Embedding into BD spaces and spaces with very few operators.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. Zisimopoulou

March 5, 2012
Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda > 1$. A Banach space X is called a $L(\infty, \lambda)$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d(E, \ell_\infty) < \lambda$.

X is called a L_∞-space if it is a $L(\infty, \lambda)$-space for some $\lambda > 1$.

Examples:
1. c_0 is a $L(\infty, 1+\epsilon)$-space for all $\epsilon > 0$.
2. $C(K)$ is a $L(\infty, 1+\epsilon)$-space for all $\epsilon > 0$.

Theorem (Lewis, Stegall 1973)

If a L_∞ space X has a separable dual X^*, then X^* is isomorphic to ℓ_1.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. Zisimopoulou

Embedding into BD spaces and spaces with very few operators.
Definition (Lindenstrauss, Pelczynski 1968)

Let \(\lambda > 1 \). A Banach space \(X \) is called a \(L(\infty, \lambda) \)-space if for every finite dimensional subspace \(F \) of \(X \), there is a finite dimensional subspace \(E \) of \(X \) such that \(F \subset E \) and \(d(E, \ell^\infty) < \lambda \).

\(X \) is called a \(L_\infty \)-space if it is a \(L(\infty, \lambda) \)-space for some \(\lambda > 1 \).

Examples:
1. \(c_0 \) is a \(L(\infty, 1+\varepsilon) \)-space for all \(\varepsilon > 0 \).
2. \(C(K) \) is a \(L(\infty, 1+\varepsilon) \)-space for all \(\varepsilon > 0 \).

Theorem (Lewis, Stegall 1973)

If a \(L_\infty \) space \(X \) has a separable dual \(X^* \), then \(X^* \) is isomorphic to \(\ell^1 \).
Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda > 1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda)}$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d(E, \ell_{\infty}^{\dim(E)}) < \lambda$.

Examples:

1. c_0 is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon > 0$.
2. $C(K)$ is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon > 0$.

Theorem (Lewis, Stegall 1973)

If a \mathcal{L}_∞ space X has a separable dual X^*, then X^* is isomorphic to ℓ_1.

Embedding into BD spaces and spaces with very few operators.
Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda > 1$. A Banach space X is called a $\mathcal{L}(\infty, \lambda)$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subseteq E$ and $d(E, \ell_{\infty}^{\dim(E)}) < \lambda$.

X is called a \mathcal{L}_∞-space if it is a $\mathcal{L}(\infty, \lambda)$-space for some $\lambda > 1$.
Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda > 1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda)}$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d(E, \ell^\text{dim}(E)) < \lambda$.

X is called a \mathcal{L}_∞-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda > 1$.

Examples:
Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda > 1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda)}$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d(E, \ell_{\dim(E)}^\infty) < \lambda$.

X is called a \mathcal{L}_∞-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda > 1$.

Examples:

1. c_0 is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon > 0$.
Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda > 1$. A Banach space X is called a $L(\infty, \lambda)$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d(E, \ell_{\dim(E)}^\infty) < \lambda$.

X is called a $L\infty$-space if it is a $L(\infty, \lambda)$-space for some $\lambda > 1$.

Examples:

1. c_0 is a $L(\infty, 1+\varepsilon)$-space for all $\varepsilon > 0$.
2. $C(K)$ is a $L(\infty, 1+\varepsilon)$-space for all $\varepsilon > 0$.

Theorem (Lewis, Stegall 1973)

If a $L\infty$ space X has a separable dual X^*, then X^* is isomorphic to ℓ_1.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikofsalis, Th. Schlup Embedding into BD spaces and spaces with very few operators.
Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda > 1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda)}$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d(E, \ell^{\dim(E)}_{\infty}) < \lambda$.

X is called a \mathcal{L}_{∞}-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda > 1$.

Examples:

1. c_0 is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon > 0$.
2. $C(K)$ is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon > 0$.

Theorem (Lewis, Stegall 1973)

If a \mathcal{L}_{∞} space X has a separable dual X^, then X^* is isomorphic to ℓ_1.***
Embedding into isomorphic preduals of ℓ_1

Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual. If X does not contain c_0, then X embeds into an isomorphic predual of ℓ_1 which does not contain c_0. If X is reflexive then X embeds into an isomorphic predual of ℓ_1 which is somewhat reflexive.
Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual.
Let X be a Banach space with separable dual.

- X embeds into an isomorphic predual of ℓ_1
Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual.

1. X embeds into an isomorphic predual of ℓ_1

2. If X does not contain c_0, then X embeds into an isomorphic predual of ℓ_1 which does not contain c_0.

Embedding into isomorphic preduals of ℓ_1

Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual.

1. X embeds into an isomorphic predual of ℓ_1

2. If X does not contain c_0, then X embeds into an isomorphic predual of ℓ_1 which does not contain c_0.

3. If X is reflexive then X embeds into an isomorphic predual of ℓ_1 which is somewhat reflexive.
Embedding into spaces with very few operators

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)
Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))
Let X be a separable Banach space such that ℓ_1 is not isomorphic to a complemented subspace of X^*. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators.
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space.

Let X be a separable uniformly convex Banach space.
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators.
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))

Let X be a separable Banach space such that ℓ_1 is not isomorphic to a complemented subspace of X^*.
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))

Let X be a separable Banach space such that ℓ_1 is not isomorphic to a complemented subspace of X^*. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))

Let X be a separable Banach space such that ℓ_1 is not isomorphic to a complemented subspace of X^*. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_1, and Z has very few operators.
Let \(\{ \Delta_i \}_{i=1}^{\infty} \) be a sequence of finite disjoint sets. We will construct a separable \(\ell_\infty \) subspace of \(\ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i) \).

For each \(n \in \mathbb{N} \), let \(U_n: \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \to \ell_\infty(\Delta_n + 1) \) be some linear map. Thus if \(x \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \) then \((x, U_n(x)), U_{n+1}(x)) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_n + 1 \cup \Delta_n + 2) \). Want to have:

\[(x, U_n(x), U_{n+1}(x), U_{n+2}(x), \ldots, \ldots) \in \ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i) \]

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. Zisimopoulou. Embedding into BD spaces and spaces with very few operators.
Let \(\{ \Delta_i \}_{i=1}^\infty \) be a sequence of finite disjoint sets. We will construct a separable \(\mathcal{L}_\infty \) subspace of \(\ell_\infty (\bigcup_{i=1}^\infty \Delta_i) \).
Let $\{\Delta_i\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets. We will construct a separable \mathcal{L}_∞ subspace of $\ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i)$. For each $n \in \mathbb{N}$, let $U_n : \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \to \ell_\infty(\Delta_{n+1})$ be some linear map.
Let $\{\Delta_i\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.

We will construct a separable \mathcal{L}_∞ subspace of $\ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i)$.

For each $n \in \mathbb{N}$, let $U_n : \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \to \ell_\infty(\Delta_{n+1})$ be some linear map.

