Exact asymptotics for linear processes

Magda Peligrad
University of Cincinnati

October 2011

Exact asymptotics for linear processes

Plan of talk

-Central limit theorem for linear processes.
-Functional central limit theorem for linear processes.
-Selfnormalized CLT.
-Exact asymptotic for linear processes

CLT for linear processes with finite second moments

$$
X_{k}=\sum_{j=-\infty}^{\infty} a_{k+j} \xi_{j}, S_{n}=\sum_{j=1}^{n} X_{j}
$$

Theorem

(Ibragimov and Linnik, 1971) Let $\left(\xi_{j}\right)$ be i.i.d. centered with finite second moment, $\sum_{k=-\infty}^{\infty} a_{k}^{2}<\infty$ and $\sigma_{n}^{2}=\operatorname{var}\left(S_{n}\right) \rightarrow \infty$. Then

$$
S_{n} / \sigma_{n} \xrightarrow{D} N(0,1) .
$$

$$
\sigma_{n}^{2}=\sum_{j=-\infty}^{\infty} b_{n j}^{2}, b_{n, j}=a_{j+1}+\ldots+a_{j+n}
$$

It was conjectured that a similar result might hold without the assumption of finite second moment.

CLT for linear processes with infinite second moments

$(*) \quad H(x)=\mathbb{E}\left(\xi_{0}^{2} I\left(\left|\xi_{0}\right| \leq x\right)\right)$ is a slowly varying function at ∞.
X_{0} is well defined if

$$
\sum_{j \in \mathbb{Z}, a_{j} \neq 0} a_{j}^{2} H\left(\left|a_{j}\right|^{-1}\right)<\infty,
$$

Theorem

(P-Sang, 2011) Let $\left(\xi_{k}\right)_{k \in \mathbb{Z}}$ be i.i.d, centered. Then the following statements are equivalent:
(1) ξ_{0} is in the domain of attraction of the normal law (i.e. satisfies (*))
(2) For any sequence of constants $\left(a_{n}\right)_{n \in \mathbb{Z}}$ as above and $\sum_{j=-\infty}^{\infty} b_{n j}^{2} \rightarrow \infty$ the CLT holds. (i.e. $S_{n} / D_{n} \rightarrow N(0,1)$)

Functional central limit theorem question.

For $0 \leq t \leq 1$ define

$$
W_{n}(t)=\frac{\sum_{i=1}^{[n t]} X_{i}}{\sigma_{n}}
$$

where $[x]$ is the integer part of x.

Problem

Let $\left(\xi_{j}\right)$ be i.i.d. centered with finite second moment, $\sum_{k=-\infty}^{\infty} a_{k}^{2}<\infty$ and $\sigma_{n}^{2}=n h(n)$ with $h(x)$ a function slowly varying at ∞. Is it true that $W_{n}(t) \Rightarrow W(t)$, where $W(t)$ is the standard Brownian motion?

This will necessarily imply in particular that for every $\varepsilon \geq 0$,

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|X_{i}\right| \geq \varepsilon \sigma_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Functional CLT. Counterexample.

Example

There is a linear process $\left(X_{k}\right)$ such that $\sigma_{n}^{2}=n h(n)$ and such that the weak invariance principle does not hold:

$$
\begin{gathered}
\mathbb{P}\left(\left|\xi_{0}\right|>x\right) \sim \frac{1}{x^{2} \log ^{3 / 2} x}, \\
a_{0}=0, a_{1}=\frac{1}{\log 2} \text { and } a_{n}=\frac{1}{\log (n+1)}-\frac{1}{\log n}, \text { for } n \geq 2, \\
\sigma_{n}^{2} \sim n /(\log n)^{2} \text { and } \limsup _{n \rightarrow \infty} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|\xi_{i}\right| \geq \varepsilon \sigma_{n}\right)=1 .
\end{gathered}
$$

However, when $\mathbb{E}\left(\left|\xi_{0}\right|^{2+\delta}\right)<\infty$ and $\sigma_{n}^{2}=n h(n)$ the functional CLT holds. Woodroofe-Wu (2004) and also Merlevède-P(2006),

Regular weights and infinite variance (long memory).

$$
\begin{gathered}
a_{n}=n^{-\alpha} L(n), \text { where } 1 / 2<\alpha<1, \\
\\
\mathbb{E}\left(\xi_{0}^{2} l\left(\left|\xi_{0}\right| \leq x\right)\right)=H(x)
\end{gathered}
$$

Example

Fractionally integrated processes. For $0<d<1 / 2$ define

$$
X_{k}=(1-B)^{-d} \xi_{k}=\sum_{i \geq 0} a_{i} \xi_{k-i} \text { where } a_{i}=\frac{\Gamma(i+d)}{\Gamma(d) \Gamma(i+1)}
$$

and B is the backward shift operator, $B \varepsilon_{k}=\varepsilon_{k-1}$.
For any real $x, \lim _{n \rightarrow \infty} \Gamma(n+x) / n^{x} \Gamma(n)=1$ and so

$$
\lim _{n \rightarrow \infty} a_{n} / n^{d-1}=1 / \Gamma(d)
$$

Regularly varying weights and infinite variance; normalizers.

