Basic analysis Basic analysis Almost minimal structures Almost minimal structures Proof of Theorem (A)' Minimal structure

Kueker's conjecture

Predrag Tanović

Neostability Meeting, Banff, 2012

▲ 御 ▶ → ミ ▶

문 문 문

Throughout T is a countable, complete theory with infinite models.

Kueker's conjecture

If every uncountable model of T is \aleph_0 -saturated then T is categorical in some infinite power.

▲圖▶ ▲屋▶ ▲屋▶

Throughout T is a countable, complete theory with infinite models.

Kueker's conjecture

If every uncountable model of T is \aleph_0 -saturated then T is categorical in some infinite power.

Kueker's conjecture is true for

- (Buechler) T superstable.
- (Hrushovski) T stable.
- (Hrushovski) T interpreting a linear order.
- (Hrushovski) T with built-in Skolem functions.

T is a **Kueker theory** if every uncountable model of T is \aleph_0 -saturated and T is not \aleph_0 -categorical.

Restated Kueker's Conjecture

Every Kueker theory is \aleph_1 -categorical.

Basic analysis Basic analysis Almost minimal structures Almost minimal structures Proof of Theorem (A)' Minimal structure

Theorem

If T is a Kueker theory and $dcl(\emptyset)$ is infinite then T does not have the strict order property.

Combining with the stable case we obtain:

Corollary

Kueker's conjecture is true for NIP theories with infinite $dcl(\emptyset)$.

A⊒ ▶ ∢ ∃

Plan of the proof of the conjecture:

Assuming that T is a Kueker theory:

(A) Find a strongly minimal formula $\phi(x)$.

(B) Prove that T has neither SOP nor IP .

▲ 御 ▶ → ミ ▶

Plan of the proof of the conjecture:

Assuming that T is a Kueker theory:

(A) Find a strongly minimal formula $\phi(x)$.

(B) Prove that T has neither SOP nor IP .

Assuming that $|dcl(\emptyset)| = \aleph_0$ we prove:

Theorem

(A)' Strongly minimal types are dense (every non-algebraic formula is contained in a strongly minimal type).

(B)' T is NSOP.

★ 同 ▶ ★ 三 ▶

Hrushovski

Let T be a Kueker theory.

- T is small $(|S(\emptyset)| \leq \aleph_0)$.
- *T* cannot have an uncountable model which is atomic over a finite subset
- The prime model over a finite set is minimal (If the prime model was not minimal then we could find an uncountable atomic model.)

→ 同 → → 三 →

Hrushovski

Let T be a Kueker theory.

- T is small $(|S(\emptyset)| \leq \aleph_0)$.
- *T* cannot have an uncountable model which is atomic over a finite subset
- The prime model over a finite set is minimal (If the prime model was not minimal then we could find an uncountable atomic model.)
- Almost minimal formulas are dense in any model prime over a finite set.

Definition

- φ(x, ā) is almost minimal over A ⊇ ā if there are infinitely
 many algebraic types and a unique non-algebraic complete
 type over A containing it;
- A complete type is almost minimal if it is non-algebraic and contains an almost minimal formula.

(本間) (本語) (本語)

Definition

- φ(x, ā) is almost minimal over A ⊇ ā if there are infinitely
 many algebraic types and a unique non-algebraic complete
 type over A containing it;
- A complete type is almost minimal if it is non-algebraic and contains an almost minimal formula.

Theorem (A)'

If T is a Kueker theory and if $dcl(\emptyset)$ is infinite then any almost minimal formula has Morley rang 1.

- 4 回 2 - 4 回 2 - 4 回 2

- A first-order structure is almost minimal if it has infinitely many algebraic and a unique non-algebraic 1-type; in particular, acl(∅) = M.
- Equivalently, x = x is almost minimal over \emptyset .
- There are two types of almost minimal structures and according to the multiplicity of the unique non-algebraic 1-type p ∈ S₁(∅):

▲御▶ ▲ 臣▶ ▲ 臣▶ …

- A first-order structure is almost minimal if it has infinitely many algebraic and a unique non-algebraic 1-type; in particular, acl(Ø) = M.
- Equivalently, x = x is almost minimal over \emptyset .
- There are two types of almost minimal structures and according to the multiplicity of the unique non-algebraic 1-type p ∈ S₁(∅):

Case 1. $\operatorname{mult}(p) < \aleph_0$

- If mult(p) = 1 then M is minimal (any definable with parameters subset is either finite or co-finite).
- M is the union of mult(p)-many (domains of) minimal structures (after naming a bit of acl(∅)).

Basic analysis Basic analysis Almost minimal structures Almost minimal structures Proof of Theorem (A)' Minimal structure

Case 2. $\operatorname{mult}(p) = 2^{\aleph_0}$

Predrag Tanović Kueker's conjecture

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Basic analysis Basic analysis Almost minimal structures Almost minimal structures Proof of Theorem (A)' Minimal structure

Case 2. $\operatorname{mult}(p) = 2^{\aleph_0}$

Confirmation of the following would complete part (A) of the Plan.

Conjecture 1. This case does not happen in Kueker theories.

イロト イヨト イヨト イヨト

æ

Conjecture 2.

(T any small theory) Suppose that (C,...) is an almost minimal structure of the second type. Then exactly one of the following two options holds:

(I) Every non-algebraic $p \in S_1(C)$ is definable and its unique global heir is generically stable.

