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E MP, Paolo Piccinni.
Spin(9) and almost complex structures on 16-dimensional manifolds.

@ MP, Paolo Piccinni.
Spheres with more than 7 vector fields: all the fault of Spin(9).

@ MP, Paolo Piccinni, Victor Vuletescu.
16-dimensional manifolds with a locally conformal parallel Spin(9)
metric.
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S and Spin(9) S is “more equal” than other spheres

© 5'° and Spin(9)
o S15is “more equal” than other spheres

© The Spin(9) fundamental form

© Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds
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S and Spin(9) SP is “more equal” than other spheres

First characterization: Hopf fibrations

515 is the only sphere involved in three different Hopf fibrations. J
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S and Spin(9) SP is “more equal” than other spheres

First characterization: Hopf fibrations

515 is the only sphere involved in three different Hopf fibrations. J
1
o7 oP
st s3
5;2
CP’ HP3

The complex and quaternionic Hopf fibrations are not subfibrations of the
OCtOI‘liOI‘liC ONE€ [Loo-Verjovsky, Topology 1992].

4/54



S and Spin(9) SP is “more equal” than other spheres

Second characterization: Einstein metrics

5™ is the only sphere with three homogeneous Einstein metrics J

[Ziller, Math. Ann. 1982].

o Round metric.
o Einstein metric on Sp(4)/Sp(3) tsensen, 5. pizs. ceon. 19721,
o Einstein metric on Spin(9)/Spin(7)

[Bourguignon-Karcher, Ann. Sci. Ec. Norm. Sup. 1978].

5/54



S and Spin(9) SP is “more equal” than other spheres

Third characterization: vector fields on spheres

S is the lowest dimensional sphere admitting more than 7 vector fields J

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

6/54



S and Spin(9) SP is “more equal” than other spheres

Third characterization: vector fields on spheres

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

S is the lowest dimensional sphere admitting more than 7 vector fields J

o Number o(m) of linearly independent vector fields on S™~1?
o If m=(2k +1)2P169, with 0 < p < 3, then

o(m)= 8q + 2P -1
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S and Spin(9) | Spin(9) and Hopf fibrations

© S'° and Spin(9)
@ Spin(9) and Hopf fibrations

© The Spin(9) fundamental form

9 Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds
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S and Spin(9) Spin(9) and Hopf fibrations

Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?
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S and Spin(9) Spin(9) and Hopf fibrations

Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

Simply connected, complete, holonomy Spin(9)
<~

s>0), R¥(flat), OH2 =GR (s <0)

0P? = Spln(9)(

[Alekseevsky, Funct. Anal. Prilozhen 1968].
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S and Spin(9) Spin(9) and Hopf fibrations

Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

Simply connected, complete, |holonomy Spin(9)
<~

OP? = Fis(s > 0), RY(flat), OH? = LC(s < 0)

[Alekseevsky, Funct. Anal. Prilozhen 1968].

8 /54



S and Spin(9) Spin(9) and Hopf fibrations

What is Spin(9)?

Definition
Spin(9) € SO(16) is the group of symmetries of the Hopf fibration

S7
@2 D) 515 — 58 = @Pl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].
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S and Spin(9) Spin(9) and Hopf fibrations

What is Spin(9)?

Definition
Spin(9) € SO(16) is the group of symmetries of the Hopf fibration

S7
@2 D) 515 — 58 = @Pl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Spin(9)
] AS(R16) = A? + « o [Friedrich, Asian Journ. Math 2001].

o Spin(9) is the stabilizer in SO(16) of any element of A$

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].
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S and Spin(9) Spin(9) and Hopf fibrations

What is Spin(9)?

Definition

Spin(9) € SO(16) is the group of symmetries of the Hopf fibration

S7
@2 D) 515 — 58 = @Pl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Spin(9)
] AS(R16) = A? + « o [Friedrich, Asian Journ. Math 2001].

o Spin(9) is the stabilizer in SO(16) of any element of A$

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition
Spin(9) is the stabilizer in SO(16) of the 8-form

Pspin(e) = /@ . pivdl

[Berger, Ann. Ec. Norm. Sup. 1972].
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S and Spin(9) Spin(9) and Hopf fibrations

What is Spin(9)?

Definition

Spin(9) € SO(16) is the group of symmetries of the Hopf fibration

S7
@2 D) 515 — 58 = @Pl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Spin(9)
] AS(R16) = A? + « o [Friedrich, Asian Journ. Math 2001].

o Spin(9) is the stabilizer in SO(16) of any element of A$

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition
Spin(9) is the stabilizer in SO(16) of the 8-form

utc

Pspin(e) = pivdl
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S and Spin(9) Spin(9) and Hopf fibrations

Time check

Are we left with 32 or more minutes?
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The Spin(9) fundamental form | Quaternionic analogy

© 5'° and Spin(9)

© The Spin(9) fundamental form
o Quaternionic analogy

e Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds
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The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

@ Sp(2) - Sp(1) C SO(8) is the group of symmetries of the Hopf
3
ﬁbration H2 D 57 i 54 g HPl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].

