On model-theoretic connected components in some group extensions 2

Jakub Gismatullin (joint work with Krzysztof Krupiński)

School of Mathematics, University of Leeds Instytut Matematyczny Uniwersytetu Wrocławskiego

BIRS, February 2, 2012

< □ > < □ > < □ > < □ > < □ > < □ > = □

- (G, \cdot, \ldots) a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)
- $B \subset G^*$ some small set of parameters $(|B| < \overline{\kappa})$

Definition

•
$$G^{*0}_{B} = \bigcap \{ H < G^* : H \text{ is } B \text{-def. and } [G^* : H] < \omega \}$$

•
$$G^{*00}_{B} = \bigcap \{ H < G^* : H \text{ is } B \text{-type def. and } [G^* : H] < \overline{\kappa} \}$$

• $G^{*000}_{B} = \bigcap \{H < G^* : H \text{ is } \operatorname{Aut}(G^*/B) \text{-inv. and } [G^* : H] < \overline{\kappa} \}$

We say, that G^{*000} exists, if for every small $B \subset G^*$,

$$G^*{}^{000}_B = G^*{}^{000}_\emptyset.$$

E.g. when G has NIP, G^{*000} , G^{*00} and G^{*0} exist.

Let G be a group acting by automorphisms on an abelian group A, where G, A and the action of G on A are \emptyset -definable in a structure \mathcal{G} . Suppose

 $h: G \times G \to A$

is a 2-cocycle which is *B*-definable in \mathcal{G} and with finite image $Im(h) \subset B$ (for some finite parameter set $B \subset \mathcal{G}$). Denote $A_0 = \langle Im(h) \rangle$.

Let G be a group acting by automorphisms on an abelian group A, where G, A and the action of G on A are \emptyset -definable in a structure \mathcal{G} . Suppose

 $h: G \times G \rightarrow A$

is a 2-cocycle which is *B*-definable in \mathcal{G} and with finite image $Im(h) \subset B$ (for some finite parameter set $B \subset \mathcal{G}$). Denote $A_0 = \langle Im(h) \rangle$.

Theorem

Assume that:

(i) the induced 2-cocycle \overline{h} : $G_B^{*00} \times G_B^{*00} \to A_0 / (A^{*0} \cap A_0)$ is non-splitting, (ii) $A_0 / (A^{*0} \cap A_0)$ is torsion free (and so $\cong \mathbb{Z}^n$ for some natural n).

Then $\widetilde{G^*}_B^{000} \neq \widetilde{G^*}_B^{00}$.

Let G be a group acting by automorphisms on an abelian group A, where G, A and the action of G on A are \emptyset -definable in a structure \mathcal{G} . Suppose

 $h: G \times G \rightarrow A$

is a 2-cocycle which is *B*-definable in \mathcal{G} and with finite image $Im(h) \subset B$ (for some finite parameter set $B \subset \mathcal{G}$). Denote $A_0 = \langle Im(h) \rangle$.

Theorem

Assume that:

(i) the induced 2-cocycle h: G^{*00}_B × G^{*00}_B → A₀/ (A^{*0} ∩ A₀) is non-splitting,
(ii) A₀/ (A^{*0} ∩ A₀) is torsion free (and so ≅ Zⁿ for some natural n). Then G^{*000}_B ≠ G^{*00}_B.
Suppose furthermore that G^{*000}_B = G^{*}, and for every proper, type-definable over B in G^{*} and invariant under the action of G^{*} subgroup H of A^{*} with bounded index, the induced 2-cocycle h: G^{*} × G^{*} → A₀/ (H ∩ A₀) is non-splitting. Then G^{*00}_B = G^{*}.

Corollary

Assume that:

- (1) The 2-cocycle h: $G \times G \rightarrow A_0$ is non-splitting (via a function taking values in A_0).
- (2) $A^{*0} \cap A_0$ is trivial and A_0 is torsion free (and so $A_0 \cong \mathbb{Z}^n$ for some n).

