Neostability Theory Meeting

From Finite to First-order Model Theory

Cameron Donnay Hill

University of Notre Dame 01 February 2012

Cameron Donnay Hill: From Finite to First-order Model Theory,

Classes of finite structures

 \blacksquare "Intricacies" of the $\mathbb{K}\leftrightarrow\mathfrak{M}$ correspondence

• Examining $\mathbb{K}_{\forall} \to \mathbb{K}$

Some familiar classes

- If m is an ultrahomogenous structure. K is the set of finite induced substructures of M (its age).
- ② 𝔐 is a smoothly approximable structure. 𝕂 is the set of homogeneous substructures of 𝔐:

 $\mathcal{A} \leq_{hom} \mathcal{M} \Leftrightarrow Aut(\mathcal{A}) \text{ and } Aut(\mathfrak{M}/\{A\}) \text{ agree on } A^r, \ r < \omega$

- In 1, many/most members of $\mathbb K$ are not much like $\mathfrak M$.
- In 2, members of $\mathbb K$ are just like $\mathfrak M$ only finite.

Somewhere in between

- L^k = formulas with at most k variables, <u>free or bound</u>.
- 𝔐 an ℵ₀-categorical structure with the finite sub-model property.
 𝔣 the set of finite L^k-elementary substructures of 𝔐.
- I just assume that:
 - \mathbb{K} has JEP and AP/models.
 - Members of $\mathbb K$ are algebraically closed.
- In this case, M is the direct limit of K, but needn't be smoothly approximable. (L^k-types don't correspond to orbits.)

Normally, we'd just use \mathcal{M} ...

- It's true that the model theory of $\mathbb K$ and that of $\mathfrak M$ are essentially identical.
- But, the model theory of $\mathbb K$ can at least be expressed independently

 \ldots and we can link that to properties of $\mathbb K$ that model theorists don't usually consider.

*K*_∀ = all induced substructures of *M*. Each *A* ∈ *K*_∀ extends to some *B* ∈ *K*.

How complex is this transformation $\mathbb{K}_{\forall} \to \mathbb{K}$?

"Intricacies" of the $\mathbb{K}\leftrightarrow\mathfrak{M}$ correspondence

• $\delta(\overline{y}, \overline{z}), \varphi(\overline{x}, \overline{y})$ boolean combinations of k-variable formulas, $1 < r < \omega$.

 $\pi(\overline{x})$ a type over $A \subseteq M_0$ for some $\mathcal{M}_0 \in \mathbb{K}$.

- $p(\pi(\overline{x}), \varphi, \delta, r) \ge e + 1$ if there $\mathcal{M} \in \mathbb{K}_A$ and $\overline{c} \in M^{\overline{z}}$ such that:
 - For every $\mathcal{N} \in \mathbb{K}_{A\overline{c}}$, $\left\{\varphi(\mathcal{N}, \overline{b}) : \mathcal{N} \vDash \delta(\overline{b}, \overline{c})\right\}$ is *r*-inconsistent. • For every $n < \omega$, there is an $\mathcal{N} \in \mathbb{K}_{A\overline{c}}$ such that

2 For every
$$n < \omega$$
, there is an $\mathcal{N} \in \mathbb{R}_{A\overline{c}}$ such that

$$|\left\{\varphi(\mathcal{N},\overline{b}):\mathfrak{p}(\pi(\overline{x})\wedge\varphi(\overline{x},\overline{b}),\varphi,\delta,r)\geq e,\mathcal{N}\vDash\delta(\overline{b},\overline{c})\right\}|\geq n$$

- Pretty obvious: \flat -rank in \mathbb{K} and in $Th(\mathfrak{M})$ coincide.
 - So, $\mathbb K$ is rosy if and only if $\mathfrak M$ is rosy.

p-Independence and abstract independence relations, I

Theorem (Onshuus, Ealy-Onshuus; Adler)

For a complete theory T, the following are equivalent:

- T is rosy.
- **2** \not -Independence, \downarrow^{p} , is an indep. relation in models of T.
- **1** T admits some indep. relation with local character
- T admits some indep. relation with symmetry and full transitivity.

p-Independence and abstract independence relations, II

Theorem

For a class \mathbb{K} , the following are equivalent:

- \bigcirc \mathbb{K} is rosy.
- **2** p-Independence, \bigcup^{p} , is an indep. relation in members of \mathbb{K} .
- Image: Market Market
 - Here, independence relations only accommodates triples of <u>finite sets</u>.
 - So, $3 \Rightarrow 1$ requires a trick in lifting to \mathfrak{M} .