Thus if $x \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i)$ then
Let $\{\Delta_i\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_∞ subspace of $\ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i)$.
For each $n \in \mathbb{N}$, let $U_n : \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \to \ell_\infty(\Delta_{n+1})$ be some linear map.
Thus if $x \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i)$ then

$$(x, U_n(x)) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_{n+1})$$
Let \(\{\Delta_i\}_{i=1}^{\infty} \) be a sequence of finite disjoint sets.
We will construct a separable \(\mathcal{L}_\infty \) subspace of \(\ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i) \).
For each \(n \in \mathbb{N} \), let \(U_n : \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \to \ell_\infty(\Delta_{n+1}) \) be some linear map.
Thus if \(x \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \) then

\[
(x, U_n(x)) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_{n+1})
\]

\[
(x, U_n(x), U_{n+1}(x, U_n(x))) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_{n+1} \cup \Delta_{n+2})
\]
Let \(\{\Delta_i\}_{i=1}^{\infty} \) be a sequence of finite disjoint sets. We will construct a separable \(L_\infty \) subspace of \(\ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i) \).

For each \(n \in \mathbb{N} \), let \(U_n : \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \to \ell_\infty(\Delta_{n+1}) \) be some linear map. Thus if \(x \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \) then

\[
(x, U_n(x)) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_{n+1})
\]

\[
(x, U_n(x), U_{n+1}(x, U_n(x))) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_{n+1} \cup \Delta_{n+2})
\]

Want to have:
Let \(\{\Delta_i\}_{i=1}^{\infty} \) be a sequence of finite disjoint sets. We will construct a separable \(L_\infty \) subspace of \(\ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i) \).

For each \(n \in \mathbb{N} \), let \(U_n : \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \to \ell_\infty(\Delta_{n+1}) \) be some linear map. Thus if \(x \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i) \) then

\[
(x, U_n(x)) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_{n+1})
\]

\[
(x, U_n(x), U_{n+1}(x, U_n(x))) \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Delta_{n+1} \cup \Delta_{n+2})
\]

Want to have:

\[
(x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \in \ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i)
\]
Assume there exists some constant $C \geq 1$ such that
\[
\|(x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots)\|_\infty \leq C\|x\|_\infty \quad \forall x \in \ell_\infty(\cup_{i=1}^n \Delta_i)
\]
Assume there exists some constant \(C \geq 1 \) such that

\[
\| (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \|_\infty \leq C \| x \|_\infty \quad \forall x \in \ell_\infty (\bigcup_{i=1}^n \Delta_i)
\]

We define \(J_n : \ell_\infty (\bigcup_{i=1}^n \Delta_i) \to \ell_\infty (\bigcup_{i=1}^\infty \Delta_i) \) by:

\[
J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty (\bigcup_{i=1}^n \Delta_i)
\]
Assume there exists some constant $C \geq 1$ such that

$$\| (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(...), ...) \|_\infty \leq C \| x \|_\infty \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$$

We define $J_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \to \ell_\infty(\bigcup_{i=1}^\infty \Delta_i)$ by:

$$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(...), ...) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$$

We denote $Y_n = J_n(\ell_\infty(\bigcup_{i=1}^n \Delta_i))$
Assume there exists some constant $C \geq 1$ such that

$$\|(x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(...), ...)\|_\infty \leq C \|x\|_\infty \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$$

We define $J_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \rightarrow \ell_\infty(\bigcup_{i=1}^\infty \Delta_i)$ by:

$$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(...), ...) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$$

We denote $Y_n = J_n(\ell_\infty(\bigcup_{i=1}^n \Delta_i))$ and $Y = \overline{\bigcup_{n=1}^\infty Y_n}$.

The space Y_n is C-isomorphic to $\ell_\infty(\bigcup_{i=1}^\infty \Delta_i)$. Thus Y is a separable L_∞-subspace of $\ell_\infty(\bigcup_{i=1}^\infty \Delta_i)$.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlud, Embedding into BD spaces and spaces with very few operators.
Assume there exists some constant $C \geq 1$ such that

$$\|(x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots)\|_\infty \leq C\|x\|_\infty \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$$

We define $J_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \to \ell_\infty(\bigcup_{i=1}^\infty \Delta_i)$ by:

$$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$$

We denote $Y_n = J_n(\ell_\infty(\bigcup_{i=1}^n \Delta_i))$ and $Y = \overline{\bigcup_{n=1}^\infty Y_n}$.

The space Y_n is C-isomorphic to $\ell_\infty(\bigcup_{i=1}^n \Delta_i)$.
Assume there exists some constant \(C \geq 1 \) such that
\[
\| (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \|_\infty \leq C \| x \|_\infty \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)
\]
We define \(J_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \rightarrow \ell_\infty(\bigcup_{i=1}^\infty \Delta_i) \) by:
\[
J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)
\]
We denote \(Y_n = J_n(\ell_\infty(\bigcup_{i=1}^n \Delta_i)) \) and \(Y = \overline{\bigcup_{n=1}^\infty Y_n} \).
The space \(Y_n \) is \(C \)-isomorphic to \(\ell_\infty(\bigcup_{i=1}^n \Delta_i) \).
Thus \(Y \) is a separable \(L_\infty \)-subspace of \(\ell_\infty(\bigcup_{i=1}^\infty \Delta_i) \).
How to ensure \(\|J_n\|_\infty \leq 2 \).

\[
\ell_\infty \left(\bigcup_{i=1}^n \Delta_i \right) \rightarrow \ell_\infty \left(\Delta_{n+1} \right)
\]

\[
J_n(x) = (x, U_n(x), U_{n+1}(x), U_{n+2}(x), \ldots, \ldots, U_{n+k}(x))
\]

\(\forall x \in \ell_\infty \left(\bigcup_{i=1}^n \Delta_i \right) \)

Some notation: If \(\gamma \in \Delta_{n+1} \) then

\[
u^*_\gamma(x) = U_n(x)(\gamma) \quad \text{and} \quad e^*_\gamma(x) = x(\gamma)
\]

Proposition (B-D condition)

The following condition guarantees that \(\|J_n\|_\infty \leq 2 \) for all \(n \in \mathbb{N} \).

For all \(\gamma \in \Delta_{n+1} \) there exists constants \(a_\gamma, b_\gamma \in \mathbb{R}, \) an integer \(1 \leq k < n, \) an element \(\eta \in \Delta_k \) and a functional \(b^*_\in \mathbb{B} \ell_1 \left(\bigcup_{i=1}^{n-1} \Delta_i \right) \) such that:

\[
u^*_\gamma(x) = a_\gamma e^*_\eta(x) + b_\gamma b^*_\in(x) \quad \forall x \in \ell_\infty \left(\bigcup_{i=1}^n \Delta_i \right)
\]

\[|a_\gamma| \leq 1 \quad \text{and} \quad |b_\gamma| \leq \frac{1}{4}
\]

\(\text{or } a_\gamma = 0 \) and \(|b_\gamma| \leq \frac{1}{4} \)

\[
J_n(x) = 0 \quad \forall x \in \ell_\infty \left(\bigcup_{i=1}^k \Delta_i \right)
\]
How to ensure $\|J_n\|_\infty \leq 2$.