@ Sp(2) - Sp(1) is the stabilizer in SO(8) of the 4-form ®gp2).9p(1)
defined by

Psp(2)-p(1) = /H . pivdl

[Berger, Ann. Ec. Norm. Sup. 1972].
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The Spin(9) fundamental form Quaternionic analogy

Five involutions for Spin(5)

o Consider in Sp(2) the matrices

r RE
R, —r

where (r,u) € S* C R x H and H? = RS,
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Ti,...,Ts € SO(8)
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The Spin(9) fundamental form Quaternionic analogy

Five involutions for Spin(5)

o Consider in Sp(2) the matrices

where (r,u) € S* C R x H and H? = RS,
o The choice of (r,u) = (1,0), (0,1), (0,), (0,), (0, k) gives

Ti,...,Ts € SO(8)

o 7j,...,7Is satisfy

I2=1d, I} =7, ZaoIg=-Iz01I,
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The Spin(9) fundamental form Quaternionic analogy

From involutions to Kahler forms

o Since 7, 0 Zg = —1g o I, one gets 10 complex structures

Jap=TZao1g fora < p
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From involutions to Kahler forms

@ Since 7, 0Zg = —Ig 0 1,, one gets 10 complex structures
Jap=TZao1g fora < p
o The Kahler forms 0,3 give rise to a 5 x 5 skew-symmetric matrix

0= (eaﬁ)
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The Spin(9) fundamental form Quaternionic analogy

From involutions to Kahler forms

@ Since 7, 0Zg = —Ig 0 1,, one gets 10 complex structures
Jap=TZao1g fora < p
o The Kahler forms 0,3 give rise to a 5 x 5 skew-symmetric matrix

0= (eaﬁ)

Denote by () the second coefficient of the characteristic polynomial of
0 = (0a). Then

utc

Psp(2)-sp(1) = 72(0)
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The Spin(9) fundamental form | Spin(9) and Kahler forms on R*°

© 5'° and Spin(9)

© The Spin(9) fundamental form

o Spin(9) and Kihler forms on R1®

9 Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds
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The Spin(9) fundamental form Spin(9) and Kahler forms on R*°

Nine involutions for Spin(9)

@ Spin(9) is the subgroup of SO(16) generated by matrices

r RU
R, -—r

where (r,u) € S8 C R x O and 0? = R16

[Harvey, Spinors and Calibrations 1990].
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The Spin(9) fundamental form Spin(9) and Kahler forms on R*°

From involutions to Kahler forms

o Since Z, 0Zg = —Ig 0 I,, one gets 36 complex structures

Jop =ZaoIg fora< f
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From involutions to Kahler forms
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The Spin(9) fundamental form Spin(9) and Kahler forms on R*°

From the Kahler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2012]

Denote the characteristic polynomial of 6 by

0 + 1 (0)t7 + 4(0)t° + 76(0) > + 75(0)t
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The Spin(9) fundamental form Spin(9) and Kahler forms on R*°

From the Kahler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2012]
Denote the characteristic polynomial of 6 by
9 7 5 3
t” + 12(0)t" + 14(0)t> + 16(0)t> + 18(0)1t

Then

utc

d>Spin(9) = T4 (9)
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The Spin(9) fundamental form [FAn‘explicit formulafor ®s ;)

© 5'° and Spin(9)

© The Spin(9) fundamental form

o An explicit formula for ®gi,(9)

9 Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds
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The Spin(9) fundamental form An explicit formula for ®a.inra

An explicit formula for ®gp;, ()

o From &gy (o) = 74(0), we obtain an
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The Spin(9) fundamental form An explicit formula for ®a.inra

An explicit formula for g9

o From &gy (o) = 74(0), we obtain an
o The (%) = 12870 integrals of

d>Spin(9) = /(O)Pl p;kl/l dl

can be computed with the help of Mathematica.
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The Spin(9) fundamental form An explicit formula for ®a.inra

An explicit formula for ®gp;, ()

o From &gy (o) = 74(0), we obtain an
o The (%) = 12870 integrals of

d:)Spin(g) = /(O)Pl p;kl/l dl

can be computed with the help of Mathematica.

pin 9 be-Matsubara, Korea Japan Conf. Transf. Groups il
Previous work for ¢ in @ Cont £. Groups 1997]
[Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].
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The Spin(9) fundamental form An explicit formula for ®a.inra

Questions to the audience
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The Spin(9) fundamental form An explicit formula for ®a.inra

Questions to the audience

Ppin(e) = Jopr Pfvidl and ®gy0).551) = Jypr £fv1 dl share the following
general pattern:

*
P Vcalibrated subspaces

o |
Gr(calibrated subspaces)

21/54



The Spin(9) fundamental form An explicit formula for ®a.inra

Questions to the audience

Ppin(e) = Jopr Pfvidl and ®gy0).551) = Jypr £fv1 dl share the following
general pattern:

*
P Vcalibrated subspaces

o |
Gr(calibrated subspaces)

o ®g, € A3(R7) is a calibration, with associative subspaces as
calibrated submanifolds. The Grassmannian in this case is G2/SO(4):

is it true that
¢G2 = /G p;‘y/ dl
)