Lifts of finitary independence relations

Given \downarrow , a finitary independence relation, $A, B, C \subseteq \mathfrak{M}$, define $A \downarrow_C B$ to mean,

there is a map $C_0: A^{<\omega} \to C^{<\omega}$ such that for all $\overline{a} \in A^{<\omega}$, $\overline{b} \in B^{<\omega}$ and finite $D \subseteq C$, if $C_0(\overline{a}) \subseteq D$, then $\overline{a} \bigcup_D \overline{b}$.

• This doesn't quite work – it can fail to have Existence, for example $(\forall A, C : A \hat{\downarrow}_C C)$

Finitely-based and f.b.-rosy types

For $A, C \subset \mathfrak{M}$,

- tp(A/C) is finitely-based if there is a finite $C_0 \subseteq C$ such that $\overline{a} \downarrow_{C_0} D$ for all $\overline{a} \in A^{<\omega}$ and finite $C_0 \subseteq D \subseteq C$
- tp(A/C) is f.b.-rosy if for any $C \subseteq D \subseteq \mathfrak{M}$ such that $tp(D_0/C)$ is finitely-based for every finite $D_0 \subset D \setminus C$, there is a subset $C' \subseteq D$ such that $|C'| < (\aleph_0 + |A|)^+$ and tp(A/D) does not \flat -fork over C'.

Finitely-based types - closure properties

- **1** If tp(A/B) is f.b. and $\sigma \in Aut(\mathcal{M})$, then $tp(\sigma A/\sigma B)$ is f.b.
- **2** If $A, B \subset \mathfrak{M}$ are finite, then tp(A/B) f.b.
- **3** If tp(A/B) is f.b. and $A_0 \subseteq A$, then $tp(A_0/B)$ is f.b.
- If tp(A/C) is f.b. and $A \stackrel{\frown}{\downarrow}_C B$, then tp(A/BC) is f.b.

From finitary independence to rosiness

Theorem

Suppose X is a set of types satisfying 1-4 of the previous slide with respect to a "notion of independence" \downarrow . Suppose

- \downarrow is fully transitive for all triples: $A \downarrow_C B_1 B_2 \Leftrightarrow A \downarrow_C B_1 \land A \downarrow_{CB_1} B_2.$
- 3 If $tp(A/C) \in X$ and $tp(B/C) \in X$, then $A \downarrow_C B \Leftrightarrow B \downarrow_C A$

Then every type in X is X-rosy.

Corollary

If \downarrow is a finitary independence relation in \mathbb{K} , then \downarrow symmetric and transitive for finitely-based types, and every finitely-based type is f.b.-rosy. In particular, \mathbb{K} is rosy.

$$\mathbb{K}_{orall} o \mathbb{K}$$

• Problem:

"Given finite $A \leq \mathfrak{M}$, compute $\mathcal{B} \in \mathbb{K}$ with $A \leq \mathcal{B}$."

- This problem becomes interesting when:
 - We impose resource bounds on the program. (Hard to formulate)
 - We restrict the model of computation.

Inflationary fixed-points

- φ(x₁...x_n; R⁽ⁿ⁾) a first-order formula, A a structure.
 φ⁰[A] = Ø
 φ^{s+1}[A] = φ^s[A] ∪ {ā ∈ Aⁿ : (A, φ^s[A]) ⊨ φ(ā)}
 φ[∞][A] = ⋃_s φ^s[A]
- Example: In the signature of graphs $\{E^{(2)}\}$, let

$$\varphi(x,y;R) = E(x,y) \lor \exists z (R(x,z) \land E(z,y))$$

Then $\varphi^{\infty}[G]$ is the transitive closure of the edge relation of G.

Efficient constructibility

• Given $A \leq \mathfrak{M}$ finite:

- Compute $A'_i = (A_i, \varphi_1^{\infty}[A_i], ..., \varphi_m^{\infty}[A_i]);$
- From a first-order test of A'_i, choose,
 - a 0-definable set $D \subseteq A_i^n$ (in the sense of A_i');
 - a 0-definable equivalence relation $E \subseteq \mathfrak{M}^n \times \mathfrak{M}^n$.

- Repeat until $A_i \vDash Th^k(\mathfrak{M})$.
- Efficiently constructible $= \cdots$
 - $\begin{array}{l} \cdots = \text{for every finite } A \leq \mathfrak{M}, \text{ a model } \mathcal{M} \in \mathbb{K} \text{ with } \\ A \leq \mathcal{M} \prec^k \mathfrak{M} \text{ is uniformly "close-to-definable" over } A. \end{array}$

Rosiness from efficient constructibility

- One can define an independence relation in K by tracing through runs of the program.
- $\approx A \downarrow_C B$ if for any finite $BC \subseteq D \subset_{\text{fin}} \mathfrak{M}$, there is an $A' \equiv_{BC} A$ such that

"C mediates all interaction between A' and D in a run of the program on $A' \cup D$."

Theorem

If $\mathbb K$ is efficiently constructible, then $\mathfrak M$ is rosy.