$U_n : \ell_\infty (\bigcup_{i=1}^n \Delta_i) \to \ell_\infty (\Delta_{n+1})$
How to ensure $\|J_n\|_\infty \leq 2$.

$U_n : \ell_\infty (\bigcup_{i=1}^n \Delta_i) \to \ell_\infty (\Delta_{n+1})$

$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty (\bigcup_{i=1}^n \Delta_i)$
How to ensure $\|J_n\|_\infty \leq 2$.

$U_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \to \ell_\infty(\Delta_{n+1})$

$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u^*_\gamma(x) = U_n(x)(\gamma)$ and $e^*_\gamma(x) = x(\gamma)$
How to ensure $\|J_n\|_\infty \leq 2$.

$U_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \to \ell_\infty(\Delta_{n+1})$

$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u_\gamma^*(x) = U_n(x)(\gamma)$ and $e_\gamma^*(x) = x(\gamma)$

Proposition (B-D condition)
How to ensure $\|J_n\|_\infty \leq 2$.

$$U_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \to \ell_\infty(\Delta_{n+1})$$

$$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^*(x) = U_n(x)(\gamma)$ and $e_{\gamma}^*(x) = x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\|J_n\|_\infty \leq 2$ for all $n \in \mathbb{N}$.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlup Embedding into BD spaces and spaces with very few operators.
How to ensure $\|J_n\|_\infty \leq 2.$

$U_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \to \ell_\infty(\Delta_{n+1})$

$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u^*_\gamma(x) = U_n(x)(\gamma)$ and $e^*_\gamma(x) = x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\|J_n\|_\infty \leq 2$ for all $n \in \mathbb{N}.$

*For all $\gamma \in \Delta_{n+1}$ there exists constants $a_\gamma, b_\gamma \in \mathbb{R},$ an integer $1 \leq k < n,$ an element $\eta \in \Delta_k$ and a functional $b^*_\gamma \in B_{\ell_1(\bigcup_{i=1}^{n-1})}$ such that:*

\begin{enumerate}
\item $u^*_\gamma(x) = a_\gamma e^*_\eta(x) + b_\gamma b^*_\gamma(x)$ \quad $\forall x\in \ell_\infty\left(\bigcup_{i=1}^k \Delta_i\right)$
\item $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1/4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1/4$
\item $b^*_\gamma(J_n(x)) = 0$ for all $x \in \ell_\infty\left(\bigcup_{i=1}^{k-1} \Delta_i\right)$
\end{enumerate}
How to ensure $\|J_n\|_\infty \leq 2$.

$U_n : \ell_\infty(\bigcup_{i=1}^n \Delta_i) \to \ell_\infty(\Delta_{n+1})$

$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u^*_\gamma(x) = U_n(x)(\gamma)$ and $e^*_\gamma(x) = x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\|J_n\|_\infty \leq 2$ for all $n \in \mathbb{N}$.

For all $\gamma \in \Delta_{n+1}$ there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Delta_k$ and a functional $b^* \in B_{\ell_1(\bigcup_{i=1}^{n-1})}$ such that:

1. $u^*_\gamma(x) = a_\gamma e^*_\eta(x) + b_\gamma b^*(x) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$
How to ensure $\|J_n\|_\infty \leq 2$.

$U_n : \ell_\infty (\bigcup_{i=1}^n \Delta_i) \to \ell_\infty (\Delta_{n+1})$

$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty (\bigcup_{i=1}^n \Delta_i)$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u^*_\gamma(x) = U_n(x)(\gamma)$ and $e^*_\gamma(x) = x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\|J_n\|_\infty \leq 2$ for all $n \in \mathbb{N}$.

For all $\gamma \in \Delta_{n+1}$ there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Delta_k$ and a functional $b^* \in B_{\ell_1(\bigcup_{i=1}^{n-1})}$ such that:

1. $u^*_\gamma(x) = a_\gamma e^*_\eta(x) + b_\gamma b^*(x) \quad \forall x \in \ell_\infty (\bigcup_{i=1}^n \Delta_i)$

2. $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1/4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1$
How to ensure $\|J_n\|_\infty \leq 2$.

$U_n : \ell_\infty (\bigcup_{i=1}^n \Delta_i) \to \ell_\infty (\Delta_{n+1})$

$J_n(x) = (x, U_n(x), U_{n+1}(x, U_n(x)), U_{n+2}(\ldots), \ldots) \quad \forall x \in \ell_\infty (\bigcup_{i=1}^n \Delta_i)$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u_\gamma^*(x) = U_n(x)(\gamma)$ and $e_\gamma^*(x) = x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\|J_n\|_\infty \leq 2$ for all $n \in \mathbb{N}$.

For all $\gamma \in \Delta_{n+1}$ there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Delta_k$ and a functional $b^* \in B_{\ell_1(\bigcup_{i=1}^{n-1})}$ such that:

1. $u_\gamma^*(x) = a_\gamma e_\eta^*(x) + b_\gamma b^*(x) \quad \forall x \in \ell_\infty (\bigcup_{i=1}^n \Delta_i)$
2. $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1/4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1$
3. $b^*(J_n(x)) = 0$ for all $x \in \ell_\infty (\bigcup_{i=1}^k \Delta_i)$
Let \(X^* \) be a separable dual space with a boundedly complete FDD \((E_i^*) \).

Definition (c-decomposition)

Let \(0 < c < 1 \) be a constant. We call a finite block sequence \((x^*_{1}, \ldots, x^*_{m})\) a \(c \)-decomposition of \(x^* \in X^* \) with respect to \((E_i^*) \) if:

1. \[\sum_{i=1}^{m} x^*_{i} = x^* \]
 for all \(1 \leq i \leq m \) either
 \[\| x^*_{i} \| < c \]
 or
 \[x^*_{i} \in E_j^* \]
 for some \(j \in \mathbb{N} \).

We use the \(c \)-decomp. of a countable subset of \(B(X^*) \) to create a BD space containing \(X^* \).

We need to define \(\{ \Delta_i \}_{i=1}^{\infty} \) and \(\{ u^*_\gamma \}_{\gamma \in \cup \Delta_i} \).

Each \(\Delta_i \) will be a collection of \(c \)-decomp. \(\gamma = (x^*_{1}, \ldots, x^*_{m}) \).

If \(m > 2 \) then

\[u^*_\gamma(x^*_{1}, \ldots, x^*_{m}) = e^*_\gamma(x^*_{1}, \ldots, x^*_{m-1}) + \| x^*_{m} \| e^*_cd\left(\frac{x^*_{m}}{\| x^*_{m} \|}\right) \]

If \(m = 2 \) then

\[u^*_\gamma(x^*_{1}, x^*_{2}) = \| x^*_{1} \| e^*_cd\left(\frac{x^*_{1}}{\| x^*_{1} \|}\right) + \| x^*_{2} \| e^*_cd\left(\frac{x^*_{2}}{\| x^*_{2} \|}\right) \]

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. Zisimopoulou

Embedding into BD spaces and spaces with very few operators.
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x^*_1, \ldots, x^*_m) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^{m} x^*_i = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x^*_i\| < c$ or $x^*_i \in E_j^*$ for some $j \in \mathbb{N}$.

