{i=1}^n X_i$ where X_i is a linear process. Then, as $n \to \infty$,

$$\mathbb{P}\left(S_n \ge x\sigma_n\right) = (1+o(1))\sum_{i=-\infty}^{\infty} \mathbb{P}(b_{n,i}\xi_0 \ge x\sigma_n) + (1-\Phi(x))(1+o(1))$$

holds for all x > 0 when $\sigma_n \to \infty$, $\sum_{k=-\infty}^{\infty} a_k^2 < \infty$ and $b_{nj} > 0$,

$$b_{n,j} = a_{j+1} + \cdots + a_{j+n}$$

Define the Lyapunov's proportion

$$D_{nt}=B_{n2}^{-t/2}B_{nt}$$
 where $B_{nt}=\sum_i b_{ni}^t.$

For $x \ge a(\ln D_{nt}^{-1})^{1/2}$ with $a > 2^{1/2}$ we have

$$\mathbb{P}(S_n \geq x\sigma_n) = (1+o(1))\sum_{i=1}^{k_n} \mathbb{P}(c_{ni}\xi_0 \geq x\sigma_n) ext{ as } n o \infty$$
 .

On the other hand, if $0 < x \leq b(\ln D_{nt}^{-1})^{1/2}$ with $b < 2^{1/2}$, we have

$$\mathbb{P}\left(S_n \geq x\sigma_n
ight) = (1-\Phi(x))(1+o(1))$$
 as $n o \infty.$

Value at risk (VaR) and expected shortfall (ES) are equivalent to quantiles and tail conditional expectations.

Under the assumption $\lim_{x\to\infty} h(x) \to h_0 > 0$

$$\mathbb{P}(S_n \ge x\sigma_n) = (1 + o(1))\frac{h_0}{x^t}D_{nt} + (1 - \Phi(x))(1 + o(1)).$$

Given $\alpha \in (0, 1)$, let $q_{\alpha,n}$ be defined by $\mathbb{P}(S_n \ge q_{\alpha,n}) = \alpha$.

 $q_{\alpha,n}$ can be approximated by $x_{\alpha}\sigma_n$ where $x = x_{\alpha}$ is the solution to the equation

$$\frac{h_0}{x^t}D_{nt} + (1 - \Phi(x)) = \alpha.$$

- -CLT for stationary and ergodic differences innovations with finite second moment. (P-Utev, 2006)
- -invariance principles for generalized martingales Wu Woodroofe (2004), Dedecker-Merlevède-P (2011)
- -moderate deviations for generalized martingales. Merlevède-P (2010)
- CLT stationary martingales differences with infinite second moment plus a mild mixing assumption. (P-Sang 2011)

Results for mixing sequences under various mixing assumptions.

Some open problems

-Is the CLT for linear processes equivalent with its selfnormalized version?

$$S_n/V_n o N(0,1)$$
 where $V_n^2 = \sum_{i=1}^n X_i^2$

-CLT for linear processes with infinite variance and ergodic martingale innovations

-Functional CLT for linear processes with i.i.d. innovations finite second moment and $var(S_n) = nh(n)$ (necessary and sufficient conditions on the constants)

-The same question for generalized martingales

-Exact asymptotics for classes of Markov chains

-More classes of functions of linear processes

Peligrad, Magda; Sang, Hailin. Asymptotic Properties of Self-Normalized Linear Processes (2011); to appear in Econometric Theory. arXiv:1006.1572 Peligrad, Magda; Sang, Hailin. Central limit theorem for linear processes with infinite variance. (2011); to appear in J. Theoret. Probab. arXiv:1105.6129 Peligrad, Magda; Sang, Hailin; Zhong, Yunda ; Wu, Wei Biao. Exact Moderate and Large Deviations for Linear Processes (2011); (with Hailin Sang, Yunda Zhong and Wei Biao Wu).