Define $b=\inf \{x \geq 1: H(x)>0\}$

$$
\begin{gathered}
\eta_{j}=\inf \left\{s: s \geq b+1, H(s) / s^{2} \leq j^{-1}\right\}, \quad j=1,2, \cdots \\
B_{n}^{2}:=c_{\alpha} H_{n} n^{3-2 \alpha} L^{2}(n) \text { with } H_{n}=H\left(\eta_{n}\right)
\end{gathered}
$$

where

$$
c_{\alpha}=\left\{\int_{0}^{\infty}\left[x^{1-\alpha}-\max (x-1,0)^{1-\alpha}\right]^{2} d x\right\} /(1-\alpha)^{2} .
$$

Invariance principle for regular weights and infinite variance (long memory).

$a_{n}=n^{-\alpha} L(n)$, where $1 / 2<\alpha<1, n \geq 1, \mathbb{E}\left(\tilde{\xi}_{0}^{2} I\left(\left|\xi_{0}\right| \leq x\right)\right)=H(x)$, $L(n)$ and $H(x)$ are both slowly varying at ∞.

Theorem

(P-Sang 2011) Define $W_{n}(t)=S_{[n t]} / B_{n}$. Then, $W_{n}(t)$ converges weakly to the fractional Brownian motion W_{H} with Hurst index $3 / 2-\alpha$, $(1 / 2<\alpha<1)$.

Fractional Brownian motion with Hurst index $3 / 2-2 \alpha$, i.e. is a Gaussian process with covariance structure $\frac{1}{2}\left(t^{3-2 \alpha}+s^{3-2 \alpha}-(t-s)^{3-2 \alpha}\right)$ for $0 \leq s<t \leq 1$.

Selfnormalized invariance principle

Theorem

(P-Sang 2011) Under the same conditions we have

$$
\frac{1}{n H_{n}} \sum_{i=1}^{n} X_{i}^{2} \xrightarrow{P} A^{2} \text { where } A^{2}=\sum_{i} a_{i}^{2}
$$

and therefore

$$
\frac{S_{[n t]}}{n a_{n} \sqrt{\sum_{i=1}^{n} X_{i}^{2}}} \Rightarrow \frac{\sqrt{c_{\alpha}}}{A} W_{H}(t)
$$

In particular

$$
\frac{S_{n}}{n a_{n} \sqrt{\sum_{i=1}^{n} X_{i}^{2}}} \Rightarrow N\left(0, \frac{c_{\alpha}}{A^{2}}\right) .
$$

Higher moments. Exact asymptotics.

We aim to find a function $N_{n}(x)$ such that, as $n \rightarrow \infty$,

$$
\frac{\mathbb{P}\left(S_{n} \geq x \sigma_{n}\right)}{N_{n}(x)}=1+o(1), \text { with } \sigma_{n}^{2}=\left\|S_{n}\right\|_{2}^{2}
$$

where $x=x_{n} \geq 1$ (Typically $x_{n} \rightarrow \infty$).
We call $\mathbb{P}\left(S_{n} \geq x_{n} \sigma_{n}\right)$ the probability of moderate or large deviation probabilities depending on the speed of $x_{n} \rightarrow \infty$.

Exact asymptotics versus logarithmic

Exact approximation is more accurate and holds under less restrictive moment conditions than the logarithmic version

$$
\frac{\log \mathbb{P}\left(S_{n} \geq x \sigma_{n}\right)}{\log N_{n}(x)}=1+o(1)
$$

For example, suppose $\mathbb{P}\left(S_{n} \geq x \sigma_{n}\right)=10^{-4}$ and $N_{n}(x)=10^{-5}$; then their logarithmic ratio is 0.8 , which does not appear to be very different from 1 , while the ratio for the exact version is as big as 10 .

Nagaev Result for i.i.d.

Theorem

(Nagaev, 1979) Let $\left(\xi_{i}\right)$ be i.i.d. with

$$
\mathbb{P}\left(\xi_{0} \geq x\right)=\frac{h(x)}{x^{t}}(1+o(1)) \text { as } x \rightarrow \infty \text { for some } t>2
$$

and for some $p>2, \xi_{0}$ has absolute moment of order p. Then

$$
\mathbb{P}\left(\sum_{i=1}^{n} \xi_{i} \geq x \sigma_{n}\right)=(1-\Phi(x))(1+o(1))+n \mathbb{P}\left(\xi_{0} \geq x \sigma_{n}\right)(1+o(1))
$$

for $n \rightarrow \infty$ and $x \geq 1$.

Nagaev Result for i.i.d.

Notice that in this case

$$
N_{n}(x)=(1-\Phi(x))+n \mathbb{P}\left(\xi_{0} \geq x \sigma_{n}\right)
$$

If $1-\Phi(x)=o\left[n \mathbb{P}\left(\xi_{0} \geq x \sigma_{n}\right)\right]$ then in we can also choose $N_{n}(x)=1-\Phi(x)$.

