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1Università di Chieti-Pescara, Italy
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S15 and Spin(9) S15 is “more equal” than other spheres

First characterization: Hopf fibrations

S15 is the only sphere involved in three different Hopf fibrations.

S15

Remark

The complex and quaternionic Hopf fibrations are not subfibrations of the
octonionic one [Loo-Verjovsky, Topology 1992].
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S15 and Spin(9) S15 is “more equal” than other spheres

Second characterization: Einstein metrics

S15 is the only sphere with three homogeneous Einstein metrics
[Ziller, Math. Ann. 1982].

Round metric.

Einstein metric on Sp(4)/Sp(3) [Jensen, J. Diff. Geom. 1973].

Einstein metric on Spin(9)/Spin(7)
[Bourguignon-Karcher, Ann. Sci. Ec. Norm. Sup. 1978].
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S15 and Spin(9) S15 is “more equal” than other spheres

Third characterization: vector fields on spheres

S15 is the lowest dimensional sphere admitting more than 7 vector fields
[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(m) of linearly independent vector fields on Sm−1?

If m = (2k + 1)2p16q, with 0 ≤ p ≤ 3, then

σ(m) = 8q + 2p − 1

Spin(9) contribution C,H,O contribution
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S15 and Spin(9) Spin(9) and Hopf fibrations

Berger’s list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

SO(n)
U(n)

SU(n)

Sp(n) · Sp(1)

Sp(n)
G2

Spin(7)

Simply connected, complete, holonomy Spin(9)
⇔

OP2 = F4
Spin(9) (s > 0), R16(flat), OH2 = F4(−20)

Spin(9) (s < 0)
[Alekseevsky, Funct. Anal. Prilozhen 1968].
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S15 and Spin(9) Spin(9) and Hopf fibrations

What is Spin(9)?

Definition

Spin(9) ⊂ SO(16) is the group of symmetries of the Hopf fibration

O2 ⊃ S15 S7

→ S8 ∼= OP1
[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Λ8(R16)
Spin(9)

= Λ8
1 + . . . [Friedrich, Asian Journ. Math 2001].

Spin(9) is the stabilizer in SO(16) of any element of Λ8
1

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9)
utc
=

∫
OP1

p∗l νl dl Details

[Berger, Ann. Éc. Norm. Sup. 1972].

Up to constants
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S15 and Spin(9) Spin(9) and Hopf fibrations

Time check

Are we left with 32 or more minutes?

Yes, go ahead as planned No, skip quaternionic analogy
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The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

Sp(2) · Sp(1) ⊂ SO(8) is the group of symmetries of the Hopf

fibration H2 ⊃ S7 S3

→ S4 ∼= HP1
[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Sp(2) · Sp(1) is the stabilizer in SO(8) of the 4-form ΦSp(2)·Sp(1)

defined by

ΦSp(2)·Sp(1) =

∫
HP1

p∗l νl dl

[Berger, Ann. Éc. Norm. Sup. 1972].
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The Spin(9) fundamental form Quaternionic analogy

Five involutions for Spin(5)

Consider in Sp(2) the matrices(
r Ru

Ru −r

)
where (r , u) ∈ S4 ⊂ R×H and H2 ∼= R8.

The choice of (r , u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

I1, . . . , I5 ∈ SO(8) Details

I1, . . . , I5 satisfy

I2
α = Id, I∗α = Iα, Iα ◦ Iβ = −Iβ ◦ Iα
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The Spin(9) fundamental form Quaternionic analogy

From involutions to Kähler forms

Since Iα ◦ Iβ = −Iβ ◦ Iα, one gets 10 complex structures

Jαβ = Iα ◦ Iβ for α < β

The Kähler forms θαβ give rise to a 5× 5 skew-symmetric matrix

θ = (θαβ)

Remark

Denote by τ2(θ) the second coefficient of the characteristic polynomial of
θ = (θαβ).

Then

ΦSp(2)·Sp(1)
utc
= τ2(θ)
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The Spin(9) fundamental form Spin(9) and Kähler forms on R16
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The Spin(9) fundamental form Spin(9) and Kähler forms on R16

Nine involutions for Spin(9)

Spin(9) is the subgroup of SO(16) generated by matrices(
r Ru

Ru −r

)
where (r , u) ∈ S8 ⊂ R×O and O2 ∼= R16

[Harvey, Spinors and Calibrations 1990].

