Externally definable sets in NIP theories

Pierre Simon

École Normale Supérieure, Paris

January 30, 2012

Joint work with Artem Chernikov.

Let $A \subset \mathcal{U}$ be any set (big or small).

An externally definable subset of A is a $\phi(A; \bar{b}) \subseteq A^k$, $\bar{b} \in U$. An internally definable subset of A is a $\psi(A; \bar{d}) \subseteq A^k$, $\bar{d} \in A$.

Problem

Can we understand externally definable sets in terms of internally definable ones?

Stable T

Ideal situation: any externally definable subset of A is internally definable.

(A is stably-embedded.)

DLO

An externally definable set of M is a finite union of convex subsets. \implies tame

NIP

According to the philosophy that NIP is "stable + DLO", it should be tame too.

From now on, T is NIP.

Theorem (Honest definitions)

Let $A \subset U$ and $\phi(\bar{x}; \bar{b}) \in L(U)$. There is $\psi(\bar{x}; \bar{z})$ such that for any <u>finite</u> $A_0 \subseteq \phi(A; \bar{b})$, we can find $\bar{d} \in A$ such that

 $A_0 \subseteq \psi(A; \overline{d}) \subseteq \phi(A; \overline{b}).$

Another way to say the same thing.

Let $L_{\mathbf{P}} = L \cup \{\mathbf{P}(x)\}$. Let $A \subseteq M$, (M, A): expansion of M to $L_{\mathbf{P}}$ setting $\mathbf{P}(M) = A$.

Theorem (Honest definitions)

Let $A \subset M$ and $\phi(\bar{x}; \bar{b}) \in L(M)$. There is an extension $(M, A) \prec (M', A')$ and $\psi(\bar{x}; \bar{d}) \in L(A')$ such that:

$$\psi(A; \overline{d}) = \phi(A; \overline{b})$$

 $\psi(A'; \overline{d}) \subseteq \phi(A'; \overline{b})$

Corollary (Weak stable-embeddedness, Guingona)

Let $A \subset M$ and $\phi(\bar{x}; \bar{b}) \in L(M)$. There is an extension $(M, A) \prec (M', A')$ and $\psi(\bar{x}; \bar{d}) \in L(A')$ such that:

$$\psi(\mathsf{A};\bar{\mathsf{d}})=\phi(\mathsf{A};\bar{\mathsf{b}})$$

Applications Uniformity

Examples

A = I, a small indiscernible sequence.

Assume (for simplicity) that I is ordered by some \emptyset -definable $<_I$ and the order is dense Dedekind complete.

Theorem (Baldwin-Benedikt)

I is stably embedded.

Proof.

Let $(M, I) \prec (M', I')$. Then I' is an indiscernible sequence. By weak stable-embeddedness, it is enough to consider the case of some $\phi(I; \bar{b}), \ \bar{b} \in I'$. By indiscernability, the set $\phi(I'; \bar{b})$ is definable using = and the ordering $<_I$. We conclude by Dedekind completeness.

Applications Uniformity

Examples

A=M, a model. Let M^{Sh} be the expansion of M obtained by adding a predicate for every externally definable subset of M^k .

Theorem (Shelah)

M^{Sh} has elimination of quantifiers and is NIP.

Proof.

Let $M \prec N$ and $\phi(x_1, x_2; \overline{b}) \in L(N)$. Take $(N, M) \prec (N', M')$ and $\psi(x_1, x_2; \overline{d}) \in L(M')$ such that:

$$\psi(\mathsf{A}; \overline{\mathsf{d}}) = \phi(\mathsf{A}; \overline{b})$$

 $\psi(\mathsf{A}'; \overline{\mathsf{d}}) \subseteq \phi(\mathsf{A}'; \overline{b})$

Let $\theta(x_1; \bar{d}) = (\exists x_2)\psi(x_1, x_2; \bar{d})$. Then $\theta(M; \bar{d})$ coincides with the first projection of $\phi(M; \bar{b})$.

Expansions

We consider the following situation: M is NIP, we name some subset $A \subset M$ by a new predicate $\mathbf{P}(x)$.