(3)
$$G_B^{*00} = G^*$$
.
Then $\widetilde{G}_B^{*00} \neq \widetilde{G}_B^{*00}$

Corollary

Assume that:

- (1) The 2-cocycle $h: G \times G \to A_0$ is non-splitting (via a function taking values in A_0).
- (2) $A^{*0} \cap A_0$ is trivial and A_0 is torsion free (and so $A_0 \cong \mathbb{Z}^n$ for some n).

(3)
$$G_{B}^{*00} = G^{*}$$
.
Then $\widetilde{G}_{B}^{*00} \neq \widetilde{G}_{B}^{*00}$.
Under some additional assumptions, we also get $\widetilde{G}_{B}^{*00} = \widetilde{G}^{*}$.

Notation: for $c, d \in \mathbb{R}$ define $c(d) = \left\{ egin{array}{cc} c & : c
eq 0 \\ d & : c = 0 \end{array}
ight.$

Notation: for
$$c, d \in \mathbb{R}$$
 define $c(d) = \begin{cases} c & : c \neq 0 \\ d & : c = 0 \end{cases}$

Fact (Asai, '70)

The topological universal cover $SL_2(\mathbb{R})$ of $SL_2(\mathbb{R})$ is defined by means of the following 2-cocycle h: $SL_2(\mathbb{R}) \times SL_2(\mathbb{R}) \rightarrow \{-1,0,1\} \subset \mathbb{Z}$.

Notation: for
$$c, d \in \mathbb{R}$$
 define $c(d) = \begin{cases} c & : c \neq 0 \\ d & : c = 0 \end{cases}$

Fact (Asai, '70)

The topological universal cover $SL_2(\mathbb{R})$ of $SL_2(\mathbb{R})$ is defined by means of the following 2-cocycle $h: SL_2(\mathbb{R}) \times SL_2(\mathbb{R}) \rightarrow \{-1, 0, 1\} \subset \mathbb{Z}$. Suppose $A_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$, $A_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in SL_2(\mathbb{R})$.

Notation: for
$$c, d \in \mathbb{R}$$
 define $c(d) = \begin{cases} c & : c \neq 0 \\ d & : c = 0 \end{cases}$

Fact (Asai, '70)

The topological universal cover $\widetilde{SL}_2(\mathbb{R})$ of $SL_2(\mathbb{R})$ is defined by means of the following 2-cocycle h: $SL_2(\mathbb{R}) \times SL_2(\mathbb{R}) \rightarrow \{-1, 0, 1\} \subset \mathbb{Z}$. Suppose $A_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$, $A_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in SL_2(\mathbb{R})$. Let $A_1 \cdot A_2 = \begin{pmatrix} a_3 & b_3 \\ c_3 & d_3 \end{pmatrix}$. Then $h(A_1, A_2) = \begin{cases} 1 & :c_1(d_1) > 0 \land c_2(d_2) > 0 \land c_3(d_3) < 0 \\ -1 & :c_1(d_1) < 0 \land c_2(d_2) < 0 \land c_3(d_3) > 0 \\ 0 & : otherwise \end{cases}$

Notation: for
$$c, d \in \mathbb{R}$$
 define $c(d) = \begin{cases} c & : c \neq 0 \\ d & : c = 0 \end{cases}$

Fact (Asai, '70)

The topological universal cover $\widetilde{SL}_2(\mathbb{R})$ of $SL_2(\mathbb{R})$ is defined by means of the following 2-cocycle h: $SL_2(\mathbb{R}) \times SL_2(\mathbb{R}) \rightarrow \{-1, 0, 1\} \subset \mathbb{Z}$. Suppose $A_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$, $A_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in SL_2(\mathbb{R})$. Let $A_1 \cdot A_2 = \begin{pmatrix} a_3 & b_3 \\ c_3 & d_3 \end{pmatrix}$. Then $h(A_1, A_2) = \begin{cases} 1 & :c_1(d_1) > 0 \land c_2(d_2) > 0 \land c_3(d_3) < 0 \\ -1 & :c_1(d_1) < 0 \land c_2(d_2) < 0 \land c_3(d_3) > 0 \\ 0 & : otherwise \end{cases}$.