The choice of (r , u) = (1, 0), (0, 1), (0, i), (0, j), (0, k), (0, e), (0, f ),
(0, g), (0, h) gives

I1, . . . , I9 ∈ SO(16) Details

I1, . . . , I9 satisfy

I2
α = Id, I∗α = Iα, Iα ◦ Iβ = −Iβ ◦ Iα
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The Spin(9) fundamental form Spin(9) and Kähler forms on R16

From involutions to Kähler forms

Since Iα ◦ Iβ = −Iβ ◦ Iα, one gets 36 complex structures

Jαβ = Iα ◦ Iβ for α < β

Their Kähler forms θαβ give rise to a 9× 9 skew-symmetric matrix

θ = (θαβ)

Remark

Λ2(R16) = Λ2
36 ⊕ Λ2

84 = spin(9)⊕ Λ2
84

generated by θαβ generated by θαβγ
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The Spin(9) fundamental form Spin(9) and Kähler forms on R16

From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2012]

Denote the characteristic polynomial of θ by

t9 + τ2(θ)t7 + τ4(θ)t5 + τ6(θ)t3 + τ8(θ)t

Then
ΦSpin(9)

utc
= τ4(θ)

18 / 54



The Spin(9) fundamental form Spin(9) and Kähler forms on R16

From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2012]

Denote the characteristic polynomial of θ by

t9 + τ2(θ)t7 + τ4(θ)t5 + τ6(θ)t3 + τ8(θ)t

Then
ΦSpin(9)

utc
= τ4(θ)

18 / 54



The Spin(9) fundamental form An explicit formula for ΦSpin(9)
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The Spin(9) fundamental form An explicit formula for ΦSpin(9)

An explicit formula for ΦSpin(9)

From ΦSpin(9)
utc
= τ4(θ), we obtain an explicit formula

The
(16

8

)
= 12870 integrals of

ΦSpin(9)
utc
=

∫
OP1

p∗l νl dl

can be computed with the help of Mathematica.

Show all 702 terms Show only 70 terms Computational challenge

Previous work for ΦSpin(9) in [Abe-Matsubara, Korea Japan Conf. Transf. Groups 1997],
[Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].

20 / 54



The Spin(9) fundamental form An explicit formula for ΦSpin(9)

An explicit formula for ΦSpin(9)

From ΦSpin(9)
utc
= τ4(θ), we obtain an explicit formula

The
(16

8

)
= 12870 integrals of

ΦSpin(9)
utc
=

∫
OP1

p∗l νl dl

can be computed with the help of Mathematica.

Show all 702 terms Show only 70 terms Computational challenge

Previous work for ΦSpin(9) in [Abe-Matsubara, Korea Japan Conf. Transf. Groups 1997],
[Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].

20 / 54



The Spin(9) fundamental form An explicit formula for ΦSpin(9)

An explicit formula for ΦSpin(9)

From ΦSpin(9)
utc
= τ4(θ), we obtain an explicit formula

The
(16

8

)
= 12870 integrals of

ΦSpin(9)
utc
=

∫
OP1

p∗l νl dl

can be computed with the help of Mathematica.

Show all 702 terms Show only 70 terms Computational challenge

Previous work for ΦSpin(9) in [Abe-Matsubara, Korea Japan Conf. Transf. Groups 1997],
[Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].

20 / 54



The Spin(9) fundamental form An explicit formula for ΦSpin(9)

Questions to the audience

ΦSpin(9) =
∫
OP1 p

∗
l νl dl and ΦSp(2)·Sp(1) =

∫
HP1 p

∗
l νl dl share the following

general pattern:

Φ =

∫
Gr(calibrated subspaces)

p∗νcalibrated subspaces

ΦG2 ∈ Λ3(R7) is a calibration, with associative subspaces as
calibrated submanifolds. The Grassmannian in this case is G2/SO(4):
is it true that

ΦG2 =

∫
G2

SO(4)

p∗l νl dl

Same question for ΦSpin(7) ∈ Λ4(R8): is it true that

ΦSpin(7) =

∫
CAY

p∗l νl dl

21 / 54
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The Spin(9) fundamental form An explicit formula for ΦSpin(9)

QttA/2

The forms ΦSp(2)·Sp(1), ΦG2 , ΦSpin(7) and ΦSpin(9) are finite sums of 14, 7,
14 and 702 terms respectively.

Why these numbers?

