Exercises on linear forms in the logarithms of algebraic numbers

Yann Bugeaud

Exercise 1.
Prove that the equation
\[y^2 + 1 = x^m \]
has no solutions in rational integers (V. A. Lebesgue, 1850).

Exercise 2.
Prove that the Diophantine equation
\[x^2 + 7 = 2^n \]
has exactly five integer solutions, given by
\[(x, n) \in \{(1, 3), (3, 4), (5, 5), (11, 7), (181, 15)\}. \]

Hint. Prove that \(n = 4 \) gives the only solution with \(n \) even. Assume that \(n \) is odd and write \(n = 2m + 1, y = 2^m \). Consider the equation
\[x^2 - 2y^2 = -7. \]
Prove that \(y \) is an element of the binary recurrence sequence \((y_s)_{s \in \mathbb{Z}}\) defined by
\[y_0 = 2, \quad y_1 = 3 \quad \text{and} \quad y_{s+2} = 2y_{s+1} + y_s, \quad s \in \mathbb{Z}. \]
We aim to show that the only elements of \((y_s)_{s \in \mathbb{Z}}\) which are powers of 2 are \(y_{-6} = 128 \) and \(y_0 = 2 \). Show that we can restrict ourselves to study the sequence \((u_s)_{s \in \mathbb{Z}}\), given by
\[u_s = y_{8s-6}/8, \text{ that is, by the binary recurrence} \]
\[u_0 = 16, \quad u_1 = 1 \quad \text{and} \quad u_{s+2} = 1154u_{s+1} - u_s. \]
Prove that if \(y = 2^m \) for some \(m \geq 8 \), then \(y = 8u_s \) for some \(s \equiv 16 \mod 32 \).
Look at the sequence \((u_s)_{s \in \mathbb{Z}}\) modulo the prime number 7681. Use the quadratic reciprocity law to show that, for any \(s \equiv 16 \mod 32 \), the number \(u_s \) cannot be a power of 2. Conclude.

Exercise 3.
Let \(\alpha_1, \ldots, \alpha_n \) be algebraic numbers. Let \(b_1, \ldots, b_n \) be non-zero integers. Deduce from Theorem A a lower bound for the quantity
\[\Lambda := |\alpha_1^{b_1} \cdots \alpha_n^{b_n} - 1|, \]
when \(\Lambda \neq 0 \). (Consider separately the case where all the \(\alpha_i \) are real.)
Exercise 4.
Let d be a non-zero integer and consider the Diophantine equation
\[x^2 + d = y^p, \quad \text{in } x > 0, \ y > 0 \text{ and } p \geq 3 \text{ prime}. \]
Use Theorem A to get an upper bound for p when $d = -2, \ d = 2, \ d = 7, \text{ and } d = 25,$ respectively.

Exercise 5.
Let $f(X)$ be an irreducible integer polynomial of degree at least 3. Prove that the equation
\[f(x) = y^2 \]
has only finitely many integer solutions x, y.

Exercise 6.
Consider the Diophantine equation
\[x^2 + a^2 = 2y^p, \]
where a is a given positive integer, x, y are coprime integers, and $p > 3$ is a prime.
Show that there exists an absolute constant C such that $p \leq C \log(2a)$.

Exercise 7.
Let a, b, k be non-zero integers. Prove that the equation
\[ax^m - by^n = k, \]
in the four unknowns $x \geq 2, \ y \geq 2, \ m \geq 3, \ n \geq 2,$ has only finitely many solutions if one of the unknowns is fixed.

Exercise 8.
Consider the Diophantine equation in four unknowns
\[\frac{x^n - 1}{x - 1} = y^q. \]
Prove that it has only finitely many solutions if x is fixed or if n has a fixed prime divisor or if y has a fixed prime divisor.
Assume that x is a perfect square, $x = z^2$. Establish then an absolute (i.e., independent of x) upper bound for q.

2
Exercise 9.

Let ξ be an irrational, real, algebraic number. Let $\left(\frac{p_n}{q_n}\right)_{n \geq 1}$ be the sequence of convergents to ξ. Use Baker’s theory to get an effective lower bound for $P[p_nq_n]$, where $P[\cdot]$ denotes the greatest prime factor.

Open problem: To get an effective lower bound for $P[p_n]$ (resp. for $P[q_n]$).

Exercise 10.

