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Abstract. This is a short summary of the work done during our Banff FRG Workshop (September 16-23,
2012). We focus on the issue of the mixing of the BCZ map, as this was our primary subject of discussion.

1. Background. The workshop focused on recent developments in homogeneous dynamics, as related to
Diophantine approximation. Boca, Cobeli and Zaharescu, in the early 2000s, made a study of the fine
statistics of Farey fractions. To a first approximation, the Farey fractions with denominator up to Q are
uniformly distributed in the unit interval. The distribution of gaps between successive Farey fractions,
however, was found to be far from the exponential distribution that one might naively expect. In fact,
with suitable normalization, the distribution is seen to be piecewise analytic. More recently, Athreya and
Cheung unified the study of Boca, Cobeli and Zaharescu with the study of horocycle flow on the space of
unimodular lattices. The purpose of the workshop was to further develop this circle of ideas, and set out
future research directions. The participants had a fairly wide array of research specialties: interval exchange
transformations, homogeneous dynamics, C∗ algebras, Diophantine approximation, translation surfaces and
ergodic theory.

2. The BCZ map. Motivated by the study of Farey fractions, Boca-Cobeli-Zaharescu [5] introduced the
BCZ map T : Ω→ Ω on the triangle Ω := {(a, b) : a, b ∈ (0, 1], a+ b > 1)}. T acts via

T (a, b) = (a, b)AT
k ,

where

Ak =

(
0 1
−1 k

)
on the region Ωk := {(a, b) ∈ Ω : κ(a, b) = k}, where κ(a, b) =

⌊
1+a
b

⌋
. Boca-Zaharescu [4] posed several

questions about the ergodic properties of this map:

Question. Is T ergodic? Mixing? What is the entropy of T?

Figure 1. The Farey triangle Ω =
⋃
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Several questions were answered by Athreya-Cheung [3], who showed:

Theorem 1. T is a first return map of the horocycle flow on the space of lattices SL(2,R)/SL(2,Z). Let

hs =

(
1 0
−s 1

)
, the first return map to the transversal Ω̃ :=

{
Λa,b :=

(
a b
0 a−1

)
SL(2,Z) : (a, b) ∈ Ω

}
is given by T . The return time function is R(a, b) = 1

ab . That is, hR(a,b)Λa,b = ΛT (a,b).

Using the ergodicity, zero-entropy, and measure rigidity of the horocycle flow, this result shows that the BCZ
map is ergodic, zero-entropy, and that in fact Lebesgue measure is the unique ergodic invariant measure not
supported on a periodic orbit. However, mixing (and weak mixing) are not properties that pass from a flow
to a section. Mixing of the BCZ map would also have some interesting number theoretic applications. Thus,
a motivating question of the workshop was:

Question. Is the BCZ map mixing? Is it weak mixing?

3. Gauss Map Dreams. Another motivating question of the workshop was to place the BCZ map in the
general context of naturally ocurring, geometrically meaningful cross-sections to various homogeneous flows.
The most classical example of such is the (natural extension) of the Gauss Map, which links geodesic flow
on the modular surface SL(2,R)/SL(2,Z) to the study of continued fractions. More generally, the study of
these maps gives number theoretic and statistical applications. Thus, we had a general goal:

Idea. The BCZ is a ‘Gauss Map’ for horocycle flow’. Try and find more Gauss maps explicitly computable
transversals and return maps for well-known flows, especially so that number theoretic quantities are com-
putable. That is, can we fill more entries in the table below?

Interesting Invariants Farey Statistics Gauss Map Renormalization Dynamics ‘Resident’ Dynamics

Levy Constant π2

12 log 2
G(x) = { 1

x
} geodesic flow on SL(2,R)/SL(2, Z) circle rotations

Levy Constants Cheung-Chevalier Map diagonal flow on SL(n,R)/SL(n, Z) toral translation

Rauzy Induction Teichmüller Flow on Strata of Hodge Bundle Ωg IETs/Translation Surfaces

Index Farey Sequences BCZ horocycle flow on SL(2,R)/SL(2, Z)

Generalized Farey Sequences Horospherical Flows on SL(n,R)/SL(n, Z)

Table 1. Gauss Map Dreams

While there was significant discussion on these topics (particularly following the work of Cheung-Chevallier [6]
on higher-order Levy constants and the work of Athreya-Chaika [1] and Athreya-Chaika-Lelievre [2] on
translation surfaces, the primary focus of the workshop became the question of mixing of the BCZ map.

4. Mixing. There are well-known dynamical arguments to prove and disprove mixing in various examples.
As our initial intuitions on the properties of BCZ varied, we decided to discuss two possible approaches; one
to disprove mixing, using an argument of Katok [7] on Interval Exchange Transformations (IETs), and one
to prove mixing, using an argument of Marcus [8] for horocycle flows.

4.1. Katok. J. Chaika, an expert on IETs, described Katok’s argument on non-mixing of IETs, which relies
on a double-inducing construction and controlling the sizes of various pieces of the associated towers. After
some discussion, it became clear that this argument could not be used in this setting directly, and that there
were some serious obstacles to employing even the general strategy. Namely, controlling the height and size
of towers in the double-inducing construction was non-trivial.

