# Structural Ramsey Theory and Generalized Indiscernibles

### Lynn Scow

#### University of Illinois at Chicago

#### Neostability Theory BIRS Workshop 2012







2 the order case



# order indiscernibles

- Fix a linear order O and an L-structure M (may assume we are working in a monster model).
- Consider the well-known definition for *indiscernible* sequence (the  $a_i$  are same-length tuples from M):

#### Definition

 $(a_i : i \in O)$  is an indiscernible sequence if for all finite n and sequences  $i_1, \ldots, i_n, j_1, \ldots, j_n$  from O

 $i_1 < \ldots < i_n \text{ and } j_1 < \ldots < j_n \Rightarrow$ 

$$\operatorname{tp}^{L}(a_{i_{1}},\ldots,a_{i_{n}};M)=\operatorname{tp}^{L}(a_{j_{1}},\ldots,a_{j_{n}};M)$$

#### recast

• Consider O as a structure in its own right,  $\mathcal{O} = (O, <)$  in the language  $L' = \{<\}$ , and rewrite the definition for the purposes of generalization:

#### Definition

 $(a_i : i \in O)$  is an indiscernible sequence if for all finite n and sequences  $i_1, \ldots, i_n, j_1, \ldots, j_n$  from O,

 $\operatorname{qftp}^{L'}(i_1,\ldots,i_n;\mathcal{O}) = \operatorname{qftp}^{L'}(j_1,\ldots,j_n;\mathcal{O}) \Rightarrow$ 

$$\operatorname{tp}^{L}(a_{i_{1}},\ldots,a_{i_{n}};M)=\operatorname{tp}^{L}(a_{j_{1}},\ldots,a_{j_{n}};M)$$

# generalized indiscernibles

• Now we fix an arbitrary L'-structure  $\mathcal{I}$  in the place of  $\mathcal{O}$ .

#### Definition ([She90])

We say that  $(a_i : i \in I)$  is  $\mathcal{I}$ -indexed indiscernible if for all finite n and sequences  $i_1, \ldots, i_n, j_1, \ldots, j_n$  from I,

$$\operatorname{qftp}^{L'}(i_1,\ldots,i_n;\mathcal{I}) = \operatorname{qftp}^{L'}(j_1,\ldots,j_n;\mathcal{I}) \Rightarrow$$

$$\operatorname{tp}^{L}(a_{i_{1}},\ldots,a_{i_{n}};M)=\operatorname{tp}^{L}(a_{j_{1}},\ldots,a_{j_{n}};M)$$

- We often fix an index set I and look at a variety of structures (I) that we can put on this set by way of different languages (L').
- In this case, a sequence  $(a_i : i \in I)$  may be referred to as L'-generalized indiscernible, if it is  $\mathcal{I}$ -indexed indiscernible for some understood L'-structure on I.

## observations

- If  $\mathcal{I}$  is an L'-structure and  $L^* \subseteq L'$  is some reduct, then any  $(a_i : i \in I)$  that is  $L^*$ -generalized indiscernible is automatically L'-generalized indiscernible.
- This is because L' "weakens the hypothesis" of a conditional that is already true.
- The other direction is nontrivial.
- Think of  $L' = \{<\}$ ,  $L^* = \{\}$  in  $M \vDash T$  for unstable T.
- There are indiscernible sequences that fail to be indiscernible sets.

## examples

- These indiscernibles have been used in work of Baldwin-Shelah, Džamonja-Shelah, Laskowski-Shelah, Kim-Kim, and Guingona, among others.
- They have had great utility in studying a variety of tree-properties: e.g. (k-)TP, (k-)TP<sub>1</sub>, (k-)TP<sub>2</sub>. Hopefully this success may be extended to the case of SOP<sub>1</sub>, SOP<sub>2</sub>.
- Each of the above properties stipulates the existence of a formula and parameters  $(a_i : i \in \beta^{<\lambda})$  exhibiting some consistency-inconsistency pattern, usually indexed by some kind of language you can put on the tree.
- To narrow in on the important aspects of the pattern, one assumes that the witnesses are indiscernible with respect to some appropriate language L' on the tree  $\beta^{<\lambda}$ .
- That you may assume such indiscernible witnesses exist *retaining the pattern* is often a difficult thing to prove, in and of itself.

## restrictions on $\mathcal{I}$

- In the original presentation, it was assumed that
  - (†) complete quantifier-free types in  ${\mathcal I}$  are equivalent to formulas
  - (e.g. L' is finite relational)
- This has been reflected in examples in the literature: e.g.