We use the c-decomp. of a countable subset of B_{X^*} to create a BD space containing X. We need to define $\{\Delta_i\}_{i=1}^{\infty}$ and $\{u^*_\gamma\}_{\gamma \in \bigcup \Delta_i}$. Each Δ_i will be a collection of c-decomp. $\gamma = (x^*_1, \ldots, x^*_m)$. If $m > 2$ then $u^*(x^*_1, \ldots, x^*_m) = e^*(x^*_1, \ldots, x^*_m - 1) + \|x^*_m\|e^{cd}(x^*_m/\|x^*_m\|)$.

If $m = 2$ then $u^*(x^*_1, x^*_2) = \|x^*_1\|e^{cd}(x^*_1/\|x^*_1\|) + \|x^*_2\|e^{cd}(x^*_2/\|x^*_2\|)$.
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)
Let $0 < c < 1$ be a constant.

We call a finite block sequence (x^*_1, \ldots, x^*_m) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^{m} x^*_i = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x^*_i\| < c$ or $x^*_i \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a BD space containing X^*.

We need to define $\{\Delta_i\}_{i=1}^{\infty}$ and $\{u^*_{\gamma}\}_{\gamma \in \bigcup \Delta_i}$.

Each Δ_i will be a collection of c-decomp. $\gamma = (x^*_1, \ldots, x^*_m)$.

- If $m > 2$ then $u^*(x^*_1, \ldots, x^*_m) = e^*_{x^*_1, \ldots, x^*_m-1} + \|x^*_m\| e^*_{cd}(x^*_m/\|x^*_m\|)$
- If $m = 2$ then $u^*(x^*_1, x^*_2) = \|x^*_1\| e^*_{cd}(x^*_1/\|x^*_1\|) + \|x^*_2\| e^*_{cd}(x^*_2/\|x^*_2\|)$
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x_1^*, \ldots, x_m^*) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

$$\sum_{i=1}^m x_i^* = x^* \quad \forall 1 \leq i \leq m$$

either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$.
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x_1^*, \ldots, x_m^*) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

$$\sum_{i=1}^m x_i^* = x^*$$
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence $(x_1^*, ..., x_m^*)$ a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^m x_i^* = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x_1^*, \ldots, x_m^*) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^{m} x_i^* = x^*$

2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a B-D space containing X.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlup, and D. Zisimopoulou Embedding into BD spaces and spaces with very few operators.
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x_1^*, \ldots, x_m^*) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^m x_i^* = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a B-D space containing X. We need to define $\{\Delta_i\}_{i=1}^\infty$ and $\{u_\gamma^*\}_{\gamma \in \cup \Delta_i}$.
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence $(x_1^*, ..., x_m^*)$ a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^{m} x_i^* = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a B-D space containing X. We need to define $\{\Delta_i\}_{i=1}^{\infty}$ and $\{u^*_\gamma\}_{\gamma \in \bigcup \Delta_i}$. Each Δ_i will be a collection of c-decomp. $\gamma = (x_1^*, ..., x_m^*)$.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlup. Embedding into BD spaces and spaces with very few operators.
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x_1^*, \ldots, x_m^*) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^{m} x_i^* = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a B-D space containing X. We need to define $\{\Delta_i\}_{i=1}^{\infty}$ and $\{u_\gamma^*\}_{\gamma \in \bigcup \Delta_i}$. Each Δ_i will be a collection of c-decomp. $\gamma = (x_1^*, \ldots, x_m^*)$. If $m > 2$ then
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence $(x_1^*, ..., x_m^*)$ a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^{m} x_i^* = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a B-D space containing X. We need to define $\{\Delta_i\}_{i=1}^\infty$ and $\{u_\gamma^*\}_{\gamma \in \cup \Delta_i}$. Each Δ_i will be a collection of c-decomp. $\gamma = (x_1^*, ..., x_m^*)$. If $m > 2$ then

$$u_{(x_1^*, ..., x_m^*)} = e_{(x_1^*, ..., x_{m-1}^*)} + \|x_m^*\| e_{cd}(x_m^*/\|x_m^*\|)$$
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x_1^*, \ldots, x_m^*) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^m x_i^* = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a B-D space containing X. We need to define $\{\Delta_i\}_{i=1}^{\infty}$ and $\{u^*_\gamma\}_{\gamma \in \bigcup \Delta_i}$. Each Δ_i will be a collection of c-decomp. $\gamma = (x_1^*, \ldots, x_m^*)$. If $m > 2$ then

$$u^*_\gamma(x_1^*, \ldots, x_m^*) = e^*_\gamma(x_1^*, \ldots, x_{m-1}^*) + \|x_m^*\| e^*_{cd}(x_m^*/\|x_m^*\|)$$

If $m = 2$ then

$$u^*_\gamma(x_1^*, x_2^*) = \|x_1^*\| e^*_{cd}(x_1^*/\|x_1^*\|) + \|x_2^*\| e^*_{cd}(x_2^*/\|x_2^*\|)$$
Let X^* be a separable dual space with a boundedly complete FDD (E_i^*).

Definition (c-decomposition)

Let $0 < c < 1$ be a constant. We call a finite block sequence (x_1^*, \ldots, x_m^*) a c-decomposition of $x^* \in X^*$ with respect to (E_i^*) if:

1. $\sum_{i=1}^{m} x_i^* = x^*$
2. $\forall 1 \leq i \leq m$ either $\|x_i^*\| < c$ or $x_i^* \in E_j^*$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of B_{X^*} to create a B-D space containing X. We need to define $\{\Delta_i\}_{i=1}^\infty$ and $\{u_{\gamma}^*\}_{\gamma \in \bigcup \Delta_i}$. Each Δ_i will be a collection of c-decomp. $\gamma = (x_1^*, \ldots, x_m^*)$. If $m > 2$ then

$$u(x_1^*, \ldots, x_m^*) = e(x_1^*, \ldots, x_{m-1}^*) + \|x_m^*\| e_{cd}(x_m^*/\|x_m^*\|)$$

If $m = 2$ then

$$u(x_1^*, x_2^*) = \|x_1^*\| e_{cd}(x_1^*/\|x_1^*\|) + \|x_2^*\| e_{cd}(x_2^*/\|x_2^*\|)$$
If X is a Banach space then $\psi: X \to C(B_X^*)$ defined by $\psi(x)(x^*) = x^*(x)$ is an isometry.

X embeds into Y in a very similar way.

We define the embedding $\phi: X \to Y \subset \ell_\infty(\bigcup_{i=1}^\infty \Delta_i)$ by:

$$\phi(x)(\gamma) = \sum_{i=1}^m x^*_i(x)$$

where $\gamma = (x^*_1, \ldots, x^*_m)$.
If X is a Banach space then $\psi : X \to C(B_{X^*})$ defined by $\psi(x)(x^*) = x^*(x)$ is an isometry.
If X is a Banach space then $\psi : X \to C(B_{X^*})$ defined by $\psi(x)(x^*) = x^*(x)$ is an isometry.