If $n \mathbb{P}\left(\xi_{0} \geq x \sigma_{n}\right)=o(1-\Phi(x))$ we have $N_{n}(x)=n \mathbb{P}\left(\xi_{0} \geq x \sigma_{n}\right)$. The critical value of x is about $x_{c}=(2 \log n)^{1 / 2}$.

Linear Processes. Moderate and large deviation

Let $\left(\xi_{i}\right)$ be i.i.d. with $(h(x)$ is a slowly varying function at infinite)

$$
\mathbb{P}\left(\xi_{0} \geq x\right)=\frac{h(x)}{x^{t}}(1+o(1)) \text { as } x \rightarrow \infty \text { for some } t>2
$$

and for some $p>2, \xi_{0}$ has absolute moment of order p.

Theorem

(P-Sang-Zhong-Wu, 2011) Let $S_{n}=\sum_{i=1}^{n} X_{i}$ where X_{i} is a linear process. Then, as $n \rightarrow \infty$,
$\mathbb{P}\left(S_{n} \geq x \sigma_{n}\right)=(1+o(1)) \sum_{i=-\infty}^{\infty} \mathbb{P}\left(b_{n, i} \xi_{0} \geq x \sigma_{n}\right)+(1-\Phi(x))(1+o(1))$
holds for all $x>0$ when $\sigma_{n} \rightarrow \infty, \sum_{k=-\infty}^{\infty} a_{k}^{2}<\infty$ and $b_{n j}>0$,

$$
b_{n, j}=a_{j+1}+\cdots+a_{j+n} .
$$

Zones of moderate and large deviations

Define the Lyapunov's proportion

$$
D_{n t}=B_{n 2}^{-t / 2} B_{n t} \text { where } B_{n t}=\sum_{i} b_{n i}^{t} .
$$

For $x \geq a\left(\ln D_{n t}^{-1}\right)^{1 / 2}$ with $a>2^{1 / 2}$ we have

$$
\mathbb{P}\left(S_{n} \geq x \sigma_{n}\right)=(1+o(1)) \sum_{i=1}^{k_{n}} \mathbb{P}\left(c_{n i} \xi_{0} \geq x \sigma_{n}\right) \text { as } n \rightarrow \infty
$$

On the other hand, if $0<x \leq b\left(\ln D_{n t}^{-1}\right)^{1 / 2}$ with $b<2^{1 / 2}$, we have

$$
\mathbb{P}\left(S_{n} \geq x \sigma_{n}\right)=(1-\Phi(x))(1+o(1)) \text { as } n \rightarrow \infty .
$$

Application

Value at risk (VaR) and expected shortfall (ES) are equivalent to quantiles and tail conditional expectations.
Under the assumption $\lim _{x \rightarrow \infty} h(x) \rightarrow h_{0}>0$

$$
\mathbb{P}\left(S_{n} \geq x \sigma_{n}\right)=(1+o(1)) \frac{h_{0}}{x^{t}} D_{n t}+(1-\Phi(x))(1+o(1))
$$

Given $\alpha \in(0,1)$, let $q_{\alpha, n}$ be defined by $\mathbb{P}\left(S_{n} \geq q_{\alpha, n}\right)=\alpha$. $q_{\alpha, n}$ can be approximated by $x_{\alpha} \sigma_{n}$ where $x=x_{\alpha}$ is the solution to the equation

$$
\frac{h_{0}}{x^{t}} D_{n t}+(1-\Phi(x))=\alpha
$$

Extension to dependent structures

-CLT for stationary and ergodic differences innovations with finite second moment. (P-Utev, 2006)
-invariance principles for generalized martingales Wu Woodroofe (2004), Dedecker-Merlevède-P (2011)
-moderate deviations for generalized martingales. Merlevède-P (2010)

- CLT stationary martingales differences with infinite second moment plus
a mild mixing assumption. (P-Sang 2011)
Results for mixing sequences under various mixing assumptions.

Some open problems

-Is the CLT for linear processes equivalent with its selfnormalized version?

$$
S_{n} / V_{n} \rightarrow N(0,1) \text { where } V_{n}^{2}=\sum_{i=1}^{n} X_{i}^{2}
$$

-CLT for linear processes with infinite variance and ergodic martingale innovations
-Functional CLT for linear processes with i.i.d. innovations finite second moment and $\operatorname{var}\left(S_{n}\right)=n h(n)$ (necessary and sufficient conditions on the constants)
-The same question for generalized martingales
-Exact asymptotics for classes of Markov chains
-More classes of functions of linear processes

Referrences

Peligrad, Magda; Sang, Hailin. Asymptotic Properties of Self-Normalized Linear Processes (2011); to appear in Econometric Theory.
arXiv:1006.1572
Peligrad, Magda; Sang, Hailin. Central limit theorem for linear processes with infinite variance. (2011); to appear in J. Theoret. Probab.
arXiv:1105.6129
Peligrad, Magda; Sang, Hailin; Zhong, Yunda ; Wu, Wei Biao. Exact Moderate and Large Deviations for Linear Processes (2011); (with Hailin Sang, Yunda Zhong and Wei Biao Wu).