SO
o Same question for ®gpi,7) € A*(R®): s it true that

q)Spin(?) = /CAY p;k’// dl O

N
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The Spin(9) fundamental form An explicit formula for ®a.inra

QttA /2

The forms ®g,(2).5p(1)r PGyr Pspin(z) and Pspin(g) are finite sums of 14, 7,
14 and 702 terms respectively.
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The Spin(9) fundamental form An explicit formula for ®a.inra

QttA /2

The forms ®g,(2).5p(1)r PGyr Pspin(z) and Pspin(g) are finite sums of 14, 7,
14 and 702 terms respectively. J

o Why these numbers?

o Are these numbers related to finite subgroups of Sp(2) - Sp(1), Go,
Spin(7) and Spin(9) respectively?

o Why do ®g, and &gy have coefficients £1, whereas ®g,2).5p(1)
and ®gi,(9) do not?
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Spin(7) and Spin(9) respectively?

o Why do ®g, and &gy have coefficients £1, whereas ®g,2).5p(1)
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In the framework of Clifford structures tvoroianu-semneinann, adv. Math. 20117, ONE €an
associate to any rank r even Clifford structure a skew-symmetric r x r
matrix of Kahler forms.
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The Spin(9) fundamental form An explicit formula for ®a.inra

QttA /2

The forms ®g,(2).5p(1)r PGyr Pspin(z) and Pspin(g) are finite sums of 14, 7,
14 and 702 terms respectively. J

o Why these numbers?

o Are these numbers related to finite subgroups of Sp(2) - Sp(1), Go,
Spin(7) and Spin(9) respectively?

o Why do ®g, and &gy have coefficients £1, whereas ®g,2).5p(1)
and ®gi,(9) do not?

In the framework of Clifford structures tvoroianu-semneinann, adv. Math. 20117, ONE €an
associate to any rank r even Clifford structure a skew-symmetric r x r
matrix of Kahler forms.

o Do the coefficients of the characteristic polynomial have any
particular geometrical meaning?
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Vector fields on spheres Maximum number and examples

© 5'° and Spin(9)

© The Spin(9) fundamental form

© Vector fields on spheres
o Maximum number and examples

@ Locally conformal parallel Spin(9) manifolds
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Vector fields on spheres Maximum number and examples

How many vector fields on spheres?

o Spheres S™~1 C R™ admit 1, 3 or 7 linearly independent vector fields
according to whether p =1, 2 or 3 in

m = (2k 4+ 1)2°P
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Vector fields on spheres Maximum number and examples

How many vector fields on spheres?

o Spheres S™~1 C R™ admit 1, 3 or 7 linearly independent vector fields
according to whether p =1, 2 or 3 in

m = (2k 4+ 1)2°P
@ In the general case
m = (2k + 1)2P164 withg>0 and p=0,1,2,3
the maximum number of vector fields is

o(m)= 8q + 2P -1

24 /54



Vector fields on spheres Maximum number and examples

How many vector fields on spheres?

o Spheres S™~1 C R™ admit 1, 3 or 7 linearly independent vector fields
according to whether p =1, 2 or 3 in

m = (2k 4+ 1)2°P
@ In the general case

m = (2k 4+ 1)2P169 withg>0 and p=0,1,2,3

the maximum number of vector fields is

24 /54



Vector fields on spheres Maximum number and examples

How many vector fields on spheres?

o Spheres S™~1 C R™ admit 1, 3 or 7 linearly independent vector fields
according to whether p =1, 2 or 3 in

m = (2k 4+ 1)2°P
@ In the general case

m = (2k 4+ 1)2P169 withg>0 and p=0,1,2,3

the maximum number of vector fields is

The lowest dimensional sphere with more than 7 vector field is S*° J

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].
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Vector fields on spheres Maximum number and examples

The lowest dimension: S1°

o Coordinates on S°:

N=(x,y)=(x1,-., X8, ¥1,---,¥8) unit normal vector field
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Vector fields on spheres Maximum number and examples

The lowest dimension: S1°

o Coordinates on S°:

N=(x,y)=(x1,-., X8, ¥1,---,¥8) unit normal vector field

@ Among the 36 complex structures Z, o Zg on R16 associated to the
Spin(9) structure, choose J, = Z, 0 Zy, for a =1,...,8.
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Vector fields on spheres Maximum number and examples

The lowest dimension: S1°

o Coordinates on S°:

N=(x,y)=(x1,-., X8, ¥1,---,¥8) unit normal vector field

@ Among the 36 complex structures Z, o Zg on R16 associated to the
Spin(9) structure, choose J, = Z, 0 Zy, for a =1,...,8.

Proposition

A maximal system of 8 orthonormal vector fields on S° is given by

AN,... JgN
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Vector fields on spheres Maximum number and examples

The lowest dimension: S1°

o Coordinates on S°:

N=(x,y)=(x1,-., X8, ¥1,---,¥8) unit normal vector field

@ Among the 36 complex structures Z, o Zg on R16 associated to the
Spin(9) structure, choose J, = Z, 0 Zy, for a =1,...,8.