X embeds into Y in a very similar way.
If X is a Banach space then $\psi : X \to C(B_{X^*})$ defined by $\psi(x)(x^*) = x^*(x)$ is an isometry.

X embeds into Y in a very similar way.

We define the embedding $\phi : X \to Y \subset \ell_\infty(\bigcup_{i=1}^\infty \Delta_i)$ by:

$$\phi(x)(\gamma) = \sum_{i=1}^m x_i^*(x) \quad \text{where} \quad \gamma = (x_1^*, ..., x_m^*)$$
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with $X \subseteq Y \subseteq \ell_\infty \left(\bigcup_{i=1}^\infty \Delta_i \right)$. We create new finite sets $(\Theta_i)_{i=1}^\infty$ and a new BD space Z with $X \oplus 0 \subseteq Z \subset \ell_\infty \left(\bigcup_{i=1}^\infty \Theta_i \right) \oplus \ell_\infty \left(\bigcup_{i=1}^\infty (\Delta_i \cup \Theta_i) \right)$.

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators. For $\gamma \in \Theta_{n+1}$, we need to define $u^*\gamma(x)$. We require that there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Theta_k$ and a functional $b^* \in B_{\ell_1} \left(\bigcup_{i=1}^{n-1} \Delta_i \cup \Theta_i \right)$ such that:

1. $u^*\gamma(x) = a_\gamma e^*\eta(x) + b_\gamma b^*(x) \quad \forall x \in \ell_\infty \left(\bigcup_{i=1}^n \Delta_i \cup \Theta_i \right)$
2. $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1 / 4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1 / 2$
3. $b^*|X = 0$ for all $x \in \ell_\infty \left(\bigcup_{i=1}^k \Delta_i \cup \Theta_i \right)$
4. $b^*|X = 0$ for all $x \in \ell_\infty \left(\bigcup_{i=1}^k \Delta_i \cup \Theta_i \right)$
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\cup_{i=1}^\infty \Delta_i).$$
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\bigcup_{i=1}^\infty \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^\infty$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subset \ell_\infty(\bigcup_{i=1}^\infty \Delta_i) \oplus \ell_\infty(\bigcup_{i=1}^\infty \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define $u^*\gamma$.

We require that there exist constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Theta_k$ and a functional $b^* \in B\ell_1(\bigcup_{i=1}^{n-1} \Delta_i)$ such that:

1. $u^*\gamma(x) = a_\gamma e^*\eta(x) + b_\gamma b^* (x) \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i)$
2. $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1/4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1/4$
3. $b^* |X = 0$ for all $x \in \ell_\infty(\bigcup_{i=1}^k \Delta_i \cup \Theta_i)$
4. $b^* |X = 0$ for all $x \in \ell_\infty(\bigcup_{i=1}^k \Delta_i \cup \Theta_i)$
Augmentations

We have a Banach space X, finite sets $(\Delta_i)_{i=1}^{\infty}$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\cup_{i=1}^{\infty} \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^{\infty}$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subseteq \ell_\infty(\cup_{i=1}^{\infty} \Delta_i) \oplus \ell_\infty(\oplus \cup_{i=1}^{\infty} \Theta_i).$$

Depending on X, we want Z to have the additional property
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^{\infty}$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_{\infty}(\bigcup_{i=1}^{\infty} \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^{\infty}$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subseteq \ell_{\infty}(\bigcup_{i=1}^{\infty} \Delta_i) \oplus \ell_{\infty}(\bigoplus_{i=1}^{\infty} \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. Zisimopoulou

Embedding into BD spaces and spaces with very few operators.
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^{\infty}$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^{\infty}$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subseteq \ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i) \oplus \ell_\infty(\bigoplus \bigcup_{i=1}^{\infty} \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive,
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\bigcup_{i=1}^\infty \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^\infty$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subseteq \ell_\infty(\bigcup_{i=1}^\infty \Delta_i) \oplus \ell_\infty(\bigoplus_{i=1}^\infty \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_γ^*.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlup, Embedding into BD spaces and spaces with very few operators.
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\bigcup_{i=1}^\infty \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^\infty$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subset \ell_\infty(\bigcup_{i=1}^\infty \Delta_i) \oplus \ell_\infty(\bigoplus \bigcup_{i=1}^\infty \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_γ^*. We require that there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Theta_k$ and a functional $b^* \in B_{\ell_1(\bigcup_{i=1}^{n-1} \Delta_i)}$ such that:
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\cup_{i=1}^\infty \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^\infty$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subset \ell_\infty(\cup_{i=1}^\infty \Delta_i) \oplus \ell_\infty(\oplus \cup_{i=1}^\infty \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_γ^*. We require that there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Theta_k$ and a functional $b^* \in B_{\ell_1(\cup_{i=1}^{n-1})}$ such that:

1. $u_\gamma^*(x) = a_\gamma e_\eta^*(x) + b_\gamma b^*(x)$ $\quad \forall x \in \ell_\infty(\cup_{i=1}^n \Delta_i \cup \Theta_i)$
Augmentations

We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\bigcup_{i=1}^\infty \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^\infty$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subset \ell_\infty(\bigcup_{i=1}^\infty \Delta_i) \oplus \ell_\infty(\bigoplus \bigcup_{i=1}^\infty \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_γ^*. We require that there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Theta_k$ and a functional $b^* \in B_{\ell_1(\bigcup_{i=1}^{n-1})}$ such that:

1. $u_\gamma^*(x) = a_\gamma e_\eta^*(x) + b_\gamma b^*(x) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^{n-1} \Delta_i \cup \Theta_i)$
2. $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1/4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1$
We have a Banach space X, finite sets $(\Delta_i)_{i=1}^{\infty}$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^{\infty}$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subset \ell_\infty(\bigcup_{i=1}^{\infty} \Delta_i) \oplus \ell_\infty(\bigoplus \bigcup_{i=1}^{\infty} \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_γ^*. We require that there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Theta_k$ and a functional $b^* \in B_{\ell_1(\bigcup_{i=1}^{n-1})}$ such that:

1. $u_\gamma^*(x) = a_\gamma e_\eta^*(x) + b_\gamma b^*(x) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^{n} \Delta_i \cup \Theta_i)$
2. $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1/4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1$
3. $b^*(J_n(x)) = 0$ for all $x \in \ell_\infty(\bigcup_{i=1}^{k} \Delta_i \cup \Theta_i)$
Augmentations

We have a Banach space X, finite sets $(\Delta_i)_{i=1}^\infty$, and a BD space Y with

$$X \subseteq Y \subseteq \ell_\infty(\bigcup_{i=1}^\infty \Delta_i).$$

We create new finite sets $(\Theta_i)_{i=1}^\infty$ and a new BD space Z with

$$X \oplus 0 \subseteq Z \subseteq \ell_\infty(\bigcup_{i=1}^\infty \Delta_i) \oplus \ell_\infty(\bigoplus \bigcup_{i=1}^\infty \Theta_i).$$