Give an explicit lower bound for the greatest prime factor of $k(k-1)$, when the integer k goes to infinity.

Exercise 11.

Using only elementary method, show that there exists an absolute constant C such that

$$v_5(3^m - 1) \leq C \log m, \quad \text{for any } m \geq 2.$$

More generally, let K be a number field of degree d, let p be a prime number and \mathcal{P} be a prime ideal in O_K dividing p. Then, for any algebraic integer α in K and any positive integer $m \geq 2$ such that $\alpha^m \neq 1$, there exists a positive constant C, depending only on d, p and α, such that

$$v_{\mathcal{P}}(\alpha^m - 1) \leq C \log m.$$

Exercise 12.

Let p_1, \ldots, p_ℓ be distinct prime numbers. Let S be the set of all positive integers of the form $p_1^{a_1} \cdots p_\ell^{a_\ell}$ with $a_i \geq 0$. Let $1 = n_1 < n_2 < \ldots$ be the sequence of integers from S ranged in increasing order. As above, let $P[\cdot]$ denote the greatest prime divisor. Give an effective lower bound for $P[n_{i+1} - n_i]$ as a function on n_i.

Exercise 13.

Let a, b, c and d be non-zero integers. Let p and q be coprime integers. Prove that the Diophantine equation

$$ap^x + bq^y + cp^z + dq^w = 0,$$

in non-negative integers x, y, z, w, has only finitely many solutions.

Exercise 14.

Let $\alpha > 1$ and $d > 1$ be an integer. Suppose that (x, y, m, n) with $y > x$ is a solution of the Diophantine equation

$$\frac{x^m - 1}{x - 1} = \frac{y^n - 1}{y - 1}.$$

Assume that

$$\gcd(m - 1, n - 1) = d, \quad \frac{m - 1}{n - 1} \leq \alpha.$$

Apply Baker’s theory to bound d by a linear function of α.

3
Exercise 15.

Consider the Diophantine equation \(x^2 - 2^m = y^n \) in positive integers \(y > 1, n > 2, x, m \), with \(x \) and \(y \) coprime. Show that \(n \) is bounded by an absolute numerical constant. What happens if 2 is replaced by an odd prime number \(p \)?

Exercise 16.

Let \(P \geq 2 \) be an integer and \(S \) be the set of all integers which are composed of primes less than or equal to \(P \). Show that there are only finitely many quintuples \((x, y, z, m, n)\) satisfying
\[
x^m - y^n = z^{\langle m,n \rangle},
\]
with \(x, y, m, n \) all \(\geq 2 \) and \(z \) in \(S \), where \(\langle m, n \rangle \) denotes the least common multiple of \(m \) and \(n \).

Exercise 17.

Consider the Diophantine equation
\[
2^a + 2^b + 1 = y^q,
\]
in integers \(a > b > 0, q \geq 2, y \geq 2 \). Prove that \(q \) is bounded.

Consider the Diophantine equation
\[
2^a + 2^b + 2^c + 1 = y^q,
\]
in integers \(a > b > c > 0, q \geq 2, y \geq 2 \). Prove that \(q \) is bounded.

What happens if one replaces 2 in the above equations by an odd prime number \(p \)?

Exercise 18.

Let \(a \geq 1, b, c \) be non-zero integers. Prove that the equation
\[
ax^n - by^n = c,
\]
in the unknowns \(x \geq 2, y \geq 2, n \geq 3 \) has only finitely many solutions.

Show that if \(c \) and \(a - b \) are very small compared to \(a \), then one gets an upper bound for \(n \) independent of \(a, b, c \).

Exercise 19.

Deduce Theorem F from Theorem C.

Hint. Establish first that, for integers \(b_1, \ldots, b_n \) and \(N \geq Q \geq 1 \), there exist a positive integer \(r \) and integers \(p_1, \ldots, p_n \) such that \(\lfloor N/Q \rfloor \leq r \leq N \) and
\[
|b_i - rp_i| \leq rQ^{-1/n} + |b_i|/(2r - 1) \quad (i = 1, \ldots, n).
\]
Then, consider the algebraic numbers \(\alpha = \alpha_1^{p_1} \cdots \alpha_n^{p_n} \) and \(\gamma = \alpha_1^{b_1-rp_1} \cdots \alpha_n^{b_n-rp_n} \alpha_{n+1} \).