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VC dimension and VC density

Let (X,S) be a set system, i.e., X is a set (the base set), and
S is a collection of subsets of X. (We sometimes also speak of
a set system S on X.)

Given A ⊆ X, we let

S ∩A := {S ∩A : S ∈ S}

and call (A,S ∩A) the set system on A induced by S.

We say A is shattered by S if S ∩A = 2A.

If S 6= ∅, then we define the VC dimension of S, denoted by
VC(S), as the supremum (in N ∪ {∞}) of the sizes of all finite
subsets of X shattered by S. We also decree VC(∅) := −∞.
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VC dimension and VC density

Examples

1 X = R, S = all unbounded intervals. Then VC(S) = 2.
2 X = R2, S = all halfspaces. Then VC(S) = 3.

One point in the convex hull
of the others

No point in the convex hull
of the others

3 Let S = half spaces in Rd. Then VC(S) = d+ 1.
(The inequality 6 follows from Radon’s Lemma.)
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VC dimension and VC density

Examples (continued)

4 X = R2, S = all convex polygons. Then VC(S) =∞.

(But VC({convex n-gons in R2}) = 2n+ 1.)
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VC dimension and VC density

The function

n 7→ πS(n) := max

{
|S ∩A| : A ∈

(
X

n

)}
: N→ N

is called the shatter function of S.

Then

VC(S) = sup
{
n : πS(n) = 2n

}
.

One says that S is a VC class if VC(S) <∞.

The notion of VC dimension was
introduced by Vladimir Vapnik and
Alexey Chervonenkis in the early
1970s, in the context of
computational learning theory.
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VC dimension and VC density

A surprising dichotomy holds for πS :

The Sauer-Shelah dichotomy

Either
• πS(n) = 2n for every n (if S is not a VC class),

or
• πS(n) 6

(
n
6d

)
:=
(
n
0

)
+ · · ·+

(
n
d

)
where d = VC(S) <∞.

One may now define the VC density of S as

vc(S) =

{
inf{r ∈ R>0 : πS(n) = O(nr)} if VC(S) <∞
∞ otherwise.

We also define vc(∅) := −∞.
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VC dimension and VC density

Examples

1 S =
(
X
6d

)
. Then VC(S) = vc(S) = d; in fact πS(n) =

(
n
6d

)
.

2 S = half spaces in Rd. Then VC(S) = d+ 1, vc(S) = d.

VC density is often the right measure for the combinatorial
complexity of a set system. (E.g., it is related to packing
numbers and entropy).

Some basic properties:

• vc(S) 6 VC(S), and if one is finite then so is the other;
• VC(S) = 0⇐⇒ |S| = 1;
• S is finite⇐⇒ vc(S) = 0⇐⇒ vc(S) < 1;
• S = S1 ∪ S2 ⇒ vc(S) = max{vc(S1), vc(S2)}.
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VC duality

Let X be a set (possibly finite). Given A1, . . . , An ⊆ X, denote
by S(A1, . . . , An) the set of atoms of the Boolean subalgebra of
2X generated by A1, . . . , An: those subsets of X of the form⋂

i∈I
Ai ∩

⋂
i/∈I

X \Ai where I ⊆ {1, . . . , n}

which are non-empty (= “the non-empty sets in the Venn
diagram of A1, . . . , An”).

Suppose now that S is a set system on X. We define

n 7→ π∗S(n) := max
{
|S(A1, . . . , An)| : A1, . . . , An ∈ S

}
: N→ N.

We say that S is independent (in X) if π∗S(n) = 2n for every n,
and dependent (in X) otherwise.
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VC duality

Example (X = R2, S = half planes in R2)

π∗S(n) =

{
maximum number of regions into which n half
planes partition the plane.

Adding one half plane to n− 1 given half planes divides at most
n of the existing regions into 2 pieces. So π∗S(n) = O(n2).

The function π∗S is called the dual shatter function of S.
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VC duality

Let X, Y be infinite sets, Φ ⊆ X × Y a binary relation.

Put

SΦ := {Φy : y ∈ Y } ⊆ 2X where Φy := {x ∈ X : (x, y) ∈ Φ},

and
πΦ := πSΦ

, π∗Φ := π∗SΦ
,

VC(Φ) := VC(SΦ), vc(Φ) := vc(SΦ).