Proposition

A maximal system of 8 orthonormal vector fields on S° is given by

AN,... JgN

Remark
The eight complex structures {J1, ..., Jg} play a role analogous to that of
the units in C, H, Q.

| A\

v
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Vector fields on spheres Maximum number and examples

Next spheres with o(m) > 7: S*°1°1 p =123

Group coordinates in 16-ples s%, and split each s as a pair (x®, y%) of
8-ples. Define a conjugation D by (x%,y®) — (x%, —y®).
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Vector fields on spheres Maximum number and examples

Next spheres with o(m) > 7: S*°1°1 p =123

Group coordinates in 16-ples s%, and split each s as a pair (x®, y%) of
8-ples. Define a conjugation D by (x%,y®) — (x%, —y®).

Proposition
The following table gives a maximal system of o(m) orthonormal vector
. P16—
fields on S2°1-1 for p =1,2,3:
‘ Sphere H o(m) ‘ Vector fields ‘ Notations ‘ Involved structures ‘
ol 2 N 2l
p=1 S 841 AN, ... BN N =s'+is*, LiN = —s* + is Spin(9)+C
D(LiN) D (x*y%) = (x¥,—y*)
_ ol 24 i3 4
p—2 5% || 853 AN, ... BN N = s' + is* + js> + ks’ Spin(9)-+H
D(LiN), D(LiN), D(LiN) Li, Lj, Ly and D as above
— & L f2 AL fD 4 5 6 7 8
ooz s | 547 AN, ..., N N = s +is? + js* + ks* + es® + f5° + gs” + hs Spin(9)+0
D(LiN),...,D(LyN) Li,...,Lp and D as above
v
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Vector fields on spheres Maximum number and examples

52%: o(m) =8+ 8

o Again, group coordinates in 16-ples s, and split each s* as a pair
(x*, y®) of 8-ples. Define D by (x®, y®) — (x%, —y®).
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Vector fields on spheres Maximum number and examples

$%%: o(m)=8+8

o Again, group coordinates in 16-ples s, and split each s* as a pair
(x*, y®) of 8-ples. Define D by (x®, y®) — (x%, —y®).

o Act on the (column) 16-ples of 16-ples (s*,...,s'0)7 by J,..., Js,
and call block(J;), ..., block(Jg) the resulting automorphisms.
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Vector fields on spheres

Maximum number and examples

o Again, group coordinates in 16-ples s, and split each s* as a pair

5A8, o

m) =8+ 8

(x*, y®) of 8-ples. Define D by (x®, y®) — (x%, —y®).

o Act on the (column) 16-ples of 16-ples (s*,...,s'0)7 by J,..., Js,
and call block(J;), ..., block(Jg) the resulting automorphisms.

Proposition

A maximal system of orthonormal vector fields on

5255

is given by:

N,...,JgN N = s +is? + js° + ks*
p—2 5% | 813 AN, Jg RN Spin(9)+H
D(L;N), D(LjN), D(LxN) Lj, Lj, Ly and D as above
N N N — sl tis?+ is3+ ks* + es5+ fsO+ gs”+ hs®
p=3 527 | 547 h Jg s*+is+js°+ks* +es>+fs°+gs’ +hs’ Spin(9)+0
D(LiN),..., D(LyN) ioaog Ly and D as above
AN, ... N N=(s,..., st
525 || 848 ' ® ( ) Spin(9)+Spin(9)
D(block(J1)N),.. ., D(block(Jg)N) block(J1), ..., block(Jg) and D as above
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Vector fields on spheres Maximum number and examples

S o(m)=2-8+1

o 16 vector fields are given by {J,N, D(block(Jy)N)}a=1,.. 8-
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Vector fields on spheres Maximum number and examples

S o(m)=2-8+1

o 16 vector fields are given by {J,N, D(block(Jy)N)}a=1,.. 8-

o Imitating the R32? case, group coordinates in 256-ples (s!,s?), and
define L;(s!,s?) = (—s?,s').
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Vector fields on spheres Maximum number and examples

S o(m)=2-8+1

o 16 vector fields are given by {J,N, D(block(Jy)N)}a=1,.. 8-

o Imitating the R32? case, group coordinates in 256-ples (s!,s?), and
define L;(s!,s?) = (—s?,s').

Proposition
The vector field D(L;N) is orthogonal to {J, N, D(block(Ja)N)}a=1,. 8-
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S o(m)=2-8+1

o 16 vector fields are given by {J,N, D(block(Jy)N)}a=1,.. 8-

o Imitating the R32? case, group coordinates in 256-ples (s!,s?), and
define L;(s!,s?) = (—s?,s').

Proposition

The vector field D(L; )& (block(Jo)N)}a=1,...8-

o Next try: split each s* as a pair (x%, y®) of 128-ples, and define a
conjugation Dy by (x%, y®) — (x%, —y%).
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Vector fields on spheres Maximum number and examples

S o(m)=2-8+1

o 16 vector fields are given by {J,N, D(block(Jy)N)}a=1,.. 8-

o Imitating the R32? case, group coordinates in 256-ples (s!,s?), and
define L;(s!,s?) = (—s?,s').