Clearly, h is definable in $(\mathbb{R}, +, \cdot, 0, 1, <)$.

Notation: for
$$c, d \in \mathbb{R}$$
 define $c(d) = \begin{cases} c & : c \neq 0 \\ d & : c = 0 \end{cases}$

Fact (Asai, '70)

The topological universal cover $\widetilde{SL}_2(\mathbb{R})$ of $SL_2(\mathbb{R})$ is defined by means of the following 2-cocycle h: $SL_2(\mathbb{R}) \times SL_2(\mathbb{R}) \rightarrow \{-1, 0, 1\} \subset \mathbb{Z}$. Suppose $A_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$, $A_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in SL_2(\mathbb{R})$. Let $A_1 \cdot A_2 = \begin{pmatrix} a_3 & b_3 \\ c_3 & d_3 \end{pmatrix}$. Then $h(A_1, A_2) = \begin{cases} 1 & :c_1(d_1) > 0 \land c_2(d_2) > 0 \land c_3(d_3) < 0 \\ -1 & :c_1(d_1) < 0 \land c_2(d_2) < 0 \land c_3(d_3) > 0 \\ 0 & : otherwise \end{cases}$.

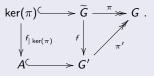
Clearly, *h* is definable in $(\mathbb{R}, +, \cdot, 0, 1, <)$.

Fact (Hrushovski-Peterzil-Pillay, '11)

Let G be a definable Lie group, i.e. a definably connected group definable in an o-minimal expansion of RCF. The 2-cocycle $h: G \times G \rightarrow \pi_1(G)$ corresponding to the topological universal cover \widehat{G} of G has finite image.

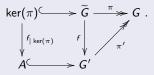
Definition (Classical)

A central extension $\ker(\pi)^{\smile} \longrightarrow \widetilde{G} \xrightarrow{\pi} G$ is called *universal* if for any central extension $\pi' \colon G' \to G$ of G by A, there exists a unique homomorphism $f \colon \widetilde{G} \to G$ such that $\pi' \circ f = \pi$, that is the following diagram commutes



Definition (Classical)

A central extension $\ker(\pi)^{\smile} \longrightarrow \widetilde{G} \xrightarrow{\pi} G$ is called *universal* if for any central extension $\pi' \colon G' \to G$ of G by A, there exists a unique homomorphism $f \colon \widetilde{G} \to G$ such that $\pi' \circ f = \pi$, that is the following diagram commutes



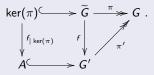
Fact (Classical)

{ central extensions of G by A} \approx { 2-cocycles h: G \times G \rightarrow A} \approx Hom(ker(π), A)

Image: A image: A

Definition (Classical)

A central extension $\ker(\pi)^{\longleftarrow} \widetilde{G} \xrightarrow{\pi} G$ is called *universal* if for any central extension $\pi' \colon G' \to G$ of G by A, there exists a unique homomorphism $f \colon \widetilde{G} \to G$ such that $\pi' \circ f = \pi$, that is the following diagram commutes



Fact (Classical)

{ central extensions of G by A} \approx { 2-cocycles h: G \times G \rightarrow A} \approx Hom(ker(π), A)

Each perfect group G possesses a universal central extension, which is unique up to isomorphism over G.