Problem

Give sufficient conditions for the pair (M, A) to be NIP.

Results/special cases established by Berenstein, Boxall, Dolich, Günaydin, Hieronymi, Onshuus.

Applications Uniformity

Definition

An L_P-formula is bounded if it is of the form

$$(\forall x_1 \in \mathbf{P})(\exists x_2 \in \mathbf{P}) \cdots (\forall x_n \in \mathbf{P})\phi(\bar{x}; \bar{y}),$$

where $\phi(\bar{x}; \bar{y})$ in an *L*-formula.

We say that the theory of (M, A) is *bounded* if all L_P -formulas are equivalent to a bounded one.

Theorem

Assume that M is NIP, A_{ind} is NIP and the theory of the pair (M, A) is bounded, then (M, A) is NIP.

Corollary

If M is NIP, $A \prec M$ and the theory of (M, A) is bounded, then (M, A) is NIP.

Applications Uniformity

Uniformity

Theorem (Uniformity of honest definitions)

Let $\phi(\bar{x}; \bar{y}) \in L$. Then there is some $\psi(\bar{x}; \bar{z}) \in L$ such that: For every $A \subset U$, and $\bar{b} \in U$, for every finite $A_0 \subseteq \phi(A; \bar{b})$, there is $\bar{d} \in A$ such that

$$A_0 \subseteq \psi(A; \overline{d}) \subseteq \phi(A; \overline{b}).$$

Corollary (UDTFS)

Let $\phi(\bar{x}; \bar{y}) \in L$, then there is $\psi(\bar{x}; \bar{z}) \in L$ such that for every finite set A and every $\bar{b} \in U$, there is $\bar{d} \in A$ with

$$\phi(A;\bar{b})=\psi(A;\bar{d}).$$

<u>Remark:</u> We have to assume that the full theory is NIP. The UDTFS conjecture is still open for an NIP formula $\phi(\bar{x}; \bar{y})$ in a (possibly) independent theory.

The proof uses compactness and a theorem of Alon-Kleitman and Matousek:

(p, q)-Theorem (special case)

If $\phi(x; \bar{y})$ in NIP and $q < \omega$ is big enough, then there is N such that for any finite family $\mathcal{B} = \{\phi(x; \bar{b}_i) : i < n\}$ if any q sets from \mathcal{B} intersect, then there is an N-point set in \mathcal{U} intersecting all sets of \mathcal{B} .

Distal theories

Distal theories are "completely unstable" NIP theories.

Definition

An NIP theory T is *distal* if for every indiscernible sequence I + b + J (I and J infinite sequences) and set A, if

I + J is indiscernible over A,

then

I + b + J is indiscernible over A.

Examples

 $\overline{\text{O-minimal}}$ theories, \mathbb{Q}_p are distal.

Theorem (Strong honest definitions for distal theories)

Let $\phi(\bar{x}; \bar{y}) \in L$. Then there is $\psi(\bar{x}; \bar{z}) \in L$ such that: for any $\bar{b} \in \mathcal{U}^{|\bar{y}|}$ and <u>finite</u> $A_0 \subseteq \phi(\bar{x}; \bar{b})$, there is $\bar{d} \in A_0$ such that:

 $A_0 \subseteq \psi(\bar{x}; \bar{d}),$ $\psi(\bar{x}; \bar{d}) \to \phi(\bar{x}; \bar{b}).$

Corollary (UDTFS for distal theories)

Let $\phi(\bar{x}; \bar{y}) \in L$, there there is $\theta(\bar{x}; \bar{z}) \in L$ and N such that for any $\bar{b} \in \mathcal{U}^{|\bar{y}|}$ and finite $A \subset \mathcal{U}$, there is some $A_0 \subseteq A$ of size $\leq N$ with:

$$\operatorname{tp}_{\theta}(\bar{b}/A_0) \vdash \operatorname{tp}_{\phi}(\bar{b}/A).$$

A. Chernikov and P. Simon

Externally definable sets and dependent pairs

to be published in the Israel Journal of Math.

A. Chernikov and P. Simon

Externally definable sets and dependent pairs II

in preparation.