We also write

Φ∗ ⊆ Y ×X :=
{

(y, x) ∈ Y ×X : (x, y) ∈ Φ
}
.

In this way we obtain two set systems: (X,SΦ) and (Y,SΦ∗)

Given a finite set A ⊆ X we have a bijection

B 7→
⋂
x∈B

Φ∗x ∩
⋂

x∈A\B

Y \ Φ∗x : SΦ ∩A→ S(Φ∗x : x ∈ A).
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VC duality

Hence πΦ = π∗Φ∗ and πΦ∗ = π∗Φ, and thus

SΦ is a VC class ⇐⇒ SΦ∗ is dependent,
SΦ∗ is a VC class ⇐⇒ SΦ is dependent.

Moreover (first noticed by Assouad):

SΦ is a VC class ⇐⇒ SΦ∗ is a VC class.
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The model-theoretic context

We fix:
L: a first-order language,

x = (x1, . . . , xm): object variables,
y = (y1, . . . , yn): parameter variables,

ϕ(x; y): a partitioned L-formula,
M : an infinite L-structure, and
T : a complete L-theory without finite models.

The set system (on Mm) associated with ϕ in M :

SMϕ := {ϕM (Mm; b) : b ∈Mn}

If M ≡N , then πSMϕ = πSNϕ . So, picking M |= T arbitrary, set

πϕ := πSMϕ , VC(ϕ) := VC(SMϕ ), vc(ϕ) := vc(SMϕ ).
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The dual of ϕ(x; y) is ϕ∗(y;x) := ϕ(x; y). Put
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We have π∗ϕ = πϕ∗ , hence VC∗(ϕ) and vc∗(ϕ) can be computed
using the dual shatter function of ϕ.

Recall:

If VC(ϕ) <∞ then we say that ϕ is dependent in T . The
theory T does not have the independence property (is NIP,
or dependent) if every partitioned L-formula is dependent in T .

An important theorem of Shelah (given other proofs by
Laskowski and others) says that for T to be NIP it is enough for
for every L-formula ϕ(x; y) with |x| = 1 to be dependent.
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The model-theoretic context

Some questions about vc in model theory

1 Possible values of vc(ϕ). There exists a formula ϕ(x; y) in
Lrings with |y| = 4 such that

vcACF0(ϕ) = 4
3 ; vcACFp(ϕ) = 3

2 for p > 0.

We do not know an example of a formula ϕ in a NIP theory
with vc(ϕ) /∈ Q.

2 Growth of πϕ. There is an example of an ω-stable T and an
L-formula ϕ(x; y) with |y| = 2 and

πϕ(n) = 1
2n log n (1 + o(1)).

3 Uniform bounds on vc(ϕ).
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Uniform bounds on VC density

Some reasons why it should be interesting to obtain bounds on
vc(ϕ) in terms of |y| = number of free parameters:

1 uniform bounds on VC density often “explain” why certain
bounds on the complexity of geometric arrangements,
used in computational geometry, are polynomial in the
number of objects involved (example follows later );

2 connections to strengthenings of the NIP concept: if
vc(ϕ) < 2 for each ϕ(x; y) with |y| = 1, then T is
dp-minimal.
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Uniform bounds on VC density

Theorem
Suppose T expands the theory of linearly ordered sets, and
assume that T is weakly o-minimal, i.e., in every M |= T ,
every definable subset of M is a finite union of convex subsets
of M .

Then for each ϕ(x; y) we have πϕ(t) = O(t|y|), hence
vc(ϕ) 6 |y|.

(Generalizes earlier results due to Karpinski-Macintyre and Wilkie.)

We sketch the proof.

It is more convenient to work with π∗, and thus we need to show

π∗ϕ(t) = O(t|x|) for each ϕ(x; y).
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Uniform bounds on VC density

It is also convenient to be able to deal with finitely many
formulas at once:

∆(x; y): a finite non-empty set of partitioned L-formulas;
S∆(B): the set of complete ∆(x;B)-types in M (B ⊆M |y|).