Proposition

The vector field D(L; N )M (block(Jo)N)}a=1,...8-

o Next try: split each s* as a pair (x%, y®) of 128-ples, and define a
conjugation Dy by (x%, y®) — (x%, —y%).

Proposition
The vector field Dy(L; NS

D(block(Ja)N)}a=1,... 8-
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Vector fields on spheres Maximum number and examples

S o(m)=2-8+1

Proposition
The vector field D(Dy(L;N)) is orthogonal to

{JaN, D(block(Js)N)}acr1.. 8
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Vector fields on spheres Maximum number and examples

S o(m)=2-8+1

Proposition
The vector field D(Dy(L;N)) is orthogonal to

{JaN, D(block(Jo)N)}a=1
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Vector fields on spheres | The general case

© 5'° and Spin(9)

© The Spin(9) fundamental form

e Vector fields on spheres

o The general case

@ Locally conformal parallel Spin(9) manifolds
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Vector fields on spheres [The general case

Abuse of notation in previous slides: J, € Matig, but for instance in this
row J, € Matsp:

N, N N=sl+is? LN = —s2 4 ist
p=1 5% | 841 AN, Jg &SP BHll= =715 Spin(9)+C
D(L;N) D (x*,y*) = (x*,—y®)

31/54



Vector fields on spheres [The general case

Abuse of notation in previous slides: J, € Matig, but for instance in this
row J, € Matsp:

N, N N=sl+is? LN = —s2 4 ist
p=1 5% | 841 i 8 &SP BHll= =715 Spin(9)+C
D(L;N) D (x%,y®) = (x*,—y®)

To state and prove the general case, we need to formalize the above
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To state and prove the general case, we need to formalize the above
notation.

o Get rid of N: identify vector fields on S™~1 with so(m).
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Vector fields on spheres [F'The general case

Abuse of notation in previous slides: J, € Matig, but for instance in this
row J, € Matsp:

N, N N=sl+is? LN = —s2 4 ist
p=1 5% | 841 i 8 &SP BHll= =715 Spin(9)+C
D(L;N) D (x%,y®) = (x*,—y®)

To state and prove the general case, we need to formalize the above
notation.

o Get rid of N: identify vector fields on S™~1 with so(m).
o A € s0(m) has lenght 1 if and only if A2 = —1Id,,.
o Ais orthogonal to B € so(m) if and only if AB+ BA = 0.
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Vector fields on spheres [F'The general case

Remark
Abuse of notation in previous slides: J, € Matig, but for instance in this
row J, € Matsp:

HN, .., JgN N =s'+is? LiN = —s> +ist

D(LiN) D:(x,y®) — (x% —y®) Spin(9)+C

p=15% | 8+1

To state and prove the general case, we need to formalize the above
notation.

o Get rid of N: identify vector fields on S™~1 with so(m).

o A € s0(m) has lenght 1 if and only if A2 = —1Id,,.

o Ais orthogonal to B € so(m) if and only if AB+ BA = 0.
°

Orthonormality is reduced to matrices computation.
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Vector fields on spheres [The general case

Define diagm’n : Mat,,, — Mat,, by

diag, ,(A) =
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/\ !
@ m matrix A diagonally n times
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Vector fields on spheres [The general case

Define diagm’n : Mat,,, — Mat,, by

diagm,n(A) = e
/\ !
@ m matrix A diagonally n times

Example

. J, O
diagye »(Jo) = (0 Ja)

formalizes 41N, ..., JgN in

N,...,JN — st s N = —s? + s
p=1: ¥ 841 AN, ..., Jg N =s'+is?, ;N 5%+ is Spin(9)+C
D(LiN) D (x,y%) = (x*, —y%)
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Vector fields on spheres [The general case

Definition

If A= (an)a,p=1,.,m define blocksy ,: Mat, — Matm, by

blOCkm,n(A) = (aaﬁ Idn)a,ﬁ:l,...,m
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Vector fields on spheres [The general case

Definition

If A= (an)a,p=1,.,m define blocksy ,: Mat, — Matm, by

blOCkm,n(A) = (aaﬁ Idn)a,ﬁ:l,...,m

each element of the m x m matrix A is a@
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Vector fields on spheres [The general case

Definition

If A= (aa,@)aﬂ:l,...,mv define blockm,, : Maty, — Matm, by
blockm n(A) = (angIdn)a,s=1,..m
N
each element of the m x m matrix A is a@

0 -1 0 -—-Id
blocks 16 (l 0 ) = (Idls 0 16)

AN, ..., N N =st+is? LiN = —s? + is!
D(LiN) D (x%y®) = (x*, —y®)

Example

formalizes L;N in

p=15% | 8+1 Spin(9)+C
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Vector fields on spheres [The general case

Definition

The basic conjugation in R is

1
D, =block27g((0 1

)) € Matqgs
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Vector fields on spheres [The general case

