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Self-organizing animal aggregations

e Animal groups with a high structural order

e [ he behaviour of individuals is so coordinated, that the group
moves as a single coherent entity
e Examples of self-organizing biological groups
— schooling fish
— herds of ungulates
— swarming insects

— zigzaging flocks of birds



Mathematical models

e [ he existing models fall into 2 categories: Lagrangian and
Eulerian

e Lagrangian models: trajectories of all individuals of a species
are tracked according to a set of interaction and decision
rules

— a large set of coupled ODE's

— a large set of coupled difference equations (discrete time)

e Eulerian models: the problem is cast as an evolution equation
for the population density field

— parabolic

— hyperbolic



A nonlocal Eulerian PDE swarming model

e We study the PDE aggregation model in R":

— continuity equation for the density p:
pt+V-(pv) =0

— the velocity v is assumed to have a functional dependence
on the density

v=—-VK=x*xp

— the potential K incorporates social interactions: attrac-
tion and repulsion

e [ he model was first suggested by Mogilner and Keshet, J.
Math. Biol. [1999]

e Literature on this model has been very rich in recent years
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Lagrangian description
N individuals

X;(t) = spatial location of the ¢-th individual at time ¢

dX; 1
t=—— Y V,K(X;—X;), i=1...N
dt N /
j=1...N
J7i

PDE: continuum approximation, as N — oo

Assumption: social interactions depend only on the relative dis-
tance between the individuals

e radially symmetric potentials

K(z) = K(|z[)



Notation: F(r) = —K (r)

dX; 1 X; — X
= Y F(X - X)) i=1...N
dt N |X¢—Xj|
j=1..N
JF

F(|X; — X;|) = magnitude of the force that the individual X; exerts on the
individual X;, along X; — X

Repulsion (F(r) > 0) acts at short ranges, attraction (F(r) < 0) at long
ranges.

Example: n = 2, F(r) = 1/r —r; random initial conditions inside the unit
square. The solution approaches a constant density in the unit disk.
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Motivation for this work

e Equilibria of the model should have biologically relevant fea-
tures:
— finite densities

— sharp boundaries

— relatively constant internal population

e [ he main motivation for this work is to

— design interaction potentials K which lead to such equi-
libria

— investigate analytically and numerically the well-posedness
and long time behaviour of solutions



Interaction potential K
K(w) — K/r —I_ Ka

1
= ¢(x) + qu’ q>2

o(x) = the free-space Green’s function for —A:

_ 1 —
() — { 27T1In|:v|, 1 n=>2

n >3

Continuity equation: ps +v-Vp = —pdivo

Calculate div:

div v

div(—=VK % p)
—AK xp

p— A(%leq) * p

The repulsion term has become locall



Lagrangian approach
Characteristic curves: th(oz t) = v(X(a,t),t), X(a,0) =«

Evolution equation for p(X(a,t),t):

l;—f —p® + pA(—leq)

Special case ¢ = 2: explicit calculations

AGRER) =n A(GP)sp=n [ o)y

A\

=M

ODE along characteristics: % = —p(p —nM)

Exact solution: p(X(a,t),t) = nM

Asymptotic behaviour as t — oo?



Asymptotic behaviour

Density: p(X,t) — nM, as t — oo, along particle paths with
po(a) # 0

Asymptotic behaviour of trajectories: Rqy = iMoo | X (i, t)]

For radial solutions, it can be proved that trajectories are mapped

into the ball of R™ of radius Ry = —1 .
(nwn)n

Numerics suggest that all solutions have this asymptotic be-
haviour.

Global attractor: constant, compactly supported density:

nM if || < —1
p(z) = (nwn)n
0 otherwise
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Global existence of particle paths

v(@) = [ k(z=y)p(y) dy — M, (1)
where

The convolution kernel k is singular, homogeneous of degree
1 —n.

Equation (1) is analogous to Biot-Savart law, where vorticity w
IS now replaced by density p.

Existence and uniqueness of particle paths follow similarly to that
for incompressible Euler equations.

Extension to global existence: Beale-Kato-Majda criterion

¢
/o |p(+, 8)||[0ds < oo, for all finite times ¢
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Case g > 2: Non-constant steady states
Numerics suggests that attractors are radially symmetric.

Assume the model admits a radial steady state supported on a
ball B(O, R).

Recall formula for divwv: divv = p — A(%|x|q) % P

Equilibria supported on B(0, R):

v =0, hence divv =0 in B(0, R)

A steady state p satisfies:

p—(n+q-2) [ l2—yl"?pydy=0  in B(O,R)

Use radial symmetry p(x) = p(r).
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Radial steady states

T he density p satisfies the homogeneous Fredholm integral equa-
tion

5) = e(a,m) [ GBI, 0<r <R,

T
I(r,r") = /O (r2 4+ (+")2 — 2rr’ cos )72~ 1 sin" =2 94p.