• 
$$\mathcal{I}=\beta^{<\omega}$$
 for  $\beta=2,k,\omega$  and  $L'=\{\trianglelefteq,\wedge,<_{\text{lex}}\}$ 

• 
$$\mathcal{I}=\mathcal{R}$$
 a graph for  $L' = \{R, <\}$ 

- In fact, it is a question how general we can make  $\mathcal{I}$  and retain the utility of the original order indiscernible sequences.
- Say that  $\mathcal{I}$  is quantifier-free oligomorphic (qfo) if there are finitely many quantifier-free *n*-types in  $\mathcal{I}$ , for each *n*.
- This is one way to obtain (†).
- With inspiration from the trees case, we focus here on uniformly locally finite structures *I* in a finite language (⇒ qfo)

## existence

- One of the first questions we can ask for different pairs  $(\mathcal{I}, M)$  is whether an  $\mathcal{I}$ -indexed indiscernible in M exists.
- Consider qfo  $\mathcal{I}$  and  $\mathcal{I}$ -indexed indiscernible  $(a_i : i \in I)$  living in M.
- Let  $f: I \to M^k$  send  $i \mapsto a_i$ .
- For  $\emptyset$ -definable sets  $D \subseteq (M^k)^m$ , it must be the case that  $f^{-1}(D)$  is a union of quantifier-free *m*-types in  $\mathcal{I}$ .
- Thus, the induced structure from M on the indiscernible is a reduct of the language of  $\mathcal{I}$ .

## nonexamples

- M = (Q, <) does not admit (nontrivial, symmetric) graph indexed indiscernibles, where the indexing language is L' = {R}.
- The same M does not admit  $\mathcal{I}$ -indexed indiscernibles, where  $\mathcal{I}$  is the structure on  $2^{<\omega}$  in  $L' = \{ \trianglelefteq, \land \}$ .
- Both problems can basically be fixed by adding a linear order  $\{<\}$  to L'.
- In fact, by a previous observation, we always have existence for a linearly-ordered  $\mathcal{I}$  by Ramsey's theorem.

$$L^* = \{<\}, \quad L' = \{<, \text{ other relations } \ldots\}$$

• A more interesting question comes out of studying the obstruction on the side of M.



- The relation  $(\mathcal{I}, M)$  on structures "*M* admits an  $\mathcal{I}$ -indexed indiscernible", is not quite one of interpretability.
- $\mathcal{I}$  is embedded in a power of M by  $i \mapsto a_i$ , but the set of  $a_i$  (the domain) is not usually definable.
- Even if the domain were definable, it is only a reduct of the structure on  $\mathcal{I}$  that is necessarily interpreted in M.
- However, it is possible to learn something about M if it admits an  $\mathcal{I}$ -indexed indiscernible in a non-proper way:
- e.g., if M admits an order(ordered graph)-indexed indiscernible [with maximal age] that is not  $\{=\}(\{<\})$ -generalized indiscernible, then M is unstable(IP). [She90] ([Sco12])

## based on: I

- There is a stronger question beyond existence.
- Suppose we have an  $\mathcal{I}$ -indexed set of *parameters* in M,  $\mathbf{I} = (a_i : i \in I)$ . Can we always find an  $\mathcal{I}$ -indexed indiscernible set  $\mathbf{J} = (b_i : i \in I)$  whose structure in M is derived locally from  $\mathbf{I}$ ?
- An  $\mathcal{I}$ -indexed indiscernible set  $\mathbf{J}$  is based on  $\mathbf{I}$  if:

#### Definition

for any *L*-formula  $\varphi(x_1, \ldots, x_m)$  and complete quantifier-free L'-type  $\eta(v_1, \ldots, v_m)$ , if ALL  $\overline{j} \models \eta$  from  $\mathcal{I}$  satisfy  $(a_{j_1}, \ldots, a_{j_m}) \models \varphi, \ldots$ .

then all  $\overline{i} \vDash \eta$  have  $(b_{i_1}, \ldots, b_{i_m}) \vDash \varphi$  as well.

• Equivalently, for every finite set  $\Delta$  of *L*-formulas, every  $\overline{b}_{\overline{i}}$  has its template: there exist  $\overline{i}$  with the same after as  $\overline{i} \frac{i \delta}{2} / \frac{\delta 0}{2}$ 

## based on: II

• This property is easily recognizable in the usual argument that given  $\varphi(x; y)$  with "infinite chains", i.e. there exists  $(a_i)_{i < \omega}$  with

$$i < j \Rightarrow \varphi(a_i; a_j)$$

we may find order indiscernible witnesses  $(b_i : i < \omega)$  such that

$$i < j \Rightarrow \varphi(b_i; b_j)$$

• Basically, we finitely satisfy the type of our indiscernible in the chain of witnesses, and we may write in the condition that  $(b_i)$  be a chain in  $\varphi$ , because this property shows up **everywhere** on the qf L'-type  $\{v_1 < v_2\}$  in the original set.