Definition

The basic conjugation in R is

0 -1

D, swaps the signs of the last 1755 coordinates @

Ds = block, E((l L )) € Matygs
172
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Vector fields on spheres [The general case

Definition

The basic conjugation in R is

1 0
D, = blOCk27¥((0 _1>) € Matqgs

D, swaps the signs of the last 1755 coordinates @

Definition
lett>2ands=1,...,t—1. Then

Dt,s = diag]_(js’]_ﬁt—s(Ds) € Matgt
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Vector fields on spheres [The general case

Definition

The basic conjugation in R is

0 -1

D, swaps the signs of the last 1755 coordinates @

Ds = block, ms((l 0 )) € Matqes
172

Definition
lett>2ands=1,...,t—1. Then

Dt,s = diagms’lﬁt—s(Ds) € Matqgt
NG

D,,1 is the conjugation D in R? in the following row:
AN, ... kN N=(s',...,s%)
D(block(J)N), ..., D(block(Jg)N) block(4), ..., block(Jg) and D as above

5255 8+38 Spin(9)+Spin(9)
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Vector fields on spheres [The general case

Main theorem for m = 169

For any g > 1, the 8q vector fields on S%°~1 given by

t-1
{BI(t, Ju) = diagee 160 (] | Dt,sb100k16,16f—1(Ja))}t=1,---,cé

s=1 e

are a maximal orthonormal set.
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Vector fields on spheres [The general case

o Cr=TJ; Des.

0 GO=9.

°o Gl= {L(,C} C Mats.

o G%={L], L}, L} C Mat,.

C g3 = {Li7 L_/a Lk7 L67 Lf, Lg, I—h} C Matg.
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Vector fields on spheres [The general case

° C; =TI Dt,s-

0 G0=40.

o G' = {L®} c Mat,.

o G2 ={LH [H [T} c Mata.

o G ={Lj,Lj, Ly, Le,Lf,Lg, Ly} C Matg.

Theorem: o(m) > 77 All the fault of Spin(9)!

Let k>0, g>1and p=0,1,2 or 3. The 8q + 2P — 1 vector fields on
SK+1)2°169—1 giyen by

{B*P(t, Jo) = diagyer (ax 1 1)20169-+(Ceblockyg 1gi-1(Ja)) }e=1... -4

a=1,.

{LP9(G) = diagyr1pe k4 1(diagige 20 (Cq)blockas 169(G)) } cege

are a maximal orthonormal set.
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Locally conformal parallel Spin(9) manifolds Definition and examples

© 5'° and Spin(9)

© The Spin(9) fundamental form

e Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds
o Definition and examples
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Locally conformal parallel Spin(9) manifolds Definition and examples

Definition

A locally conformal parallel Spin(9) manifold is a 16-dimensional Spin(9)
manifold whose induced metric is locally conformal to metrics with
holonomy contained in Spin(9).
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Locally conformal parallel Spin(9) manifolds Definition and examples

Definition

A locally conformal parallel Spin(9) manifold is a 16-dimensional Spin(9)
manifold whose induced metric is locally conformal to metrics with
holonomy contained in Spin(9).

g|U, = e’g, whergyg, has holonomy contained in Spin(9)
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Locally conformal parallel Spin(9) manifolds Definition and examples

Examples

2 5
The product S*° x S = 20 = cone over S'° with the (conformal cIass)J
of the flat metric.
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Locally conformal parallel Spin(9) manifolds Definition and examples

Examples

2_ 5
The product S5*° x S = 20 = cone over S'° with the (conformal class)
of the flat metric.

The trivial S*-bundle RPS x S, with the metric induced by the flat cone
C(S™).
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Locally conformal parallel Spin(9) manifolds Definition and examples

Examples

2_ 5
The product S5*° x S = 20 = cone over S'° with the (conformal class)
of the flat metric.

The trivial S*-bundle RP® x S, with the metric induced by the flat cone
C(S™).

The non-trivial S'-bundle over RP®, with the metric induced by the flat
cone C(S19).
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Locally conformal parallel Spin(9) manifolds | Structure Theorem

© 5'° and Spin(9)

© The Spin(9) fundamental form

e Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds

o Structure Theorem
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Structure of compact locally conformal parallel Spin(9)

manifolds

Theorem [P-Piccinni-Vuletescu]

Let (M, g) be a compact, locally conformal but not globally conformal
parallel Spin(9) manifold. Then

M = C(N)/Z

where C(N) is a flat cone over a compact 15-dimensional manifold N with

finite fundamental group.

v
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof

@ On each U, it is defined a V%-parallel 8-form ®,,.
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@ There is a closed 1-form w (the Lee form) on M, locally given by
4df,, such that d® = w A .
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof

@ On each U, it is defined a V%-parallel 8-form ®,,.
@ There is a 8-form ® on M locally given by e*d,,.

@ There is a closed 1-form w (the Lee form) on M, locally given by
4df,, such that d® = w A .

@ The 1-form w defines a closed Weyl connection D on M by
Dg=w®g.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof

@ On each U, it is defined a V%-parallel 8-form ®,,.
@ There is a 8-form ® on M locally given by e*d,,.