Depending on X, we want Z to have the additional property of not containing c_0, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_γ^*. We require that there exists constants $a_\gamma, b_\gamma \in \mathbb{R}$, an integer $1 \leq k < n$, an element $\eta \in \Theta_k$ and a functional $b^* \in B_{\ell_1(\bigcup_{i=1}^{n-1})}$ such that:

1. $u_\gamma^*(x) = a_\gamma e_\eta^*(x) + b_\gamma b^*(x) \quad \forall x \in \ell_\infty(\bigcup_{i=1}^n \Delta_i \cup \Theta_i)$
2. $|a_\gamma| \leq 1$ and $|b_\gamma| \leq 1/4$ or $a_\gamma = 0$ and $|b_\gamma| \leq 1$
3. $b^*(J_n(x)) = 0$ for all $x \in \ell_\infty(\bigcup_{i=1}^k \Delta_i \cup \Theta_i)$
4. $b^*|_X = 0$
How to augment FOS with AH for \(X \) uniformly convex

For each \(\gamma \in AH \), there exists \(m_j \in \mathbb{N} \), called the weight of \(\gamma \), such that:

\[
u^* \gamma = m_j - 1 b^* \quad \text{or} \quad u^* \gamma = e^* \xi + m_j - 1 b^*
\]

and weight of \(\xi \) is \(m_j \).

Define:

\[
e^* \gamma = u^* \gamma + d^* \gamma.
\]

Note that \(u^* \xi \) has the same form as \(u^* \gamma \).

After repeatedly substituting, we obtain the evaluation analysis of \(\gamma \):

\[
e^* \gamma = a \sum_{i=1}^{n_j} d^* \xi + m_j - 1 \sum_{i=1}^{n_j} b^* i
\]

and \(a \leq n_j \).

In FOS, each \(\gamma \) is a \(c \)-decomposition (\(x^*_1, x^*_2, \ldots, x^*_a \)).

\[
u^* (x^*_1, x^*_2, \ldots, x^*_a) = e^* (x^*_1, x^*_2, \ldots, x^*_a - 1) + \|x^*_a\| e^* (x^*_a / \|x^*_a\|)
\]

The evaluation analysis of \((x^*_1, x^*_2, \ldots, x^*_a) \) is:

\[
e^* (x^*_1, x^*_2, \ldots, x^*_a) = a \sum_{i=1}^{n_j} d^* (x^*_1, x^*_2, \ldots, x^*_i) + \|x^*_i\| a \sum_{i=1}^{n_j} e^* (x^*_i / \|x^*_i\|)
\]
How to augment FOS with AH for X uniformly convex

For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u^*\gamma = m_j - 1 b^*$$

or

$$u^*\gamma = e^*\xi + m_j - 1 b^*$$

and weight of ξ is m_j

Define:

$$e^*\gamma = u^*\gamma + d^*\gamma.$$

Note that $u^*\xi$ has the same form as $u^*\gamma$!

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e^*\gamma = a \sum_{i=1}^{a} d^*\xi + m_j - 1 a \sum_{i=1}^{a} b^*i$$

and $a \leq n_j$

In FOS, each γ is a c-decomposition (x^*1, x^*2, ..., x^*a).

$$u^*(x^*1, x^*2, ..., x^*a) = e^*(x^*1, x^*2, ..., x^*a - 1) + \|x^*a\|e^*(x^*a/\|x^*a\|)$$

The evaluation analysis of ($x^*1, x^*2, ..., x^*a$) is:

$$e^*(x^*1, x^*2, ..., x^*a) = a \sum_{i=1}^{a} d^*(x^*1, x^*2, ..., x^*i) + \|x^*i\|a \sum_{i=1}^{a} e^*(x^*i/\|x^*i\|)$$
How to augment FOS with AH for \(X \) uniformly convex

For each \(\gamma \in AH \), there exists \(m_j \in \mathbb{N} \), called the weight of \(\gamma \), such that:

\[
 u^*_\gamma = m_j^{-1} b^*
\]

or

\[
 u^*_\gamma = e^*_\xi + m_j^{-1} b^*
\]

and weight of \(\xi \) is \(m_j \)

Define: \(e^*_\gamma = u^*_\gamma + d^*_\gamma \). Note that \(u^*_\xi \) has the same form as \(u^*_\gamma \)!

After repeatedly substituting, we obtain the evaluation analysis of \(\gamma \):

\[
 e^*_\gamma = \sum_{i=1}^{a} d^*_\xi + m_j^{-1} \sum_{i=1}^{a} b^*_i \quad \text{and} \quad a \leq n_j
\]

In FOS, each \(\gamma \) is a c-decomposition \((x_1^*, x_2^*, \ldots, x_a^*) \).

\[
 u^*_\gamma(x_1^*, x_2^*, \ldots, x_a^*) = e^*_\gamma(x_1^*, x_2^*, \ldots, x_a^*) + \|x_a^*\| e^*_\gamma(x_a^*/\|x_a^*\|)
\]

The evaluation analysis of \((x_1^*, x_2^*, \ldots, x_a^*) \) is:

\[
 e^*_\gamma(x_1^*, x_2^*, \ldots, x_a^*) = \sum_{i=1}^{a} d^*_\gamma(x_1^*, x_2^*, \ldots, x_i^*) + \|x_i^*\| \sum_{i=1}^{a} e^*_\gamma(x_i^*/\|x_i^*\|)
\]
For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u^*_\gamma = m_j^{-1} b^*$$ or

$$u^*_\gamma = e^*_\xi + m_j^{-1} b^*$$ and weight of ξ is m_j
For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

\[
 u^*_\gamma = m_j^{-1} b^* \quad \text{or} \quad u^*_\gamma = e^*_\xi + m_j^{-1} b^* \quad \text{and weight of } \xi \text{ is } m_j
\]

Define: $e^*_\gamma = u^*_\gamma + d^*_\gamma$.

Embedding into BD spaces and spaces with very few operators.
For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u_\gamma^* = m_j^{-1} b^*$$

or

$$u_\gamma^* = e_\xi^* + m_j^{-1} b^*$$

and weight of ξ is m_j.

Define: $e_\gamma^* = u_\gamma^* + d_\gamma^*$. Note that u_ξ^* has the same form as u_γ^*!
How to augment FOS with AH for X uniformly convex

For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u^*_\gamma = m_j^{-1} b^*$$

or

$$u^*_\gamma = e^*_\xi + m_j^{-1} b^*$$

and weight of ξ is m_j

Define: $e^*_\gamma = u^*_\gamma + d^*_\gamma$. Note that u^*_ξ has the same form as $u^*_\gamma!$

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e^*_\gamma = a \sum_{i=1}^{a} d^*_i$$

$$\parallel x^*_\gamma \parallel e^*_\gamma = a \sum_{i=1}^{a} x^*_i / \parallel x^*_i \parallel$$
For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u_\gamma^* = m_j^{-1} b^*$$

or

$$u_\gamma^* = e_\xi^* + m_j^{-1} b^*$$

and weight of ξ is m_j

Define: $e_\gamma^* = u_\gamma^* + d_\gamma^*$. Note that u_ξ^* has the same form as u_γ^*!