Are these numbers related to finite subgroups of Sp(2) · Sp(1), G2,
Spin(7) and Spin(9) respectively?

Why do ΦG2 and ΦSpin(7) have coefficients ±1, whereas ΦSp(2)·Sp(1)

and ΦSpin(9) do not?

In the framework of Clifford structures [Moroianu-Semmelmann, Adv. Math. 2011], one can
associate to any rank r even Clifford structure a skew-symmetric r × r
matrix of Kähler forms.

Do the coefficients of the characteristic polynomial have any
particular geometrical meaning?
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Vector fields on spheres Maximum number and examples

1 S15 and Spin(9)
S15 is “more equal” than other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximum number and examples
The general case

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Vector fields on spheres Maximum number and examples

How many vector fields on spheres?

Spheres Sm−1 ⊂ Rm admit 1, 3 or 7 linearly independent vector fields
according to whether p = 1, 2 or 3 in

m = (2k + 1)2p

In the general case

m = (2k + 1)2p16q with q ≥ 0 and p = 0, 1, 2, 3

the maximum number of vector fields is

σ(m) = 8q + 2p − 1

Spin(9) contribution C,H,O contribution

The lowest dimensional sphere with more than 7 vector field is S15

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].
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Vector fields on spheres Maximum number and examples

The lowest dimension: S15

Coordinates on S15:

N = (x , y) = (x1, . . . , x8, y1, . . . , y8) unit normal vector field

Among the 36 complex structures Iα ◦ Iβ on R16 associated to the
Spin(9) structure, choose Jα = Iα ◦ I9, for α = 1, . . . , 8.

Proposition

A maximal system of 8 orthonormal vector fields on S15 is given by

J1N, . . . , J8N

Remark

The eight complex structures {J1, . . . , J8} play a role analogous to that of
the units in C,H,O.
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Vector fields on spheres Maximum number and examples

Next spheres with σ(m) > 7: S2p16−1, p = 1, 2, 3

Group coordinates in 16-ples sα, and split each sα as a pair (xα, yα) of
8-ples. Define a conjugation D by (xα, yα) 7→ (xα,−yα).

Proposition

The following table gives a maximal system of σ(m) orthonormal vector
fields on S2p16−1, for p = 1, 2, 3:

Sphere σ(m) Vector fields Notations Involved structures

p = 1: S31 8 + 1
J1N, . . . , J8N N = s1 + is2, LiN = −s2 + is1

Spin(9)+C
D(LiN) D : (xα, yα)→ (xα,−yα)

p = 2: S63 8 + 3
J1N, . . . , J8N N = s1 + is2 + js3 + ks4

Spin(9)+H
D(LiN),D(LjN),D(LkN) Li , Lj , Lk and D as above

p = 3: S127 8 + 7
J1N, . . . , J8N N = s1 + is2 + js3 + ks4 + es5 + fs6 + gs7 + hs8

Spin(9)+O
D(LiN), . . . ,D(LhN) Li , . . . , Lh and D as above
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Vector fields on spheres Maximum number and examples

S255: σ(m) = 8 + 8

Again, group coordinates in 16-ples sα, and split each sα as a pair
(xα, yα) of 8-ples. Define D by (xα, yα) 7→ (xα,−yα).

Act on the (column) 16-ples of 16-ples (s1, . . . , s16)T by J1, . . . , J8,
and call block(J1), . . . ,block(J8) the resulting automorphisms.

Proposition

A maximal system of orthonormal vector fields on S255 is given by:

Sphere σ(m) Vector fields Notations Involved
structures

p = 1: S31 8 + 1
J1N, . . . , J8N N = s1 + is2, LiN = −s2 + is1

Spin(9)+C
D(LiN) D : (xα, yα)→ (xα,−yα)

p = 2: S63 8 + 3
J1N, . . . , J8N N = s1 + is2 + js3 + ks4

Spin(9)+H
D(LiN),D(LjN),D(LkN) Li , Lj , Lk and D as above

p = 3: S127 8 + 7
J1N, . . . , J8N N = s1+is2+js3+ks4+es5+fs6+gs7+hs8

Spin(9)+O
D(LiN), . . . ,D(LhN) Li , . . . , Lh and D as above

S255 8 + 8
J1N, . . . , J8N N = (s1, . . . , s16)

Spin(9)+Spin(9)
D(block(J1)N), . . . ,D(block(J8)N) block(J1), . . . ,block(J8) and D as above
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Vector fields on spheres Maximum number and examples

S511: σ(m) = 2 · 8 + 1

16 vector fields are given by {JαN, D(block(Jα)N)}α=1,...,8.