@ There is a closed 1-form w (the Lee form) on M, locally given by
4df,, such that d® = w A .

@ The 1-form w defines a closed Weyl connection D on M by
Dg=w®g.
@ Since the local metrics g, are Einstein, D is Einstein-Weyl.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

O Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

O Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.

@ On M we have & = df, and (M, e~"g) is the metric cone C(N).

@ The local metrics are Ricci-flat, that is, C(N) is Ricci-flat.

Q Ricci-flat + holonomy Spin(9) = flat.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.

On M we have & = df, and (M, e~"g) is the metric cone C(N).
The local metrics are Ricci-flat, that is, C(N) is Ricci-flat.

Ricci-flat + holonomy Spin(9) = flat.

Since m1(M) acts by homotheties on C(N), and N is compact, 71(M)
contains a finite normal subgroup / of isometries.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.

On M we have & = df, and (M, e~"g) is the metric cone C(N).
The local metrics are Ricci-flat, that is, C(N) is Ricci-flat.

Ricci-flat + holonomy Spin(9) = flat.

Since m1(M) acts by homotheties on C(N), and N is compact, 71(M)
contains a finite normal subgroup / of isometries.

We obtain 71(M) = I x Z, and M = C(N/1)/Z.
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End of talk. Thank you for your attention!
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Appendix

Details for ®gpinio) = [op: PV dl

o v = volume form on the octonionic lines | = {(x, mx)} or
I=1{(0,y)} in Q2.

o p;: O — | = projection on /.

o pfv; = 8-form in 0? = RS,

o The integral over OP! can be computed over @ with polar
coordinates.

o The formula arise from distinguished 8-planes in the
Spin(9)-geometry — (forthcoming) calibrations.
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Appendix

The five involutions of Sp(2) - Sp(1) as 8 x 8 matrices
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Appendix

The nine involutions of Spin(9) as 16 x 16 matrices




Appendix
Explicit formula for ®¢,

Denote by x1, ..., x7 the coordinates in R”. Then G = stabilizer in SO(7)
of

bq, = dxg Adxo A dxg + dxo A dx3 A dxs + dx3 A dxa A dxg
+ dxg A dxs A dxz + dxs A dxg A dxy + dxg N dxz A dxo
+ dx7 A dxq A dxs

As a shortcut, we could write

®, = 124 + 235 + 346 + 457 + 561 + 672 + 713
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Appendix

70 terms of ®g

12345678 -14 || 123456 12" 2 || 123456 34 -2 || 123456 56/ -2 || 123456 78 -2
123457 13" 2 || 123457 24 2 || 123457 57 -2 || 123457 6’8’ 2 || 123458 vy 2
123458 23’ -2 || 123458 58 -2 || 123458 67 -2 || 123467 14 -2 || 123467 73 2
123467 58" -2 || 123467 67 -2 || 123468 13 2 || 123468 24’ 2 || 123468 57 2
123468 68" -2 || 123478 12 -2 || 123478 34 2 || 123478 56" -2 || 123478 78 -2

1234 V234 -2 1234 56'7'8" -2 || 123567 U5 -2 || 123567 26’ -2 || 123567 37 -2
123567 a8’ 2 || 123568 16’ -2 || 123568 25’ 2 || 123568 38" -2 || 123568 ¥y -2
123578 177 -2 || 123578 28 2 || 123578 35 2 || 123578 ve 2 1235 1723’5/ -1

1235 1724’6’ -1 1235 1347 -1 1235 156’77 -1 1235 234’8’ 1 1235 2/56'8’ 1

1235 357’8’ 1 1235 4’6’7’8’ 1 || 123678 18 -2 || 123678 27" -2 || 123678 36 2
123678 a5 -2 1236 1723’6’ -1 1236 1724’5’ 1 1236 13’4’8’ -1 1236 1'5°6’8’ -1

1236 2347 -1 1236 2'5'6'7" -1 1236 36’7’8’ 1 1236 457’8 -1 1237 U237 -1

1237 124’8 1 1237 vy 1 1237 15’78 -1 1237 2346’ 1 1237 26’7’8 -1

1237 356’77 -1 1237 456’8 1 1238 1723’8/ -1 1238 1247 -1 1238 Uy4e 1

o {1,2,3,4,5,6,7,8,1",2/,3' 4" 5/,6/,7".8'} are (indexes of ) coordinates in R1°.
o A table entry ||123578 177 — 2|| means that
¢Spin(9) = ... —=2dxy ANdxo A dxz A dxs A dxz A\ dxg A dX{ A dXé + ...
o Table obtained from Berger's definition of ®g,;,(g) with the help of
Mathematica.
o The coefficients are normalized in such a way that they are all

integers with gcd = 1.
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Appendix

Computational challenge for g, )

o Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;
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Appendix