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e_\gamma^* = \sum_{i=1}^{a} d_{\xi}^* + m_j^{-1} \sum_{i=1}^{a} b_i^*$$
For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u_\gamma^* = m_j^{-1} b^*$$ or $$u_\gamma^* = e_\xi^* + m_j^{-1} b^*$$ and weight of ξ is m_j

Define: $e_\gamma^* = u_\gamma^* + d_\gamma^*$. Note that u_ξ^* has the same form as u_γ^*!

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e_\gamma^* = \sum_{i=1}^{a} d_\xi^* + m_j^{-1} \sum_{i=1}^{a} b_i^*$$ and $a \leq n_j$
How to augment FOS with AH for X uniformly convex

For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u_\gamma^* = m_j^{-1} b^*$$

or

$$u_\gamma^* = e_\xi^* + m_j^{-1} b^*$$

and weight of ξ is m_j

Define: $e_\gamma^* = u_\gamma^* + d_\gamma^*$. Note that u_ξ^* has the same form as u_γ^*!

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e_\gamma^* = \sum_{i=1}^{a} d_\xi^* + m_j^{-1} \sum_{i=1}^{a} b_i^*$$

and $a \leq n_j$

In FOS, each γ is a c-decomposition $(x_1^*, x_2^*, ..., x_a^*)$.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlup, and D. Zisimopoulou
Embedding into BD spaces and spaces with very few operators.
For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u_\gamma^* = m_j^{-1} b^* \quad \text{or} \quad u_\gamma^* = e_\xi^* + m_j^{-1} b^*$$

and weight of ξ is m_j

Define: $e_\gamma^* = u_\gamma^* + d_\gamma^*$. Note that u_ξ^* has the same form as u_γ^*!

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e_\gamma^* = \sum_{i=1}^{a} d^*_\xi + m_j^{-1} \sum_{i=1}^{a} b_i^* \quad \text{and} \quad a \leq n_j$$

In FOS, each γ is a c-decomposition $(x_1^*, x_2^*, ..., x_a^*)$.

$$u_\gamma^*(x_1^*, x_2^*, ..., x_a^*) = e_\gamma^*(x_1^*, x_2^*, ..., x_a^*) + \|x_a^*\| e_\gamma^*(x_a^*/\|x_a^*\|)$$
How to augment FOS with AH for X uniformly convex

For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u_\gamma^* = m_j^{-1} b^*$$ or
$$u_\gamma^* = e_\xi^* + m_j^{-1} b^*$$ and weight of ξ is m_j

Define: $e_\gamma^* = u_\gamma^* + d_\gamma^*$. Note that u_ξ^* has the same form as u_γ^*!

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e_\gamma^* = \sum_{i=1}^{a} d_\xi^* + m_j^{-1} \sum_{i=1}^{a} b_i^*$$ and $a \leq n_j$

In FOS, each γ is a c-decomposition $(x_1^*, x_2^*, ..., x_a^*)$.

$$u(x_1^*, x_2^*, ..., x_a^*) = e(x_1^*, x_2^*, ..., x_{a-1}^*) + \| x_a^* \| e(x_a^*/\| x_a^* \|)$$

The evaluation analysis of $(x_1^*, x_2^*, ..., x_a^*)$ is:
How to augment FOS with AH for X uniformly convex

For each $\gamma \in AH$, there exists $m_j \in \mathbb{N}$, called the weight of gamma, such that:

$$u_{\gamma}^* = m_j^{-1} b^*$$

or

$$u_{\gamma}^* = e_\xi^* + m_j^{-1} b^*$$

and weight of ξ is m_j

Define: $e_{\gamma}^* = u_{\gamma}^* + d_{\gamma}^*$. Note that u_{ξ}^* has the same form as u_{γ}^*!

After repeatedly substituting, we obtain the evaluation analysis of γ:

$$e_{\gamma}^* = \sum_{i=1}^{a} d_{\xi}^* + m_j^{-1} \sum_{i=1}^{a} b_i^*$$

and $a \leq n_j$

In FOS, each γ is a c-decomposition $(x_1^*, x_2^*, \ldots, x_a^*)$.

$$u_{(x_1^*, x_2^*, \ldots, x_a^*)}^* = e_{(x_1^*, x_2^*, \ldots, x_a^*)}^* + \|x_a^*\| e_{(x_a^*/\|x_a^*\|)}^*$$

The evaluation analysis of $(x_1^*, x_2^*, \ldots, x_a^*)$ is:

$$e_{(x_1^*, x_2^*, \ldots, x_a^*)}^* = \sum_{i=1}^{a} d_{(x_1^*, x_2^*, \ldots, x_i^*)}^* + \|x_i^*\| \sum_{i=1}^{a} e_{(x_i^*/\|x_i^*\|)}^*$$
We replace each $\gamma = (x_1^*, x_2^*, ..., x_a^*)$ in FOS with $(cx_1^*, cx_2^*, ..., cx_a^*)$.
How to augment FOS with AH for X uniformly convex

We replace each $\gamma = (x_1^*, x_2^*, ..., x_a^*)$ in FOS with $(cx_1^*, cx_2^*, ..., cx_a^*)$. The evaluation analysis of $(cx_1^*, cx_2^*, ..., cx_a^*)$ is:

$$e^* (cx_1^*, cx_2^*, ..., cx_a^*) = a \sum_{i=1}^{a} d^* (cx_i^*, cx_2^*, ..., cx_a^*) + c a \sum_{i=1}^{a} \|x_i^*\| e^*(cx_i^*/\|x_i^*\|)$$
We replace each $\gamma = (x_1^*, x_2^*, \ldots, x_a^*)$ in FOS with $(cx_1^*, cx_2^*, \ldots, cx_a^*)$. The evaluation analysis of $(cx_1^*, cx_2^*, \ldots, cx_a^*)$ is:

$$e^{(cx_1^*, cx_2^*, \ldots, cx_a^*)} = \sum_{i=1}^{a} d^{(cx_1^*, cx_2^*, \ldots, cx_i^*)} + c \sum_{i=1}^{a} \frac{\|x_i^*\|}{c} e^{(cx_i^*/\|x_i^*\|)}$$

We may choose $m_1 = c$.
How to augment FOS with AH for X uniformly convex

We replace each $\gamma = (x_1^*, x_2^*, ..., x_a^*)$ in FOS with $(cx_1^*, cx_2^*, ..., cx_a^*)$. The evaluation analysis of $(cx_1^*, cx_2^*, ..., cx_a^*)$ is:

$$e^{\ast}_{(cx_1^*, cx_2^*, ..., cx_a^*)} = \sum_{i=1}^{a} d_{(cx_1^*, cx_2^*, ..., cx_i^*)} + c \sum_{i=1}^{a} \frac{\|x_i^*\|}{c} e^{\ast}_{(cx_i^*/\|x_i^*\|)}$$