Imitating the R32 case, group coordinates in 256-ples (s1, s2), and
define Li (s

1, s2) = (−s2, s1).

Proposition

The vector field D(LiN) is orthogonal to {JαN, D(block(Jα)N)}α=1,...,8.

Next try: split each sα as a pair (xα, yα) of 128-ples, and define a
conjugation D2 by (xα, yα) 7→ (xα,−yα).

Proposition

The vector field D2(LiN) is orthogonal to {JαN, D(block(Jα)N)}α=1,...,8.
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Vector fields on spheres Maximum number and examples

S511: σ(m) = 2 · 8 + 1

Proposition

The vector field D(D2(LiN)) is orthogonal to

{JαN,D(block(Jα)N)}α=1,...,8
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Vector fields on spheres The general case

1 S15 and Spin(9)
S15 is “more equal” than other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximum number and examples
The general case

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Vector fields on spheres The general case

Remark

Abuse of notation in previous slides: Jα ∈ Mat16, but for instance in this
row Jα ∈ Mat32:

p = 1: S31 8 + 1
J1N, . . . , J8N N = s1 + is2, LiN = −s2 + is1

Spin(9)+C
D(LiN) D : (xα, yα)→ (xα,−yα)

To state and prove the general case, we need to formalize the above
notation.

Get rid of N: identify vector fields on Sm−1 with so(m).

A ∈ so(m) has lenght 1 if and only if A2 = − Idm.

A is orthogonal to B ∈ so(m) if and only if AB + BA = 0.

Orthonormality is reduced to matrices computation.
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Vector fields on spheres The general case

Definition

Define diagm,n : Matm → Matmn by

diagm,n(A) =

A
. . .

A



repeat the m ×m matrix A diagonally n times

Example

diag16,2(Jα) =

(
Jα 0
0 Jα

)
formalizes J1N, . . . , J8N in

p = 1: S31 8 + 1
J1N, . . . , J8N N = s1 + is2, LiN = −s2 + is1

Spin(9)+C
D(LiN) D : (xα, yα)→ (xα,−yα)
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J1N, . . . , J8N N = s1 + is2, LiN = −s2 + is1

Spin(9)+C
D(LiN) D : (xα, yα)→ (xα,−yα)
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Vector fields on spheres The general case

Definition

If A = (aαβ)α,β=1,...,m, define blockm,n : Matm → Matmn by

blockm,n(A) = (aαβ Idn)α,β=1,...,m

each element of the m ×m matrix A is a n × n matrix

Example

block2,16

(
0 −1
1 0

)
=

(
0 − Id16

Id16 0

)
formalizes LiN in

p = 1: S31 8 + 1
J1N, . . . , J8N N = s1 + is2, LiN = −s2 + is1

Spin(9)+C
D(LiN) D : (xα, yα)→ (xα,−yα)
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Vector fields on spheres The general case

Definition

The basic conjugation in R16s is

Ds = block2, 16s

2
(

(
1 0
0 −1

)
) ∈ Mat16s

Ds swaps the signs of the last 16s

2 coordinates of a vector in R16s

Definition

Let t ≥ 2 and s = 1, . . . , t − 1. Then

Dt,s = diag16s ,16t−s (Ds) ∈ Mat16t

D2,1 is the conjugation D in R256 in the following row:

S255 8 + 8
J1N, . . . , J8N N = (s1, . . . , s16)

Spin(9)+Spin(9)
D(block(J1)N), . . . ,D(block(J8)N) block(J1), . . . ,block(J8) and D as above
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Vector fields on spheres The general case

Main theorem for m = 16q

For any q ≥ 1, the 8q vector fields on S16q−1 given by

{Bq(t, Jα) = diag16t ,16q−t (
t−1∏
s=1

Dt,sblock16,16t−1(Jα))}t=1,...,q
α=1,...,8

are a maximal orthonormal set.
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Vector fields on spheres The general case

Definition

Ct =
∏t−1

s=1 Dt,s .

G0 = ∅.
G1 = {LCi } ⊂ Mat2.

G2 = {LHi , LHj , LHk } ⊂ Mat4.

