Proof of the Kim-Chernikov-Kaplan Lemma

Hans Adler Kurt Gödel Research Center Vienna

> Banff 31 January 2012

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation

 $NTP_2 = natural common generalisation of simplicity and NIP.$

Morally it means: every type has bounded weight.

Chernikov and Kaplan recently proved an NTP_2 version of Kim's Lemma.

In this talk I will explain a slightly simplified version of their proof.

- Artem Chernikov and Itay Kaplan: 'Forking and dividing in NTP₂ theories'. J. Symbolic Logic 77 (2012), 1–20.
- Extension bases for weak invariance replaced by models.
- Strong splitting (or weak invariance) replaced by splitting (or invariance).
- Broom Lemma replaced by Hoover Lemma.

Kim's Lemma

Theorem (Kim)

Let T be simple.

For any $\varphi(x, b)$ and any C the following are equivalent.

- 1. $\varphi(x, b)$ divides over C.
- 2. $\varphi(x, b)$ forks over C.
- 3. Every Morley sequence in tp(b/C) witnesses that $\varphi(x, b)$ divides over C.
- 4. Some Morley sequence in tp(b/C) witnesses that $\varphi(x, b)$ divides over C.

Kim's Lemma for NTP₂ theories

Theorem (Chernikov, Kaplan)

Let T be NTP_2 .

For any $\varphi(x, b)$ and any M the following are equivalent.

- 1. $\varphi(x, b)$ divides over M.
- 2. $\varphi(x, b)$ forks over M.
- 3. Every strict Morley sequence in tp(b/M) witnesses that $\varphi(x, b)$ divides over M.
- 4. Some strict Morley sequence in tp(b/M) witnesses that $\varphi(x, b)$ divides over M.

Outline

- Definitions
- Proof sketch:
 - 4 \implies 1 \implies 2 is obvious.
 - Lemmas 1 and 2
 - Proof of Lemma 2
 - Lemma 2 says that $1 \implies 3$;
 - $2 \implies 3$ is a simple corollary
 - Skipped proof of Lemma 1 is similar
 - Existence Lemma
 - Skipped proof uses Hoover Lemma
 - Implies 3 ⇒ 4
 - Hoover Lemma
 - Proof of Hoover Lemma (uses Lemma 1)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition of TP₂

 $\varphi(x, y)$ has TP₂ if a matrix of instances $\varphi(x, b)$ exists as follows.

$$\begin{array}{cccc} \varphi(x, b_{00}) & \varphi(x, b_{01}) & \varphi(x, b_{02}) & \cdots \\ \varphi(x, b_{10}) & \varphi(x, b_{11}) & \varphi(x, b_{12}) & \cdots \\ \varphi(x, b_{20}) & \varphi(x, b_{21}) & \varphi(x, b_{22}) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array}$$

For some $k < \omega$, each row is k-inconsistent.

► For every
$$f : \omega \to \omega$$
,
 $\{\varphi(x, b_{i,f(i)}) \mid i < \omega\}$ is consistent

(Fact: If such an array exists, then we can make the rows mutually indiscernible and the sequence of rows indiscernible.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More definitions

 $a \stackrel{f}{\underset{C}{\downarrow}} B \iff \operatorname{tp}(a/BC)$ does not fork over C.

 $a \stackrel{i}{\underset{C}{\sqcup}} B \iff \operatorname{tp}(a/BC)$ has a *C*-invariant global extension.

 $(a_i)_{i < \omega}$ is an \bigcup -Morley sequence over *C* if $a_i \bigcup_{C}^{i} a_{<i}$ for all *i*. (I.e. generated by a *C*-invariant global type.)

A global type
$$p(x)$$
 is strictly invariant over C if
 $\forall B \supseteq C \ \forall a \models p \upharpoonright B:$
 $a \stackrel{i}{\bigcup}_{C} B \text{ and } B \stackrel{f}{\bigcup}_{C} a.$

Strict Morley sequence over C: generated by a strictly C-invariant global type.

Lemmas 1 and 2

Suppose $\varphi(x, b)$ is NTP₂ and divides over *M*.

Lemma 1

There is an \downarrow^i -Morley sequence over M which witnesses that $\varphi(x, b)$ divides over M.

Lemma 2

Let $q(y) \supset tp(b/M)$ be a strictly invariant global extension. Then every strict Morley sequence generated by q over M witnesses that $\varphi(x, b)$ divides over M.