Computational challenge for ®g;,(9)

o Differential geometry in Mathematica? (1) Rieei; (2) EBE (3) DIY;
o The implementation of the wedge product can be reduced to a sorting
problem:

concatenation

Wedge(dxy A dxa, dxo A dx3) dxi A dxg A dxo A dx3

sorting

= dxy A dxo A dxs A dxy
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problem:

concatenation

Wedge(dxy A dxa, dxo A dx3) dxi A dxg A dxo A dx3

sorting

= dxy A dxo A dxs A dxy

o Divide and conquer paradigm can be used: break the problem into
subproblems, recursively solve these subproblems,

combine the solutions into a solution to the original problem.
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o Differential geometry in Mathematica? (1) Rieei; (2) EBE (3) DIY;

o The implementation of the wedge product can be reduced to a sorting
problem:

concatenation

Wedge(dxy A dxa, dxo A dx3)

dxy A dxg A\ dxo A dxs

sorting

dxy A dxo A dxs A dxy
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o Divide and conquer paradigm can be used: break
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Appendix

Computational challenge for ®g;,(9)

o Differential geometry in Mathematica? (1) Rieei; (2) EBE (3) DIY;

o The implementation of the wedge product can be reduced to a sorting
problem:

concatenation

Wedge(dxy A dxa, dxo A dx3)

dxy A dxg A\ dxo A dxs

sorting

dxy A dxo A dxs A dxy

o Divide and conquer paradigm can be used: break into

m recursively m these subproblems,

into a solution to the original problem:
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Appendix
Code to merge 2 sorted lists

[Adapted from the classical mergesort algorithm, thanks to Gianluca Amato and Francesca Scozzari]

(#Take care of sign when swappingx)
sign = 1;

(*Induction base: what to do when one or both the arguments are emptyx*)
formWedge [{}, {}]1 = {};

formWedge [{}, right_] := right;

formWedge [left_, {}] := left;

(*Compare first terms, and recursively build the ordered list*)
formWedge [left_, right_] :=
Switch[Order([left[[1]], right[[1]]1],

1,

Return[Prepend [formWedge [Drop[left, 1], right], left[[1]1]1]],
-1,

sign = sign*(-1) "Length[left];

Return[Prepend [formWedge [left, Dropl[right, 111, right[[1]111],
O!

Abort []
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Appendix

From Pfaffians to g,

utc

Pspin(9) =

D

(1/)041042 /\wa3a4 _1/}041(13 /\/lpOQOm +¢a1a4 /\’@[)agog )2

1<ai<ar<az<as<9

P19 = (—12+ 34 + 56 — 78) — ()’ P13 =(—13—24+57+68) — () Y14 =(—14+23+5 —67) — ()
P15 = (—15—26 —37 —48) — ( )/ 1 =(—16+25—38+47) — ( )/ 17 = (—17+28+35 —46) — ( )/
P13 = (—18 —27+36+45) — ( )/ o3 =(—14+23—58+67)+ () s =(13+24+57+68)+ ()
Yos = (—16 + 25 + 38 — 47) + ( )/ P = (15 + 26 — 37 — 48) + ()’ o7 = (18 + 27 + 36 + 45) + ( )’
Pog = (—17+ 28 — 35+ 46) + ( )/ P34 = (—12+34 —56+78) + ( )/ ab3s = (—17 — 28 +35+46) + ( )’
P36 = (—18 + 27 + 36 — 45) + ( )/ P37 = (+15 — 26 +37 — 48) + ( )/ 3z = (16 + 25 + 38 + 47) + ( )/
g5 = (—18 + 27 — 36 + 45) + ( ) a6 = (17 + 28 + 35 4 46) + ( )’ g7 = (—16 — 25+ 38 +47) + ()’
ag = (15 — 26 — 37 + 48) + ( )’ P56 = (—12 —34+56 +78) + ( )’ b5z = (—13+24+57 — 68) + ()’
Psg = (—14 — 23 + 58 +67) + ( )/ Y7 = (14 + 23 + 58 + 67) + ()’ Peg = (—13 +24 — 57+ 68) + ( )/
7g = (12 + 34 456 + 78) + ( )/

119 = —11/ — 22/ — 33/ — a4’ — 55/ — 66’ — 77/ — 88’  ppg = —12/ + 21/ + 34’ — 43’ 4 56’ — 65/ — 78’ + 87/
139 = —13/ — 24’ + 31/ + 42/ + 57/ + 68’ — 75/ — 86’ a9 = —147 + 23/ — 32/ + 41’ + 58’ — 67/ + 76/ — 85/
P59 = —157 — 26’ — 37/ — 48’ + 517 + 62/ + 73/ + 84’ Y9 = —16’ + 25/ — 38/ + 47/ — 52/ + 61/ — 74’ + 83/
P79 = —17/ + 28/ + 35/ — 46’ — 53/ + 64’ + 71/ — 82/ g9 = —18/ — 27/ + 36’ + 45/ — 54’ — 63/ + 72/ + 81/
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Appendix
Berger and calibrations

Berger appears to know about the fact that ®g;,(g) is a calibration on
OP? already in 1970 (serger, 1 mnceignencne waen. 15701 and more explicitly in 1972
[Berger, Ann. Ec. Norm. Sup. 1972, Theorem 6.3], Very early W|th respect tO the

forthcoming calibration theory.
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