G3 = {Li , Lj , Lk , Le , Lf , Lg , Lh} ⊂ Mat8.

Theorem: σ(m) > 7? All the fault of Spin(9)!

Let k ≥ 0, q ≥ 1 and p = 0, 1, 2 or 3. The 8q + 2p − 1 vector fields on
S (2k+1)2p16q−1 given by

{Bk,p,q(t, Jα) = diag16t ,(2k+1)2p16q−t (Ctblock16,16t−1(Jα))}t=1,...,q
α=1,...,8

{Lk,p,q(G ) = diag2p16q ,2k+1(diag16q ,2p(Cq)block2p ,16q(G ))}G∈Gp

are a maximal orthonormal set.
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Locally conformal parallel Spin(9) manifolds Definition and examples

1 S15 and Spin(9)
S15 is “more equal” than other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximum number and examples
The general case

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Locally conformal parallel Spin(9) manifolds Definition and examples

Definition

A locally conformal parallel Spin(9) manifold is a 16-dimensional Spin(9)
manifold whose induced metric is locally conformal to metrics with
holonomy contained in Spin(9).

(M, g) with a Spin(9)-structure

Uα g |Uα = efαgα where gα has holonomy contained in Spin(9)
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Locally conformal parallel Spin(9) manifolds Definition and examples

Examples

The product S15 × S1 = O2−0
Z = cone over S15 with the (conformal class)

of the flat metric.

The trivial S1-bundle RP15 × S1, with the metric induced by the flat cone
C (S15).

The non-trivial S1-bundle over RP15, with the metric induced by the flat
cone C (S15).
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Locally conformal parallel Spin(9) manifolds Structure Theorem

1 S15 and Spin(9)
S15 is “more equal” than other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximum number and examples
The general case

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Structure of compact locally conformal parallel Spin(9)
manifolds

Theorem [P-Piccinni-Vuletescu]

Let (M, g) be a compact, locally conformal but not globally conformal
parallel Spin(9) manifold. Then

M = C (N)/Z

where C (N) is a flat cone over a compact 15-dimensional manifold N with
finite fundamental group.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof

1 On each Uα it is defined a ∇α-parallel 8-form Φα.

2 There is a 8-form Φ on M locally given by e4fαΦα.

3 There is a closed 1-form ω (the Lee form) on M, locally given by
4dfα, such that dΦ = ω ∧ Φ.

4 The 1-form ω defines a closed Weyl connection D on M by
Dg = ω ⊗ g .

5 Since the local metrics gα are Einstein, D is Einstein-Weyl.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

6 Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal
covering (M̃, g̃) is reducible: (M̃, g̃) = (R, ds)× (Ñ, gN), for a
compact simply connected Ñ.

7 On M̃ we have ω̃ = df , and (M̃, e−f g̃) is the metric cone C (Ñ).

8 The local metrics are Ricci-flat, that is, C (Ñ) is Ricci-flat.

9 Ricci-flat + holonomy Spin(9)⇒ flat.

10 Since π1(M) acts by homotheties on C (Ñ), and Ñ is compact, π1(M)
contains a finite normal subgroup I of isometries.

11 We obtain π1(M) = I o Z, and M = C (Ñ/I )/Z.
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End of talk. Thank you for your attention!
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Appendix

Details for ΦSpin(9) =
∫
OP1 p∗l νl dl

νl = volume form on the octonionic lines l = {(x ,mx)} or
l = {(0, y)} in O2.

pl : O2 → l = projection on l .

p∗l νl = 8-form in O2 = R16.

The integral over OP1 can be computed over O with polar
coordinates.

The formula arise from distinguished 8-planes in the
Spin(9)-geometry → (forthcoming) calibrations.

Go back
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Appendix

The five involutions of Sp(2) · Sp(1) as 8× 8 matrices

I2 =

(
0 Id

Id 0

)
I3 =

(
0 −RH

i

RH
i 0

)

I4 =

(
0 −RH

j

RH
j 0

)
I5 =

(
0 −RH

k

RH
k 0

)

I1 =

(
Id 0

0 − Id

)
Go back
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Appendix

The nine involutions of Spin(9) as 16× 16 matrices

I2 =

(
0 Id

Id 0

)I3 =

(
0 −Ri

Ri 0

)
I4 =

(
0 −Rj

Rj 0

)

I5 =

(
0 −Rk

Rk 0

)

I6 =

(
0 −Re

Re 0

)