# modeling property

• The following property is clearly stated for the case of tree-indexed indiscernibles in [DS04].

#### Definition

Fix an L'-structure I. We say that  $\mathcal{I}$ -indexed indiscernibles have the modeling property (MP) in M if given any parameters  $(a_i : i \in I)$  there exist  $\mathcal{I}$ -indexed indiscernible  $(b_i : i \in I)$  (in the monster model) based on the  $a_i$ .

- It is possible for M to admit  $\mathcal{I}$ -indexed indiscernibles, but for  $\mathcal{I}$ -indexed indiscernibles not to have the modeling property in M.
- For this, we state a necessary condition for  $\mathcal{I}$ -indexed indiscernibles to have the modeling property.

# stretching indiscernibles:I

• First of all, we would like to take the focus away from the structure  $\mathcal{I}$  and onto its age.

#### Definition

By age( $\mathcal{I}$ ) we mean all finitely-generated substructures of  $\mathcal{I}$ 

We can do this by a lemma that states for L'-structures I,
J with the same age, we may stretch any I-indexed indiscernible onto the index structure J

# stretching indiscernibles: II

• More precisely, we have the following:

Lemma ([She90])

Let  $\mathcal{I}$  be any L'-structure. If  $(a_i : i \in I)$  is an  $\mathcal{I}$ -indexed indiscernible and  $age(\mathcal{I})=age(\mathcal{J})$ , then there exist  $\mathcal{J}$ -indexed indiscernible  $(b_i : i \in J)$  based on the  $a_i$ .

- This is stated in CT for the  $(\dagger)$  case and w/o the age terminology and for  $age(\mathcal{J}) \subseteq age(\mathcal{I})$ , but it is the same idea.
- As a proof: the following is f.s. in  $(a_i : i \in I)$ :  $\Gamma(b_j : j \in J) := \{\varphi(b_{j_1}, \dots, b_{j_n}) : n < \omega, \varphi \text{ from } L, \text{ and for all } \overline{i}$

from I with the same qftp as  $\overline{j}, \varphi(\overline{a}_{\overline{i}})$ }

• Really, we just need the condition "for all  $\overline{i}$  from I with the safe qftp as  $\overline{j}$ " to not be a vacuous condition, which it will  $\frac{16}{30}$ 

## ramsey classes: I

- Thus, when we are looking at the modeling property, we are really looking at a property about the age  $\mathcal{K}$  of a structure  $\mathcal{I}$ .
- In fact, in the ordered case, the right property is that of being a *Ramsey class*.
- Fix a class  $\mathcal{K}$  of finite L'-structures. First we define the *A*-substructures of *B*:

#### Definition

For  $A, B \in \mathcal{K}$ , an A-substructure of B is an embedding  $f: A \to B$  modulo the equivalence relation of being the same embedding up to an automorphism of A

- In other words, we think of the copy of A as being the range of the embedding map.
- When there is a linear ordering in the language (something to make the structures A rigid) the range can be identified with the archadding 17/30

## ramsey classes: II

- Given a finite set X of cardinality k, We refer to a map  $c: \binom{C}{4} \to X$  as a k-coloring of the A-substructures of C.
- We say that  $B' \subseteq C$  is homogeneous for this coloring if there is an element  $x_0 \in X$  such that  $c''\binom{B'}{A} = \{x_0\}$ .

#### Definition

A class  $\mathcal{K}$  of finite L'-structures is a Ramsey class (RC) if for all  $A, B \in \mathcal{K}$  and for all finite k there is a  $C \in \mathcal{K}$  such that for any k-coloring of the A-substructures of C, there is a  $B' \subseteq C$ , isomorphic to B that is homogeneous for this coloring.

• We often write the above as: for all  $A, B \in \mathcal{K}$  and k finite there is  $C \in \mathcal{K}$  such that

$$C \to (B)_k^A$$

• When we are working with an **age**  $\mathcal{K}$  of structures (without finite bound on their cardinality), RC is equivalent to, for all  $\mathcal{I}$  with are  $\mathcal{K}$  for all  $\mathcal{A} \in \mathcal{K} \subset \mathcal{I} \to (B)^A$ 

# translation

• The following is an adaptation of a similar theorem in [Sco12] concerning finite relational L':

#### Theorem

Let  $\mathcal{I}$  be a locally finite L'-structure for a language  $L' \supseteq \{<\}$ such that  $\mathcal{I}$  is linearly ordered by <. Let  $\mathcal{K} := age(\mathcal{I})$ .  $\mathcal{K}$  is a Ramsey class just in case  $\mathcal{I}$ -indexed indiscernibles have the modeling property.