4.2. Marcus. A. Quas, an expert in ergodic theory, described Marcus’s theorem on mixing of horocycle
flows, which relies crucially on proving equidistribution of geodesic segments when pushed forward under
the horocycle flow. In our setting, geodesic segments in SL(2,R)/SL(2,Z) translate to radial segments in
the transversal, and the equidistribution desired becomes the following: for any suitably nice function v on
Ω1, we want, for any z0 ∈ Ω, ∫ b

0

v(TNz−t)dt→ b

∫
Ω1

vdm,
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where z−t := g−tz0 := e−
t
2 z0. Here, g−t =

(
e−

t
2 0

0 e
t
2

)
. acts via the action on the lattice

Λz0 =

(
x y
0 x−1

)
Z2.

The main thread of our discussions was developing a strategy to prove this equidistribution. Since if we were

to replace the map T by the flow hs, we know that this is true by Marcus, it became crucial to understand
the time change created by inducing. Below, we discuss how this time change can be interpreted in many
different ways, and in particular as a lattice point problem.

4.3. Time Changes and Lattice Points. Let z0 = (x, y) ∈ Ω1, our standard BCZ transversal, and let t ∈ [0, b]
be a small parameter, and consider z−t for t ≤ −2 ln 1

x , which guarantees z−t ∈ Ω1. Let N > 0, and let
s = sN,t be such that

TN (z−t) = hsg−tz = g−thetsz.

Then, since for all v ∈ Ω1, gtv ∈ Ω1 for all t > 0, we have hetsz = gt(g−thetsz) ∈ Ω1, so there is a Mt > 0 so
that

hetsz = TMt(z).

That is, we apply TN to the entire radial segment {e t2 z0 : t ∈ [0, b]}, and want to express the point

TN (e
t
2x, e

t
2 y) as a point along the radial segment determined by TMt(x, y), for some Mt. We want to

understand the distribution of the quantity Mt along the segment [0, b]. The possible values of Mt range
(roughly) between N and ebN . Can we show that for an M ∈ [N, ebN ] (a range of size ≈ bN), that

|{t ∈ [0, b] : Mt = M}| ∼ b

bN
=

1

N
?

4.4. Roof Functions. The value s = sN,t is a partial sum of the roof function R(x, y) = 1
xy along the orbit

of BCZ. Precisely, we have

sN,t =

N∑
i=0

R(T i(z−t)).

We also have

etsN,t =

Mt−1∑
i=0

R(T i(z0)).

This gives a heuristic for the expected size of Mt, using the ergodic theorem, since we expect the first sum
to be ≈ N

∫
Ω
R and the second to be ≈Mt

∫
Ω
R, so we expect Mt to have size etNt.

4.5. Lattice Points. We can interpret Mt and N in terms of (primitive) lattice points. sN,t is the slope of
the N th vector (where we order vectors by slope) in the lattice Λz0 in the vertical strip

V
e−

t
2

= {y ≥ 0, 0 < x ≤ e− t
2 },

since this will be the N th slope for the lattice Λz−t in the standard vertical strip V1 = {y ≥ 0, 0 < x ≤ 1}.
Then Mt is the total number of points in Λz0 in the triangle which is the standard trip V1 bounded above
by the line of slope sN,t. That is, defining the triangles

Tt = ∆((0, 0), (1, 0), (1, sN,t)) and T̃t = ∆((0, 0), (e−
t
2 , 0), (e−

t
2 , e−

t
2 sN,t)),

we have (we are always counting only primitive points)

N = |Λz0 ∩ T̃t| and Mt = |Λz0 ∩ Tt|.
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Figure 2. The triangle T̃t is in blue, and Tt is the union of the blue triangle and the red
trapezoid. Marked points are primitive lattice points, so in this picture N = 3 and Mt = 5.
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4.6. Mt and Mixing. Recall that to prove mixing, we want to prove equidistribution of geodesic segments,
that is, we want to show that for any nice function v on Ω1,∫ b

0

v(TNz−t)dt→ b

∫
Ω1

vdm.

Using our definition of Mt, we have∫ b

0

v(TNz−t)dt =

∫ b

0

v(TMtz0)dt =

bN∑
r=0

v(TN+rz0)|{t ∈ [0, b] : Mt = t+ r}|.

If we could show that

mt+r = |{t ∈ [0, b] : Mt = t+ r}| ∼ 1/N,

then our integral would be an integral over the horocycle flow, and we could use unique ergodicity to get the
equidistribution of this integral.

A natural interpretation of |{t ∈ [0, b] : Mt = t + r}| is the gap between the rth and (r + 1)st x-coordinate
(written in increasing order of x-coordinate) of primitive points in our lattice Λz0 in the trapezoidal strip with

vertices at (e−
t
2 , 0), (1, 0), (e−

t
2 , e−

t
2 sN,t), (1, sN,t), that is, the symmetric difference between the triangles Tt

and T̃t.

4.7. Independence. It is not clear that the values |{t ∈ [0, b] : Mt = t+ r}| equidistribute. Another idea is to
show that T k(z0) (which yields, in particular, the horizontal component of the kth vector that we see in the
vertical strip V1) becomes independent of the length mk = |{t ∈ [0, b] : Mt = k}|. A precise version version
of this is the following: fix b > 0, let N � 0, and consider the collection of points

{(T k(z0), Nmk : N ≤ k ≤ ebN} ⊂ Ω× R+.

Then we would like the uniform measure on this set to converge to some measure on Ω × R+ which looks
like a product measure, of say, dm on Ω and an exp(−1) distribution on R+. We also note that

mk = |{t : R
(N)

e−
t
2

(z0) = k}|,

where

R
(N)

e−
t
2

(z0) =

N−1∑
i=0

Nt(T
i

e−
t
2

(z0))

is the number of times the orbit of the point z0 hits Ω1 when it has hit the smaller transversal Ω
e−

t
2
N

times.
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