I7 =

(
0 −Rf

Rf 0

)
I8 =

(
0 −Rg

Rg 0

)I9 =

(
0 −Rh

Rh 0

)
I1 =

(
Id 0

0 − Id

)
Go back
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Appendix

Explicit formula for ΦG2

Denote by x1, . . . , x7 the coordinates in R7. Then G2 = stabilizer in SO(7)
of

ΦG2 = dx1 ∧ dx2 ∧ dx4 + dx2 ∧ dx3 ∧ dx5 + dx3 ∧ dx4 ∧ dx6

+ dx4 ∧ dx5 ∧ dx7 + dx5 ∧ dx6 ∧ dx1 + dx6 ∧ dx7 ∧ dx2

+ dx7 ∧ dx1 ∧ dx3

As a shortcut, we could write

ΦG2 = 124 + 235 + 346 + 457 + 561 + 672 + 713

Go back
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Appendix

351 terms of ΦSpin(9)
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Appendix

70 terms of ΦSpin(9)

12345678 -14 123456 1′2′ 2 123456 3′4′ -2 123456 5′6′ -2 123456 7′8′ -2
123457 1′3′ 2 123457 2′4′ 2 123457 5′7′ -2 123457 6′8′ 2 123458 1′4′ 2
123458 2′3′ -2 123458 5′8′ -2 123458 6′7′ -2 123467 1′4′ -2 123467 2′3′ 2
123467 5′8′ -2 123467 6′7′ -2 123468 1′3′ 2 123468 2′4′ 2 123468 5′7′ 2
123468 6′8′ -2 123478 1′2′ -2 123478 3′4′ 2 123478 5′6′ -2 123478 7′8′ -2

1234 1′2′3′4′ -2 1234 5′6′7′8′ -2 123567 1′5′ -2 123567 2′6′ -2 123567 3′7′ -2
123567 4′8′ 2 123568 1′6′ -2 123568 2′5′ 2 123568 3′8′ -2 123568 4′7′ -2
123578 1′7′ -2 123578 2′8′ 2 123578 3′5′ 2 123578 4′6′ 2 1235 1′2′3′5′ -1

1235 1′2′4′6′ -1 1235 1′3′4′7′ -1 1235 1′5′6′7′ -1 1235 2′3′4′8′ 1 1235 2′5′6′8′ 1
1235 3′5′7′8′ 1 1235 4′6′7′8′ 1 123678 1′8′ -2 123678 2′7′ -2 123678 3′6′ 2

123678 4′5′ -2 1236 1′2′3′6′ -1 1236 1′2′4′5′ 1 1236 1′3′4′8′ -1 1236 1′5′6′8′ -1
1236 2′3′4′7′ -1 1236 2′5′6′7′ -1 1236 3′6′7′8′ 1 1236 4′5′7′8′ -1 1237 1′2′3′7′ -1
1237 1′2′4′8′ 1 1237 1′3′4′5′ 1 1237 1′5′7′8′ -1 1237 2′3′4′6′ 1 1237 2′6′7′8′ -1
1237 3′5′6′7′ -1 1237 4′5′6′8′ 1 1238 1′2′3′8′ -1 1238 1′2′4′7′ -1 1238 1′3′4′6′ 1

{1,2,3,4,5,6,7,8,1′,2′,3′,4′,5′,6′,7′,8′} are (indexes of) coordinates in R16.

A table entry ||123578 1′7′ − 2|| means that

ΦSpin(9) = · · · − 2dx1 ∧ dx2 ∧ dx3 ∧ dx5 ∧ dx7 ∧ dx8 ∧ dx ′1 ∧ dx ′7 + . . .

Table obtained from Berger’s definition of ΦSpin(9) with the help of
Mathematica.