Let k be an arbitrary infinite field. SL₂(k) has a universal central extension

$$\ker(\pi) = \mathsf{K}_2^{\mathrm{sym}}(k) \xrightarrow{\pi} \mathsf{SL}_2(k) \xrightarrow{\pi} \mathsf{SL}_2(k).$$

Jakub Gismatullin (joint work with Krzysztof Krupiński) On model-theoretic connected components in some group extensions 2

Let k be an arbitrary infinite field. SL₂(k) has a universal central extension

$$\ker(\pi) = \mathsf{K}_2^{\mathrm{sym}}(k)^{\subset} \longrightarrow \mathsf{St}_2(k) \xrightarrow{\pi} \mathsf{SL}_2(k).$$

Theorem (Moore '68, Matsumoto '69)

The group $K_2^{sym}(k)$ can be presented abstractly as

 $\langle c(x,y) \mid (S1), (S2), (S3) \rangle_{x,y \in k^{\times}},$

where c(x, y) for $x, y \in k^{\times}$ are generators satisfying the following relations (S1) c(x, y) c(xy, z) = c(x, yz) c(y, z), (S2) c(1, 1) = 1, $c(x, y) = c(x^{-1}, y^{-1})$, (S3) c(x, y) = c(x, (1 - x)y) for $x \neq 1$. Let k be an arbitrary infinite field. SL₂(k) has a universal central extension

$$\ker(\pi) = \mathsf{K}_2^{\mathrm{sym}}(k)^{\subset} \longrightarrow \mathsf{St}_2(k) \xrightarrow{\pi} \mathsf{SL}_2(k).$$

Theorem (Moore '68, Matsumoto '69)

The group $K_2^{sym}(k)$ can be presented abstractly as

 $\langle c(x,y) \mid (S1), (S2), (S3) \rangle_{x,y \in k^{\times}},$

where c(x, y) for $x, y \in k^{\times}$ are generators satisfying the following relations (S1) c(x, y) c(xy, z) = c(x, yz) c(y, z), (S2) c(1, 1) = 1, $c(x, y) = c(x^{-1}, y^{-1})$, (S3) c(x, y) = c(x, (1 - x)y) for $x \neq 1$.

Let A be an abelian group. Then every homomorphism $K_2^{\text{sym}}(k) \to A$ corresponds to a *symplectic Steinberg symbol*, that is a mapping $c': k^{\times} \times k^{\times} \to A$ satisfying (S1), (S2) and (S3).

Corollary

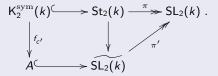
Let $H: SL_2(k) \times SL_2(k) \to K_2^{sym}(k)$ be a 2-cocycle defining the universal central extension $K_2^{sym}(k)^{\subset} \longrightarrow St_2(k) \xrightarrow{\pi} SL_2(k)$, for a suitable section $s: SL_2(k) \to St_2(k)$.

Corollary

Let $H: SL_2(k) \times SL_2(k) \to K_2^{sym}(k)$ be a 2-cocycle defining the universal central extension $K_2^{sym}(k)^{\subset} \longrightarrow St_2(k) \xrightarrow{\pi} SL_2(k)$, for a suitable section $s: SL_2(k) \to St_2(k)$. Let $c': k^{\times} \times k^{\times} \to A$ be a symplectic Steinberg symbol. Then there exists a unique homomorphism $f_{c'}: K_2^{sym}(k) \to A$ satisfying $f_{c'}(c(x,y)) = c'(x,y)$ for all $x, y \in k^{\times}$.

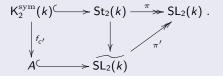
Corollary

Let $H: SL_2(k) \times SL_2(k) \to K_2^{sym}(k)$ be a 2-cocycle defining the universal central extension $K_2^{sym}(k)^{\subset} \longrightarrow St_2(k) \xrightarrow{\pi} SL_2(k)$, for a suitable section $s: SL_2(k) \to St_2(k)$. Let $c': k^{\times} \times k^{\times} \to A$ be a symplectic Steinberg symbol. Then there exists a unique homomorphism $f_{c'}: K_2^{sym}(k) \to A$ satisfying $f_{c'}(c(x,y)) = c'(x,y)$ for all $x, y \in k^{\times}$. The formula $H_{c'}(a,a') = f_{c'}(H(a,a'))$ defines a 2-cocycle $H_{c'}: SL_2(k) \times SL_2(k) \to A$ and an extension $SL_2(k)$ of $SL_2(k)$ by A:



Corollary

Let $H: SL_2(k) \times SL_2(k) \to K_2^{sym}(k)$ be a 2-cocycle defining the universal central extension $K_2^{sym}(k)^{\subset} \longrightarrow St_2(k) \xrightarrow{\pi} SL_2(k)$, for a suitable section $s: SL_2(k) \to St_2(k)$. Let $c': k^{\times} \times k^{\times} \to A$ be a symplectic Steinberg symbol. Then there exists a unique homomorphism $f_{c'}: K_2^{sym}(k) \to A$ satisfying $f_{c'}(c(x,y)) = c'(x,y)$ for all $x, y \in k^{\times}$. The formula $H_{c'}(a, a') = f_{c'}(H(a, a'))$ defines a 2-cocycle $H_{c'}: SL_2(k) \times SL_2(k) \to A$ and an extension $SL_2(k)$ of $SL_2(k)$ by A:



Fact (Important for finite image)

Every value of the 2-cocycle H from the corollary is a linear combination of two Steinberg symbols. For example, if $d_1c_2^2 + c_1a_2c_2 \neq 2$, $H\left(\begin{pmatrix}a_1 & b_1\\c_1 & d_1\end{pmatrix}, \begin{pmatrix}a_2 & b_2\\c_2 & d_2\end{pmatrix}\right) = c\left(-\frac{c_2}{c_1}, \frac{c_1}{d_1c_2^2+c_1a_2c_2}\right) - c\left(-\frac{c_2}{c_1}, \frac{1}{c_2}\right)$.

Jakub Gismatullin (joint work with Krzysztof Krupiński)

On model-theoretic connected components in some group extensions 2

Theorem

Suppose that $c': k^{\times} \times k^{\times} \to \mathbb{Z}$ is a symplectic Steinberg symbol such that c'(-1,-1) = 1, char(k) = 0 and

 $SL_2(\mathbb{Q}) < G < SL_2(k).$

Then $H_{c'}$ restricted to G is a non-splitting 2-cocycle (actually a stronger result about $H_{c'}$ is true).

Examples

<ロ> <同> <同> < 回> < 回>

Э.

Suppose $(k, +, \cdot, <)$ is a an ordered field. The following mapping $c' \colon k^{\times} \times k^{\times} \to \mathbb{Z}$ is a symplectic Steinberg symbol

$$c'(x,y) = \begin{cases} 1 & \text{if } x < 0 \text{ and } y < 0 \\ 0 & \text{otherwise} \end{cases}$$

.

法国际 化基本

Suppose $(k, +, \cdot, <)$ is a an ordered field. The following mapping $c' \colon k^{\times} \times k^{\times} \to \mathbb{Z}$ is a symplectic Steinberg symbol

$$c'(x,y) = \left\{ egin{array}{cc} 1 & ext{if } x < 0 ext{ and } y < 0 \ 0 & ext{otherwise} \end{array}
ight.$$

.

Let $\mathcal{G} = ((\mathbb{Z}, +), (k, +, \cdot, <))$, $\mathcal{G} = SL_2(k)$, $A = (\mathbb{Z}, +)$ and $B = \{-1, 0, 1\} \subseteq \mathbb{Z}$ (the action of \mathcal{G} on A is trivial). Suppose $\widetilde{\mathcal{G}}$ is defined by means of the 2-cocycle $H_{c'}$: $SL_2(k) \times SL_2(k) \rightarrow \mathbb{Z}$.

Suppose $(k, +, \cdot, <)$ is a an ordered field. The following mapping $c' \colon k^{\times} \times k^{\times} \to \mathbb{Z}$ is a symplectic Steinberg symbol

$$c'(x,y) = \begin{cases} 1 & \text{if } x < 0 \text{ and } y < 0 \\ 0 & \text{otherwise} \end{cases}$$

.