Proof of Lemma 2

Choose any *M*-indiscernible sequence $\overline{b}_0 = (b_{0i})_{i < \omega}$ witnessing that $\varphi(x, b)$ divides over *M*. We may choose \overline{b}_0 so that $b \models q \upharpoonright M \overline{b}_0$. Using $\overline{b}_0 \stackrel{f}{\underset{M}{=}} b$, we can find an $M \overline{b}_0$ -indiscernible sequence $\overline{b}_1 \equiv_M \overline{b}_0$ in $\operatorname{tp}(b/M \overline{b}_0) = q \upharpoonright M \overline{b}_0$. We may also assume $b \models q \upharpoonright \overline{b}_0 \overline{b}_1$. Continuing in this way, we get a matrix

b_{00}	b_{01}	b_{02}	• • •
b_{10}	b_{11}	b_{12}	•••
b ₂₀	b_{21}	b ₂₂	•••
÷	÷	÷	·

such that for each row the φ -instances are *k*-inconsistent. All vertical paths are generated by *q* and so have the same type. By NTP₂ the φ -instances on vertical paths cannot all be consistent, so they are inconsistent.

(日) (同) (三) (三) (三) (○) (○)

Existence Lemma

Lemma

Let T be NTP₂. Every type over M has a strictly invariant global extension. In other words: In every type over M there is a strict Morley sequence.

We won't do the proof. It is straightforward once you know that a global type invariant over M does not fork over M.

... which is obvious.

Except that we need it for partial global types, in which case it's surprisingly hard to prove.

HooverTM Lemma

 ${\cal T}$ any complete consistent theory.

Lemma

Let
$$p(x)$$
 be a partial global type, invariant over M .
Suppose $p(x) \vdash \psi(x, b) \lor \bigvee_{i < n} \varphi^i(x, c)$,
where $b \coprod_M c$ and each $\varphi^i(x, c)$ divides over M .
Then $p(x) \vdash \psi(x, b)$.

Corollary

A consistent partial global type that is invariant over M does not fork over M.

Proof of corollary: Let p(x) be a partial global type invariant over M. If p forks over M, then $p(x) \vdash \bot \lor \bigvee_{i < n} \varphi^i(x, c)$, where each $\varphi^i(x, c)$ divides over M. Note that $\emptyset \downarrow_M c$. By the lemma, $p(x) \vdash \bot$.

Proof of the Hoover Lemma (1)

Induction on *n*. Statement is trivial for n = 0.

Suppose it holds for *n*, and $p(x) \vdash \psi(x, b) \lor \bigvee_{i \le n} \varphi^i(x, c)$, where $b \mathrel{\dot{\sqcup}}_M c$ and each $\varphi^i(x, c)$ divides over *M*. We must show: $p(x) \vdash \psi(x, b)$.

Let $(c_j)_{j<\omega}$ be an \downarrow -Morley sequence over M, witnessing that $\varphi^n(x, c)$ k-divides over M (some k).

$$b \stackrel{i}{\bigsqcup}_M c \implies$$
 we may assume $b \stackrel{i}{\bigsqcup}_M (c_j)_{j < \omega}$
 $\Longrightarrow (c_j)_{j < \omega}$ is *Mb*-indiscernible.

By invariance of *p*:

$$p(x) \vdash \psi(x,b) \lor \bigwedge_{j < k'} \bigvee_{i \le n} \varphi^i(x,c_j),$$

for every $k' < \omega$.

Proof of the Hoover Lemma (2)

$$p(x) \vdash \psi(x,b) \lor \bigwedge_{j < k'} \bigvee_{i \leq n} \varphi^i(x,c_j).$$

If we choose k' = k, then $\bigwedge_{j < k'} \varphi^n(x, c_j)$ is inconsistent and we get:

$$p(x) \vdash \psi(x,b) \lor \bigvee_{j < k'} \bigvee_{i < n} \varphi^i(x,c_j).$$

For each j < k we have

1. $b \stackrel{i}{\downarrow}_{M} c_{\geq j} \implies b \stackrel{i}{\downarrow}_{Mc_{>j}} c_{j}$ 2. $c_{>j} \stackrel{i}{\downarrow}_{M} c_{j}$. $\implies bc_{>j} \stackrel{i}{\downarrow}_{M} c_{j}$ (by transitivity). Since $bc_{>0} \stackrel{i}{\downarrow}_{M} c_{0}$, we can apply the induction hypothesis and get $p(x) \vdash \psi(x, b) \lor \bigvee_{1 \leq j < k} \bigvee_{i < n} \varphi^{i}(x, c_{j})$. After eliminating $\bigvee_{i < n} \varphi^{i}(x, c_{1})$ to $\bigvee_{i < n} \varphi^{i}(x, c_{k-1})$ in the same way, we get $p(x) \vdash \psi(x, b)$.

Postscript (2 February 2012):

For the present version I have removed most of the dynamic effects, corrected a number of typos and added a missing argument to the proof of Lemma 2.

As I said in the talk, the Hoover Lemma replaces a more complicated lemma of Chernikov and Kaplan, which they call the Broom Lemma as it is reminiscent of a sweeping operation. In the Hoover Lemma, unwanted formulas are sucked away one by one but other, more harmless formulas are added instead. Therefore I have dedicated the lemma to the Hoover-branded vacuum cleaner I had in Leeds, which required several passes to clean the carpet. (In the long run I will probably be more comfortable referring to it as the Vacuum Cleaner Lemma.)