If T is NIP then we set

π∗∆(t) := max

{
|S∆(B)| : B ∈

(
M |y|

t

)}
,

vc∗(∆) := inf
{
r ∈ R>0 : π∗∆(t) = O(tr)

}
.
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Uniform bounds on VC density

Definition (adapted from Guingona)

∆ has uniform definability of types over finite sets (UDTFS)
in M with m parameters if there are families of L-formulas

Fi =
(
ϕi(y; y1, . . . , ym)

)
ϕ∈∆

(i ∈ I = a finite set)

such that for every finite B ⊆M |y| and q ∈ S∆(B) there are
b1, . . . , bm ∈ B and i ∈ I such that Fi(y; b1, . . . , bm) defines q.

• If we don’t care about the number of extra parameters m,
then we can always achieve |I| = 1 and |∆| = 1.

• On the other hand: if ∆ has a uniform definition
F = (Fi)i∈I for ∆-types with m parameters, then

|S∆(B)| 6 |I| · |B|m for every finite B.
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Uniform bounds on VC density

Theorem
Suppose that M has the VCm property, i.e., any ∆(x; y) with
|x| = 1 has UDTFS in M with m parameters.

Then every ∆(x; y) has UDTFS in M with m|x| parameters.
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Uniform bounds on VC density

Weakly o-minimal theories have the VC1 property (sketch).

Let M |= T and ∆(x; y) be a finite non-empty set of L-formulas
with |x| = 1. We let ϕ range over ∆ and b over M |y|.

If for each ϕ and b, the set ϕ(M ; b) is an initial segment of M ,
then clearly ∆ has UDTFS with a single parameter.

In general, there is some N such that for each ϕ and b, ϕ(M ; b)
has 6 N convex components, and hence is a Boolean
combination of 6 2N initial segments of M (uniformly in b).

Forming Boolean combinations preserves UDTFS.

The same proof applies to quasi-o-minimal theories (e.g.,
Presburger Arithmetic).



Uniform bounds on VC density

Weakly o-minimal theories have the VC1 property (sketch).

Let M |= T and ∆(x; y) be a finite non-empty set of L-formulas
with |x| = 1. We let ϕ range over ∆ and b over M |y|.

If for each ϕ and b, the set ϕ(M ; b) is an initial segment of M ,
then clearly ∆ has UDTFS with a single parameter.

In general, there is some N such that for each ϕ and b, ϕ(M ; b)
has 6 N convex components, and hence is a Boolean
combination of 6 2N initial segments of M (uniformly in b).

Forming Boolean combinations preserves UDTFS.

The same proof applies to quasi-o-minimal theories (e.g.,
Presburger Arithmetic).



Uniform bounds on VC density

Weakly o-minimal theories have the VC1 property (sketch).

Let M |= T and ∆(x; y) be a finite non-empty set of L-formulas
with |x| = 1. We let ϕ range over ∆ and b over M |y|.

If for each ϕ and b, the set ϕ(M ; b) is an initial segment of M ,
then clearly ∆ has UDTFS with a single parameter.

In general, there is some N such that for each ϕ and b, ϕ(M ; b)
has 6 N convex components, and hence is a Boolean
combination of 6 2N initial segments of M (uniformly in b).

Forming Boolean combinations preserves UDTFS.

The same proof applies to quasi-o-minimal theories (e.g.,
Presburger Arithmetic).



Uniform bounds on VC density

Weakly o-minimal theories have the VC1 property (sketch).

Let M |= T and ∆(x; y) be a finite non-empty set of L-formulas
with |x| = 1. We let ϕ range over ∆ and b over M |y|.

If for each ϕ and b, the set ϕ(M ; b) is an initial segment of M ,
then clearly ∆ has UDTFS with a single parameter.

In general, there is some N such that for each ϕ and b, ϕ(M ; b)
has 6 N convex components, and hence is a Boolean
combination of 6 2N initial segments of M (uniformly in b).

Forming Boolean combinations preserves UDTFS.

The same proof applies to quasi-o-minimal theories (e.g.,
Presburger Arithmetic).



Uniform bounds on VC density

Weakly o-minimal theories have the VC1 property (sketch).

Let M |= T and ∆(x; y) be a finite non-empty set of L-formulas
with |x| = 1. We let ϕ range over ∆ and b over M |y|.