- Thus the sort of age  $\mathcal{K}$  in  $L' \supseteq \{<\}$  containing only finite structures linearly ordered by <, that serves as the age of  $\mathcal{I}$  indexing indiscernibles with the MP, is  $\mathcal{K}$  that is Ramsey.
- Consider  $\mathcal{K}_s :=$  all square-free linearly ordered graphs in  $L' = \{<, R\}$ . By a result in [Neš05], in order to be Ramsey, the reduct of  $\mathcal{K}$  to  $\{R\}$  would need to have AP. It doesn't.
- Thus, even though all models M admit  $\mathcal{I}$ -indexed indiscernibles for  $age(\mathcal{I}) = \mathcal{K}_s$ , we do not have the maximal

# argument I: $RC \Rightarrow MP$

- For a sequence  $\overline{a}$  from I, let  $p_{\overline{a}}(\overline{x})$  denote its complete quantifier free type.
- For  $A \in \mathcal{K}$  of size  $n, p_A(x_1, \ldots, x_n)$  is the *increasing type of* A if  $p_A = p_{\overline{a}}$  where  $\overline{a}$  is the increasing enumeration of A.
- Note that coloring A-substructures in  $\mathcal{I}$  is equivalent to coloring realizations of  $p_A(\overline{x})$  (no A gets colored twice, or fails to get colored)
- To show we can find  $\mathcal{I}$ -indexed indiscernibles based on  $\mathbf{I} = (a_i : i \in I)$ , we will show that the type of an  $\mathcal{I}$ -indexed indiscernible is finitely satisfiable in  $\mathbf{I}$ .
- The type of the indiscernible is of the form:  $\Gamma(c_i : i \in I) = \{\varphi(c_{i_1}, \dots, c_{i_n}) \leftrightarrow \varphi(c_{j_1}, \dots, c_{j_n}) :$   $\overline{i}, \overline{j} \text{ are from } I, \operatorname{qftp}^{L'}(i_1, \dots, i_n) = \operatorname{qftp}^{L'}(j_1, \dots, j_n)\}$

# argument II: $I_0 \subset \mathcal{I}, \Delta$ finite

- A finite piece of Γ will contain constants c<sub>i</sub> whose subscripts only involve a finite list of indices I<sub>0</sub> from I.
  Only a finite list of L-formulas, φ<sub>l</sub> occur – collect these into a finite set, Δ.
- The assignment of {complete Δ-type of a
   i
   i is a type coloring of i.
- $I_0$  contains realizations of only finitely many complete quantifier-free L'-types:  $\eta_1, \ldots, \eta_s$  [does not rely on L']
- We need to find a copy B' of  $B := \langle I_0 \rangle$  in I and complete  $\Delta$ -types  $p_i$  such that for any  $\bar{i}_k \models \eta_k$  from B',  $\operatorname{tp}_{\Delta}(\bar{a}_{\bar{i}_k}) = p_k$ .
- By induction, we only need to do this once, for one  $\eta_1$ .

## argument III

- Let A be the element of  $\mathcal{K}$  such that any  $\overline{i} \models \eta_1$  satisfies  $\langle \overline{i} \rangle \cong A$ .
- Consider a k-coloring of the A-substructures of I where  $k = (\# \Delta$ -types) as follows:
- for  $A \cong A' \subseteq \mathcal{I}$ ,  $c(A') = \operatorname{tp}_{\Delta}(\overline{a}_{\overline{i}})$  where  $\overline{i}$  is A' listed in increasing enumeration.
- Realizations of  $\eta_1$  occupy a unique place in the linear ordering of A.
- So, in any B' that is homogeneous for the above coloring of A-substructures, the type coloring on  $\overline{i} \vDash \eta_1$  becomes homogeneous.