In other words, p is an eigenfunction of the linear operator Tp:

Tap(r) = e(am) [ GGGy

that corresponds to eigenvalue one: |Trp(r) = p(r), r <R

The eigenvalue problem: find p and the radius R of the support
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Krein-Rutman theorem
Consider case R =1 first.

The kernel ¢(g,n)(r)*~1I(r,+") is nonnegative, continuous and
bounded.

T4 is a linear, strongly positive, compact operator that maps the
space of continuous functions C([0, 1],R) into itself.

Krein-Rutman theorem: there exists a positive eigenfunction p;
such that

T1p1 = Ap1 (2)

A(g,n) is the spectral radius of T7; it is a simple eigenvalue and
there is no other eigenvalue with a positive eigenvector.

Define, by rescaling: p(r) = p1(r/R).
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EXistence and uniqueness of equilibria

Introduce p(r) = p1(r/R) in (2):

Trp(r) = R"TI72Xp(r)

Ask that p is an eigenfunction of T’ corresponding to e-value 1:

1
R =)\ nta2

This gives the radius of the support as a function of ¢ and n.
Once a mass M for p is set, uniqueness can be inferred from

the uniqueness properties of the spectral radius of 77 and its
associated eigenfunction p;q.
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Equilibria: numerical results
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Left: Plot of the radius of the support R of the steady states as a function
of the exponent ¢, for various space dimensions n.

The plot suggests that the radius R approaches a constant, as ¢ — oc.

Right: Normalized radially symmetric steady states p(r) in two dimensions
for various values of the exponent q.

For ¢ = 2 the steady state is the constant solution in a disk. As g increases,
mass aggregates toward the edge of the swarm, creating an increasingly void

region in the centre.
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Even ¢: polynomial steady states

Kernel  I(r,7") = [J(r?+ ()2 —2rr' cos§)¥2~1sin""26df is separable when

q IS even.

Define the i-th order moments of the density (mg = M):
R .
m; = nwn/ 50 drs
0

Example: ¢ =4
I(r,") = (r? 4+ (")) / sin" "2 0d6
0
and
R
5r) = n(n+ 2w, [ ()62 + (D
0
= (n 4+ 2)mor? + (n + 2)mo

Plug (4) into (3): linear system to find R and m»

mo \ _ nwy, R" 12 (n 4+ 2)w, R" mo

mo | n(nn_:f) wn RYT4 nwy R 12 mo

General g even: p(r) is a polynomial of even powers of r, of degree
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Dynamic evolution: numerical results
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Time evolution of a radially symmetric solution to the aggregation model
with ¢ = 2 (left) and ¢ = 4 (right) in two dimensions

Left: As predicted by the analytical results, the solution approaches asymp-
totically a constant, compactly supported steady state.

Right: The solution approaches asymptotically the steady state computed
analytically
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Regularized potentials

Ch, 0<r<ro
F(ry=¢ +—-r, ro<r<?2 (6)
—Chexp(—r), 2<r

1 regularize
—

F(T):;—T

r,=0.0000 r,=0.0902

00000 X1 00
-1 0 1 -1 0 1 -1 0 1 -1 0 1

Equilibrium states for the regularized interaction force (6). Initial conditions
were chosen at random in the unit square. For rg < 0.09, the steady state is
the same as for ro = 0 (uniform density in the unit circle).
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Inverse problem: custom designed potentials

Inverse problem: given a density p(x), can we find a potential K
for which p(x) is a steady state of the model?

Answer: Yes, provided p(x) is radial and is a polynomial in |z|.

Theorem: In one dimension, consider an even density p of the form

5(x) = bo 4 box? + baz* + ... + byyx2? x| < R
i 0] otherwise.

Define the moments m; as in (3). Then p(x) is the steady state corresponding
to the force F"
d

1 2i ;
F(:C)ZE ;2 -|—1 TR
where the constants agp, ap,...,asq, are computed from bg, by, ..., bys by solving
the following linear system:
d .
bop = Zagj ( g‘; ) M2(j—k)s k=0...d. (7)
j=k

Moreover, system (7) has a unique solution.
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Inverse problem: numerical results
Examples: R =1 and:

(@ FD=1-2% O j)=2 () p@)=,+a* -zt

The corresponding forces given by the Theorem are:

(@) F(a)= 3 _ ix + %3; ®) Fz) = + —a: _ %aﬁ
1, 209425 2075 , %3 .
(e) F(x) - + 672182° 25270 T 19”7
) ] pz)

(b) (©)

Filled circles along the z-axis: the steady states reached by numerical time
evolution. Empty circles: density function as computed from the filled circles.
Solid line: analytical expression for p.
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Other recent work / Future Directions

e Studied g < 2, in particular the case ¢ — 2 —n, when attraction becomes
as singular as repulsion (Newtonian potential)

e Investigated properties of the steady states: monotonicity, asymptotic
behaviour (¢ = oo, ¢ =+ 2 —n)

e Energy considerations: local/ global minima

1

Pl =5 [ | K=oy

The model is a gradient flow with respect to this energy:

GEWl =~ [ p@)VE < p(@)Pde < 0
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