If for each ϕ and b, the set ϕ(M ; b) is an initial segment of M ,
then clearly ∆ has UDTFS with a single parameter.

In general, there is some N such that for each ϕ and b, ϕ(M ; b)
has 6 N convex components, and hence is a Boolean
combination of 6 2N initial segments of M (uniformly in b).

Forming Boolean combinations preserves UDTFS.

The same proof applies to quasi-o-minimal theories (e.g.,
Presburger Arithmetic).



Uniform bounds on VC density

Weakly o-minimal theories have the VC1 property (sketch).

Let M |= T and ∆(x; y) be a finite non-empty set of L-formulas
with |x| = 1. We let ϕ range over ∆ and b over M |y|.

If for each ϕ and b, the set ϕ(M ; b) is an initial segment of M ,
then clearly ∆ has UDTFS with a single parameter.

In general, there is some N such that for each ϕ and b, ϕ(M ; b)
has 6 N convex components, and hence is a Boolean
combination of 6 2N initial segments of M (uniformly in b).

Forming Boolean combinations preserves UDTFS.

The same proof applies to quasi-o-minimal theories (e.g.,
Presburger Arithmetic).



Uniform bounds on VC density

Interesting classes of NIP theories are provided by certain
valued fields.

By a non-trivial elaboration of our methods:

Theorem
Suppose M = Qp is the field of p-adic numbers, construed as a
structure in the language of rings. Then M has the VC 2
property; in fact, vc(ϕ) 6 2|y| − 1.

This (probably non-optimal) result also holds, e.g., for the
subanalytic expansions of Qp considered by Denef & v. d. Dries.

We do not know whether the completions of ACVF have the
VC d property.

We also have results stating that in certain stable theories T we
have linear bounds on VC density, not obtained via the VCm
property.
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Uniform bounds on VC density

Theorem
Let A be an infinite abelian group. T.f.a.e.:

1 vc(ϕ) for ϕ(x; y) with |y| = 1 is bounded;
2 there is some d such that vc(ϕ) 6 d|y| for each ϕ(x; y);
3 there are only finitely many p such that A[p] or A/pA is

infinite, and for all p there are only finitely many n such that

U(p, n;A) = |(pnA)[p]/(pn+1A)[p]| > ℵ0.

As an upshot of the proof of the theorem we are able to
determine the theories of all dp-minimal abelian groups.

If A has finite exponent then it has the VC d property (explicit d).
The proof involves some combinatorics with distributive lattices.
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Uniform bounds on VC density

A general theorem is:

Theorem
Suppose T does not have the finite cover property and finite
U-rank U(T ). Then vc(ϕ) 6 |y|U(T ) for every ϕ(x; y).

Cases where the theorem applies includes all expansions T of
the theory of groups with MR(T ) < ω. The theorem in action:

Example (L = language of rings, K |= ACF)

Choose ϕ(x; y) so that SKϕ = all zero sets (in Km) of
polynomials in m indeterminates over K of degree 6 d. Then

π∗ϕ(t) =

{
maximum number of non-empty
Boolean combinations of t hypersur-
faces in Km of degree 6 d.

}
= πϕ∗(t) = O(tm)
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From Lipschitz maps to VC density

Question
Let f : A→ Rn, A ⊆ Rm, be L-Lipschitz (where L ∈ R>0), i.e.,

||f(x)− f(y)|| 6 L · ||x− y|| for all x, y ∈ A.

Can one extend f to an L-Lipschitz map Rm → Rn?

Kirszbraun (1934): yes for all n

There always exists an L-Lipschitz extension Rm → Rn of f .

The usual proofs of this theorem all use some sort of transfinite
induction. (A classical explicit construction by MacShane &
Whitney only yields an L

√
n-Lipschitz extension.)



From Lipschitz maps to VC density

Question
Let f : A→ Rn, A ⊆ Rm, be L-Lipschitz (where L ∈ R>0), i.e.,

||f(x)− f(y)|| 6 L · ||x− y|| for all x, y ∈ A.

Can one extend f to an L-Lipschitz map Rm → Rn?

Kirszbraun (1934): yes for all n

There always exists an L-Lipschitz extension Rm → Rn of f .