Let $\mathcal{G} = ((\mathbb{Z}, +), (k, +, \cdot, <))$, $\mathcal{G} = SL_2(k)$, $A = (\mathbb{Z}, +)$ and $B = \{-1, 0, 1\} \subseteq \mathbb{Z}$ (the action of \mathcal{G} on A is trivial). Suppose $\widetilde{\mathcal{G}}$ is defined by means of the 2-cocycle $H_{c'}$: $SL_2(k) \times SL_2(k) \rightarrow \mathbb{Z}$. Then

$$\widetilde{G^*}_B^{000} \neq \widetilde{G^*}_B^{00} = \widetilde{G^*}.$$

Suppose $(k, +, \cdot, <)$ is a an ordered field. The following mapping $c' \colon k^{\times} \times k^{\times} \to \mathbb{Z}$ is a symplectic Steinberg symbol

$$c'(x,y) = \begin{cases} 1 & \text{if } x < 0 \text{ and } y < 0 \\ 0 & \text{otherwise} \end{cases}$$

.

Let $\mathcal{G} = ((\mathbb{Z}, +), (k, +, \cdot, <))$, $\mathcal{G} = SL_2(k)$, $A = (\mathbb{Z}, +)$ and $B = \{-1, 0, 1\} \subseteq \mathbb{Z}$ (the action of \mathcal{G} on A is trivial). Suppose $\widetilde{\mathcal{G}}$ is defined by means of the 2-cocycle $H_{c'}$: $SL_2(k) \times SL_2(k) \rightarrow \mathbb{Z}$. Then

$$\widetilde{G^*}_B^{000} \neq \widetilde{G^*}_B^{00} = \widetilde{G^*}.$$

Moreover, the quotient $\widetilde{G^*}_B^{00}/\widetilde{G^*}_B^{00}$ is abelian. In fact, $\widetilde{G^*}_B^{000} = (\mathbb{Z}^{*0} + \mathbb{Z}) \times G^*$, and $\widetilde{G^*}_B^{00}/\widetilde{G^*}_B^{000}$ is isomorphic to $\widehat{\mathbb{Z}}/\mathbb{Z}$, where $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z} .

Suppose $(k, +, \cdot, <)$ is a an ordered field. The following mapping $c' \colon k^{\times} \times k^{\times} \to \mathbb{Z}$ is a symplectic Steinberg symbol

$$c'(x,y) = \begin{cases} 1 & \text{if } x < 0 \text{ and } y < 0 \\ 0 & \text{otherwise} \end{cases}$$

.

Let $\mathcal{G} = ((\mathbb{Z}, +), (k, +, \cdot, <))$, $\mathcal{G} = SL_2(k)$, $A = (\mathbb{Z}, +)$ and $B = \{-1, 0, 1\} \subseteq \mathbb{Z}$ (the action of \mathcal{G} on A is trivial). Suppose $\tilde{\mathcal{G}}$ is defined by means of the 2-cocycle $H_{c'}$: $SL_2(k) \times SL_2(k) \rightarrow \mathbb{Z}$. Then

$$\widetilde{G^*}_B^{000} \neq \widetilde{G^*}_B^{00} = \widetilde{G^*}.$$

Moreover, the quotient $\widetilde{G^*}_B^{00}/\widetilde{G^*}_B^{000}$ is abelian. In fact, $\widetilde{G^*}_B^{000} = (\mathbb{Z}^{*0} + \mathbb{Z}) \times G^*$, and $\widetilde{G^*}_B^{00}/\widetilde{G^*}_B^{000}$ is isomorphic to $\widehat{\mathbb{Z}}/\mathbb{Z}$, where $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z} .

Example (1) generalizes to any group G such that $SL_2(\mathbb{Q}) < G < SL_2(k)$.