# $MP \Rightarrow RC$

- Fix a k-coloring on the A-substructures of  $\mathcal I$  (we want a homogeneous copy of B)
- Let M be a structure housing an I-indexed set of parameters in the following way: |M| = I, and  $R_l(j_1, \ldots, j_n)$  just in case  $p_A(\overline{j})$  and this copy  $\overline{j}$  of A is assigned color l in I. The parameters are  $(a_i : i \in I)$  such that  $a_i = i$ .
- In M the  $R_l$  are disjoint.
- Take an  $\mathcal{I}$ -indexed indiscernible  $(b_i : i \in I)$  based on the  $a_i$ .
- We were looking for B, so take any copy  $\overline{i}$  in I, and find the  $\overline{a}_{\overline{j}}$  for  $\Delta = \{R_1, \ldots, R_k\}$  such that  $qftp(\overline{i}) = qftp(\overline{j})$  and

$$\overline{b}_{\overline{i}} \equiv_\Delta \overline{a}_{\overline{j}}$$

First, j
 <sup>→</sup> ≅ B. Any copies of A in j
 <sup>→</sup> get colored the same way by the R<sub>l</sub>, because b
 <sup>→</sup> says so.

# why locally finite?

- What about the case when the age of  $\mathcal{I}$  does not consist entirely of finite structures.
- Partition properties can become more problematic for infinite structures, e.g.

 $\mathbb{Q} \nrightarrow (\mathbb{Q})_2^{a < b}$ 

- Perhaps something like this could be done with restrictions on the colorings.
- Similarly, the requirement that  $\mathcal{I}$  be uniformly locally finite in a finite language allows us to take advantage of arguments we made that rely on the qfo property of  $\mathcal{I}$ .
- What about ||L||? Useful arguments from structural ramsey theory and topological dynamics focus on the finite/countable case.

# closed type

- Can we get the same equivalence of MP and RC in the unordered case?
- Here we make a new definition: let  $A \subset \mathcal{I}$  be a finite L'-structure.
- Though there is no linear order in the language, we place an arbitrary order on the structure  $\mathcal{I}$ . Then any  $A \subset \mathcal{I}$  has a "primary ordering" induced by the ordering on  $\mathcal{I}$
- Let  $\overline{a}$  be the enumeration of A that is increasing according to the primary ordering.

#### Definition

Let  $A \subset \mathcal{I}$  have cardinality n, and  $\overline{a}$  its primary enumeration. The closed type of A,  $c_A(x_1, \ldots, x_n)$  is defined to be  $\bigvee_{\sigma \in \operatorname{Aut}(A)} p_{\overline{a}}(x_{\sigma(1)}, \ldots, x_{\sigma(n)}).$ 

• Define the symmetric type of A to be V( all primary orderings A' of A)  $c_{A'}$ 

## case i: we color up to closed types

- We may retain our notions of generalized indiscernibility and modeling property from before.
- However, we know that if the type-coloring is finer than the closed-types of  $A \subset \mathcal{I}$ , there is no hope of finding the  $\mathcal{I}$ -indexed indiscernible **in** the original set of parameters.
- This is because there is no good homogeneous set in *I*: every copy of *A* contains, in effect, two differently colored copies of itself.
- So we restrict the colorings of tuples  $\overline{i}$  from I to colorings of its closed types.
- However, a generalized indiscernible could decide that differently oriented copies of A get colored different types in M so solving the MP question does not solve the RC question.
- And if  $\mathcal{K}$  is a RC, this is no guarantee that we can separate two orientations of A in our generalized indiscernible, even if that is reflected in the initial set of parameters  $\frac{26}{30}$

## case ii: we color up to symmetric types

- We can change our notion of indiscernibility so that two tuples **having the same symmetric type** must map to the same complete type in *M*, call this a *symmetric indiscernible*.
- Then, solving the MP problem solves the RC problem.
- And if we solve the RC problem, then we can model a coloring that respects closed types at least by a symmetric indiscernible (if not by a generalized indiscernible). [meaning in the end the indiscernible chooses one color for every copy of A, no matter how oriented.]
- Even so, the resulting class is unlikely to be Ramsey.

# studying the obstruction in M

- Colorings that break Ramsey theorems often appeal to a ghost ordering on the structure
- We had a few examples of indiscernibles that didn't exist in an ordered structure
- What about a converse: if an indiscernible fails to have the modeling property for a type-coloring (respecting closed types), what does this say about the definable structure of M?



#### Thanks for your attention!

# M. Džamonja and S. Shelah.

#### On $\triangleleft^*$ -maximality.

Annals of Pure and Applied Logic, 125(1-3):119–158, 2004.

#### J. Nešetřil.

#### Homogeneous structures and ramsey classes.

Combinatorics, Probability and Computing, 14:171–189, 2005.

## L. Scow.

Characterization of NIP theories by ordered graph-indiscernibles, 2012. 10.1016/j.apal.2011.12.013.

S. Shelah.

Classification Theory and the number of non-isomorphic models (revised edition). North-Holland, Amsterdam-New York, 1990.