The usual proofs of this theorem all use some sort of transfinite
induction. (A classical explicit construction by MacShane &
Whitney only yields an L

√
n-Lipschitz extension.)



From Lipschitz maps to VC density

Question
Let f : A→ Rn, A ⊆ Rm, be L-Lipschitz (where L ∈ R>0), i.e.,

||f(x)− f(y)|| 6 L · ||x− y|| for all x, y ∈ A.

Can one extend f to an L-Lipschitz map Rm → Rn?

Kirszbraun (1934): yes for all n

There always exists an L-Lipschitz extension Rm → Rn of f .

The usual proofs of this theorem all use some sort of transfinite
induction. (A classical explicit construction by MacShane &
Whitney only yields an L

√
n-Lipschitz extension.)



From Lipschitz maps to VC density

Theorem A (A.-Fischer, Proc. LMS 2011)

Let R = (R, 0, 1,+,×, <, . . . ) be a definably complete
expansion of an ordered field: every non-empty definable
subset of R which is bounded from above has a supremum.

Then every definable L-Lipschitz map A→ Rn (A ⊆ Rm,
L ∈ R>0) has a definable L-Lipschitz extension Rm → Rn.

The proof of this theorem used convex analysis and is based
on a relationship between Lipschitz maps and monotone
set-valued maps (Minty; more recently, Bauschke & Wang).

Another crucial ingredient (in the case where R 6= R) is a
definable version of a classical theorem of Helly:
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From Lipschitz maps to VC density

Theorem B (A.-Fischer, Proc. LMS 2011)

Let R be a definably complete expansion of an ordered field.
Let C be a definable family of closed bounded convex subsets
of Rn.

Suppose C is (n+ 1)-consistent:⋂
C′ 6= ∅ for all C′ ⊆ C with |C′| 6 n+ 1.

Then
⋂
C 6= ∅.

Our proof of this theorem uses an optimization argument.

S. Starchenko pointed out that in the case of an o-minimal R,
our theorem follows from an analysis of forking in o-minimal
theories due to A. Dolich.
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From Lipschitz maps to VC density

A subset T of X is called a transversal of a set system S on X
if every member of S contains an element of T .

Theorem (Dolich ’04, made explicit by Peterzil & Pillay ’07)

Let R be an o-minimal expansion of a real closed field, and let
C = {Ca}a∈A be a definable family of closed and bounded
subsets of Rn parameterized by a subset A of Rm. If C is
N(m,n)-consistent, where

N(m,n) = (1 + 2m) · (1 + 22m) · · · (n factors),

then C has a finite transversal.
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From Lipschitz maps to VC density

Question
Can one do better than the bound N(m,n)?

Theorem (Matoušek, 2004)

Let (X,S) be a set system of finite dual VC density vc∗(S).
Suppose S is d-consistent, where d > vc∗(S). Assume that X
comes equipped with a topology making all sets in S compact.
Then S has a finite transversal.

Corollary

Let C = {Ca}a∈A be a family of compact subsets of Rn

definable in an o-minimal structure on R. If C is
(n+ 1)-consistent, then C has a finite transversal.
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From Lipschitz maps to VC density

Proof of Theorem B in the o-minimal case (Starchenko)

Suppose R is o-minimal, and write C = {Ca}a∈A.

By Helly’s Theorem for finite families, the (definable) family
whose members are the intersections of n+ 1 members of C is
finitely consistent.

Apply Dolich’s Theorem to this family to obtain a finite set
P ⊆ Rn with P ∩ Ca1 ∩ · · · ∩ Can+1 6= ∅ for all a1, . . . , an+1 ∈ A.

Thus
P = {conv(Ca ∩ P )}a∈A

is a family of convex subsets of Rn with only finitely many
distinct members, and P is (n+ 1)-consistent.

Hence ∅ 6=
⋂
P ⊆

⋂
C by Helly’s Theorem for finite families.
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And finally . . .

There are many open questions in this subject. Here is one:

Open question

Suppose T is a NIP theory.

If there is some d1 such that vc(ϕ) 6 d1 for each ϕ(x; y) with
|y| = 1, is there is some dm such that vc(ϕ) 6 dm for each
ϕ(x; y) with |y| = m?
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