Jakub Gismatullin (joint work with Krzysztof Krupiński) On model-theoretic connected components in some group extensions 2

イロン イボン イヨン イヨン

э

There exists an extension \widetilde{G} of $SL_2(k)$ by $SO_2(k)$ which is definable in $\mathcal{G} := (k, +, \cdot, <)$ and such that $\widetilde{G^*}_B^{00} \neq \widetilde{G^*}_B^{000}$.

There exists an extension \widetilde{G} of $SL_2(k)$ by $SO_2(k)$ which is definable in $\mathcal{G} := (k, +, \cdot, <)$ and such that $\widetilde{G^*}_B^{00} \neq \widetilde{G^*}_B^{000}$.

Example

Let $g \in SO_2(k)$ be of infinite order and $B := \{-g, 0, g\}$. Consider the following 2-cocycle $H' : SL_2(k) \times SL_2(k) \rightarrow SO_2(k)$,

$$H'(x,y) = H_{c'}(x,y) \cdot g.$$

Then \widetilde{G} is definable in $(k, +, \cdot, <)$ and $\widetilde{G^*}_B^{00} \neq \widetilde{G^*}_B^{000}$.

Jakub Gismatullin (joint work with Krzysztof Krupiński) On model-theoretic connected components in some group extensions 2

イロン イボン イヨン イヨン

э

Example

Take G, c' and B from Example (1), and suppose

$$\operatorname{ker}(f) \xrightarrow{f} H \xrightarrow{f} G$$

is an extension of G by ker(f).

Example

Take G, c' and B from Example (1), and suppose

$$\operatorname{ker}(f) \xrightarrow{f} G$$

is an extension of G by ker(f).

Let \mathcal{H} be any expansion of \mathcal{G} in which H and f are \emptyset -definable (e.g. \mathcal{H} is the expansion of \mathcal{G} by the new sort H together with the function f), and let

 $\mathcal{H}^* \succ \mathcal{H}$

be a monster model. Assume additionally that $Hom(ker(f^*), \mathbb{Z})$ is trivial.

Example

Take G, c' and B from Example (1), and suppose

$$\operatorname{ker}(f) \xrightarrow{f} G$$

is an extension of G by ker(f).

Let \mathcal{H} be any expansion of \mathcal{G} in which H and f are \emptyset -definable (e.g. \mathcal{H} is the expansion of \mathcal{G} by the new sort H together with the function f), and let

$$\mathcal{H}^* \succ \mathcal{H}$$

be a monster model. Assume additionally that $\operatorname{Hom}(\ker(f^*),\mathbb{Z})$ is trivial. Put

$$h' := H_{c'} \circ (f, f) \colon H \times H \to \mathbb{Z}$$

a 2-cocycle definable in \mathcal{H} over B. Let $\widetilde{\mathcal{H}}$ be the extension of H by \mathbb{Z} corresponding to h'. Then

$$h'_{|H^*{}^{00}_B \times H^*{}^{00}_B} \colon H^*{}^{00}_B \times H^*{}^{00}_B \to \mathbb{Z}$$

is non-splitting, and so $\widetilde{H^*}_B^{000} \neq \widetilde{H^*}_B^{00}.$

 If k is not formally real and char(k) ≠ 2, then one can prove that every symplectic Steinberg symbol c': k[×] × k[×] → Z with finite image is trivial.

- If k is not formally real and char(k) ≠ 2, then one can prove that every symplectic Steinberg symbol c': k[×] × k[×] → Z with finite image is trivial.
- We have almost generalized our result from SL₂(k) to all symplectic groups Sp_n(k), where k is an arbitrary ordered field.

- G-compactness and groups J. G., L. Newelski, Archive for Mathematical Logic, 47 (2008), no. 5, p. 479-501
- Model theoretic connected components of groups J. G., Israel J. Math. 184, 251 — 274 (2011)
- Absolute connectedness and classical groups J. G., arXiv:1002.1516
- Connected components of definable groups and o-minimality I, A. Conversano, A. Pillay, arXiv:1101.5705
- On model-theoretic connected components in some group extensions J. G., K. Krupiński, arXiv:1201.5221