The coefficients are normalized in such a way that they are all
integers with gcd = 1. Go back
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Appendix

Computational challenge for ΦSpin(9)

Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;

The implementation of the wedge product can be reduced to a sorting
problem:

Wedge(dx1 ∧ dx4, dx2 ∧ dx3)
concatenation

= dx1 ∧ dx4 ∧ dx2 ∧ dx3

sorting
= dx1 ∧ dx2 ∧ dx3 ∧ dx4

Divide and conquer paradigm can be used: break the problem into

subproblems, recursively solve these subproblems,

combine the solutions into a solution to the original problem.

sorting dx1 ∧ dx4 ∧ dx2 ∧ dx3

sorting dx1 ∧ dx4 and dx2 ∧ dx3

already solved

next slide
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Appendix

Code to merge 2 sorted lists

[Adapted from the classical mergesort algorithm, thanks to Gianluca Amato and Francesca Scozzari]

(*Take care of sign when swapping*)

sign = 1;

(*Induction base: what to do when one or both the arguments are empty*)

formWedge[{}, {}] = {};

formWedge[{}, right_] := right;

formWedge[left_, {}] := left;

(*Compare first terms, and recursively build the ordered list*)

formWedge[left_, right_] :=

Switch[Order[left[[1]], right[[1]]],

1,

Return[Prepend[formWedge[Drop[left, 1], right], left[[1]]]],

-1,

sign = sign*(-1)^Length[left];

Return[Prepend[formWedge[left, Drop[right, 1]], right[[1]]]],

0,

Abort[]

] Go back

52 / 54



Appendix

From Pfaffians to ΦSpin(9)

ΦSpin(9)
utc
=

∑
1≤α1<α2<α3<α4≤9

(ψα1α2∧ψα3α4−ψα1α3∧ψα2α4 +ψα1α4∧ψα2α3)2

ψ12 = (−12 + 34 + 56− 78)− ( )′ ψ13 = (−13− 24 + 57 + 68)− ( )′ ψ14 = (−14 + 23 + 58− 67)− ( )′

ψ15 = (−15− 26− 37− 48)− ( )′ ψ16 = (−16 + 25− 38 + 47)− ( )′ ψ17 = (−17 + 28 + 35− 46)− ( )′

ψ18 = (−18− 27 + 36 + 45)− ( )′ ψ23 = (−14 + 23− 58 + 67) + ( )′ ψ24 = (13 + 24 + 57 + 68) + ( )′

ψ25 = (−16 + 25 + 38− 47) + ( )′ ψ26 = (15 + 26− 37− 48) + ( )′ ψ27 = (18 + 27 + 36 + 45) + ( )′

ψ28 = (−17 + 28− 35 + 46) + ( )′ ψ34 = (−12 + 34− 56 + 78) + ( )′ ψ35 = (−17− 28 + 35 + 46) + ( )′

ψ36 = (−18 + 27 + 36− 45) + ( )′ ψ37 = (+15− 26 + 37− 48) + ( )′ ψ38 = (16 + 25 + 38 + 47) + ( )′

ψ45 = (−18 + 27− 36 + 45) + ( )′ ψ46 = (17 + 28 + 35 + 46) + ( )′ ψ47 = (−16− 25 + 38 + 47) + ( )′

ψ48 = (15− 26− 37 + 48) + ( )′ ψ56 = (−12− 34 + 56 + 78) + ( )′ ψ57 = (−13 + 24 + 57− 68) + ( )′

ψ58 = (−14− 23 + 58 + 67) + ( )′ ψ67 = (14 + 23 + 58 + 67) + ( )′ ψ68 = (−13 + 24− 57 + 68) + ( )′

ψ78 = (12 + 34 + 56 + 78) + ( )′

ψ19 = −11′ − 22′ − 33′ − 44′ − 55′ − 66′ − 77′ − 88′ ψ29 = −12′ + 21′ + 34′ − 43′ + 56′ − 65′ − 78′ + 87′

ψ39 = −13′ − 24′ + 31′ + 42′ + 57′ + 68′ − 75′ − 86′ ψ49 = −14′ + 23′ − 32′ + 41′ + 58′ − 67′ + 76′ − 85′

ψ59 = −15′ − 26′ − 37′ − 48′ + 51′ + 62′ + 73′ + 84′ ψ69 = −16′ + 25′ − 38′ + 47′ − 52′ + 61′ − 74′ + 83′

ψ79 = −17′ + 28′ + 35′ − 46′ − 53′ + 64′ + 71′ − 82′ ψ89 = −18′ − 27′ + 36′ + 45′ − 54′ − 63′ + 72′ + 81′

Go back
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Appendix

Berger and calibrations

Curiosity

Berger appears to know about the fact that ΦSpin(9) is a calibration on
OP2 already in 1970 [Berger, L’Enseignement Math. 1970] and more explicitly in 1972
[Berger, Ann. Éc. Norm. Sup. 1972, Theorem 6.3], very early with respect to the
forthcoming calibration theory.
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