We may choose $m_1 = c$. If X is uniformly convex then there exists $n_1 \in \mathbb{N}$
We replace each $\gamma = (x_1^*, x_2^*, ..., x_a^*)$ in FOS with $(cx_1^*, cx_2^*, ..., cx_a^*)$. The evaluation analysis of $(cx_1^*, cx_2^*, ..., cx_a^*)$ is:

$$e_{(cx_1^*, cx_2^*, ..., cx_a^*)} = \sum_{i=1}^{a} d_{(cx_1^*, cx_2^*, ..., cx_i^*)} + c \sum_{i=1}^{a} \frac{\|x_i^*\|}{c} e_{(cx_i^*/\|x_i^*\|)}$$

We may choose $m_1 = c$. If X is uniformly convex then there exists $n_1 \in \mathbb{N}$ such that if $x^* \in B_{X^*}$ then x^* has a c-decomposition $(x_1^*, x_2^*, ..., x_a^*)$ with $a \leq n_1$.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlü.. Embedding into BD spaces and spaces with very few operators.
We replace each $\gamma = (x_1^*, x_2^*, ..., x_a^*)$ in FOS with $(cx_1^*, cx_2^*, ..., cx_a^*)$. The evaluation analysis of $(cx_1^*, cx_2^*, ..., cx_a^*)$ is:

$$
e_{(cx_1^*, cx_2^*, ..., cx_a^*)}^* = \sum_{i=1}^{a} d_{(cx_1^*, cx_2^*, ..., cx_i^*)}^* + c \sum_{i=1}^{a} \frac{\|x_i^*\|}{c} e_{(cx_i^*/\|x_i^*\|)}^*
$$

We may choose $m_1 = c$. If X is uniformly convex then there exists $n_1 \in \mathbb{N}$ such that if $x^* \in B_{X^*}$ then x^* has a c-decomposition $(x_1^*, x_2^*, ..., x_a^*)$ with $a \leq n_1$. Thus FOS fits the setup:

$$
u_{\gamma}^* = m_j^{-1} b^* \quad \text{or} \quad u_{\gamma}^* = e_{\xi}^* + m_j^{-1} b^* \quad \text{and weight of } \xi \text{ is } m_j
$$

After repeatedly substituting, we obtain the analysis of γ:

$$
e_{\gamma}^* = \sum_{i=1}^{a} d_{\xi}^* + m_j^{-1} \sum_{i=1}^{a} b_i^* \quad \text{and } a \leq n_j$$

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. Zisimopoulou

Embedding into BD spaces and spaces with very few operators.
How to augment FOS with AH for X uniformly convex

We replace each $\gamma = (x_1^*, x_2^*, \ldots, x_a^*)$ in FOS with $(cx_1^*, cx_2^*, \ldots, cx_a^*)$. The evaluation analysis of $(cx_1^*, cx_2^*, \ldots, cx_a^*)$ is:

$$e^*_{(cx_1^*, cx_2^*, \ldots, cx_a^*)} = \sum_{i=1}^{a} d^*_{(cx_1^*, cx_2^*, \ldots, cx_i^*)} + c \sum_{i=1}^{a} \frac{\|x_i^*\|}{c} e^*_{(cx_i^*/\|x_i^*\|)}$$

We may choose $m_1 = c$. If X is uniformly convex then there exists $n_1 \in \mathbb{N}$ such that if $x^* \in B_{X^*}$ then x^* has a c-decomposition $(x_1^*, x_2^*, \ldots, x_a^*)$ with $a \leq n_1$. Thus FOS fits the setup:

$$u^*_\gamma = m_j^{-1} b^* \quad \text{or} \quad u^*_\gamma = e^*_\xi + m_j^{-1} b^* \quad \text{and weight of} \ \xi \ \text{is} \ \ m_j$$

After repeatedly substituting, we obtain the analysis of γ:

$$e^*_\gamma = \sum_{i=1}^{a} d^*_\xi + m_j^{-1} \sum_{i=1}^{a} b_i^*$$
How to augment FOS with AH for X uniformly convex

We replace each $\gamma = (x_1^*, x_2^*, \ldots, x_a^*)$ in FOS with $(cx_1^*, cx_2^*, \ldots, cx_a^*)$. The evaluation analysis of $(cx_1^*, cx_2^*, \ldots, cx_a^*)$ is:

$$e_{(cx_1^*, cx_2^*, \ldots, cx_a^*)} = \sum_{i=1}^{a} d_{(cx_1^*, cx_2^*, \ldots, cx_i^*)} + c \sum_{i=1}^{a} \frac{||x_i^*||}{c} e_{(cx_i^*/||x_i^*||)}$$

We may choose $m_1 = c$. If X is uniformly convex then there exists $n_1 \in \mathbb{N}$ such that if $x^* \in B_{X^*}$ then x^* has a c-decomposition $(x_1^*, x_2^*, \ldots, x_a^*)$ with $a \leq n_1$. Thus FOS fits the setup:

$$u_\gamma^* = m_j^{-1} b^* \quad \text{or} \quad u_\gamma^* = e_\xi^* + m_j^{-1} b^* \quad \text{and weight of } \xi \text{ is } m_j$$

After repeatedly substituting, we obtain the analysis of γ:

$$e_\gamma^* = \sum_{i=1}^{a} d_{\xi_i^*} + m_j^{-1} \sum_{i=1}^{a} b_i^* \quad \text{and } a \leq n_j$$
For AH, given any bounded operator T, there exists a constant λ such that $T - \lambda Id$ is compact.
For AH, given any bounded operator T, there exists a constant λ such that $T - \lambda \text{Id}$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T - \lambda \text{Id} - K$ factors through X. Thus $T - \lambda \text{Id} - K$ is weakly compact, and hence compact.
For AH, given any bounded operator T, there exists a constant λ such that $T - \lambda I$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T - \lambda I - K$ factors through X. Thus $T - \lambda I - K$ is weakly compact.
For AH, given any bounded operator T, there exists a constant λ such that $T - \lambda Id$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T - \lambda Id - K$ factors through X. Thus $T - \lambda Id - K$ is weakly compact. Thus $T^* - \lambda Id^* - K^* : \ell_1 \to \ell_1$ is weakly compact,
For AH, given any bounded operator T, there exists a constant λ such that $T - \lambda I$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T - \lambda I - K$ factors through X. Thus $T - \lambda I - K$ is weakly compact. Thus $T^* - \lambda I^* - K^*$: $\ell_1 \to \ell_1$ is weakly compact, and hence compact.
For AH, given any bounded operator T, there exists a constant λ such that $T - \lambda I$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T - \lambda I - K$ factors through X. Thus $T - \lambda I - K$ is weakly compact. Thus $T^* - \lambda I^* - K^* : l_1 \to l_1$ is weakly compact, and hence compact. This gives that $T - \lambda I$ is compact.