(II) There is a proper definable (with parameters) partial order on elements of $\mathcal{M}.$

Assume that T is a Kueker theory and that $C = dcl(\emptyset)$ is infinite. We prove that any almost minimal formula has Morley rank 1.

Proof ingredients

1. Prove that every type over a finite domain has finite multiplicity, so every almost minimal formula is a finite union of minimals.

2. Apply the Dichotomy theorem for minimal structures (formulas).

3. Eliminate the asymmetric case.

4. Using 'regularity' properties of symmetric minimal structures derive strong minimality.

A (1) > (1) > (1)

- By a *C*-**type** over *A* we mean a complete, non-algebraic type over *A* which is finitely satisfiable in *C* (every formula from the type is satisfied by a tuple of elements of *C*).
- {ā_i | i < α} is a C-sequence over A if tp(ā_i/A ∪ {ā_j | j < i}) is a C-type for all i < α.
- B is almost atomic over A if for all $\overline{b} \in B$ there is a finite $A_0 \subset A$ such that $\operatorname{tp}(\overline{b}/A')$ is isolated for all finite $A_0 \subset A' \subset A$.
- In any small theory almost atomic models over countable sets exist.

(4回) (4回) (4回)

If $p(x) = \operatorname{tp}(\bar{a}/A) \in S(A)$ is a C-type and $q = \operatorname{tp}(\bar{b}/A) \in S(A)$ is isolated then

 $p \stackrel{\text{\tiny w}}{\perp} q$ (i.e. $p(\bar{x}) \cup q(\bar{y})$ determines a complete type).

Lemma

Suppose that $I = \{a_i \mid i < \alpha\}$ is a *C*-sequence.

(a) If $\alpha \leq \omega_1$ then there is $M \supset I$ which is almost atomic over I.

(b) If $\alpha = \omega$ then there is a prime model *M* over *I*, and if *I* is indiscernible then *M* is \aleph_0 -saturated.

★御★ ★注★ ★注★ 三注

If $p(x) = \operatorname{tp}(\bar{a}/A) \in S(A)$ is a C-type and $q = \operatorname{tp}(\bar{b}/A) \in S(A)$ is isolated then

 $p \stackrel{\text{\tiny w}}{\perp} q$ (i.e. $p(\bar{x}) \cup q(\bar{y})$ determines a complete type).

Lemma

Suppose that $I = \{a_i \mid i < \alpha\}$ is a *C*-sequence.

(a) If $\alpha \leq \omega_1$ then there is $M \supset I$ which is almost atomic over *I*.

(b) If $\alpha = \omega$ then there is a prime model *M* over *I*, and if *I* is indiscernible then *M* is \aleph_0 -saturated.

- Every isolated type has finite multiplicity; otherwise, there is an uncountable model atomic over a finite set.
- Every type over a finite domain has finite multiplicity.

回り くほり くほり ……ほ

Semi-isolation

In this section we do not assume that T is a Kueker theory!

- Let p be a type. For a ∈ p(M) and A ⊆ p(M) define a ∈ Sem_p(A), or a is semi-isolated over A, iff: there is φ(x) ∈ tp(a/A) such that φ(x) ⊢ p(x).
- This defines Sem_p as an operation on the power set of $p(\mathcal{M})$.

Dichotomy theorem for minimal structures

Let $(\mathcal{C},...)$ be a minimal first-order structure, let \mathcal{M} be its saturated elementary extension and let $p \in S_1(\mathcal{C})$ be the unique non-algebraic 1-type. Then exactly one of the following two options holds:

(1) Every C-sequence over C is symmetric (totally indiscernible). In this case $(p(\mathcal{M}), \operatorname{Sem}_p)$ is a pregeometry; p is definable, its unique global heir \hat{p} is generically stable and $(\hat{p}, x = x)$ is strongly regular.

(II) There exists a C-sequence which is not symmetric. In this case there is an infinite $C_0 \subseteq C$ directing a type (defined later) over some finite $E \subset M$.

- 4 回 2 - 4 □ 2 - 4 □

We say that C ⊂ dcl(A) directs a type over A if there is an A-definable partial order ≤ such that:

(D1) $\{x \in C \mid c \leq x\}$ is a co-finite subset of C for all $c \in C$; (D2) C is an initial part or \mathcal{M} : $c \in C$ and $a \leq c$ imply $a \in C$.

• In this case we say that the partial type

 $p(x) = \{\phi(x) \mid \phi(x) \text{ is over } A \text{ and } \phi(\mathcal{C}) \text{ is co-finite in } \mathcal{C} \}.$

is C-directed over A, or (C, \leq) -directed over A.

A type is directed by constants if it is (C, ≤)-directed over A for some ≤ and some C ⊂ dcl(A).

(ロ) (同) (E) (E) (E)

Suppose that C directs a type. $B \subset M$ is C-independent if any finite subset can be arranged into a C-sequence.

Theorem

Suppose that T is small. Then there is $C_0 \subset C$ and a finite A such that:

 $B \subset M$ is C_0 -independent over A iff it is pairwise C_0 -independent over A.

Suppose that C directs a type. $B \subset M$ is C-independent if any finite subset can be arranged into a C-sequence.

Theorem

Suppose that T is small. Then there is $C_0 \subset C$ and a finite A such that:

 $B \subset M$ is C_0 -independent over A iff it is pairwise C_0 -independent over A.

- If I = {a_i | i < ω₁} is a C₀-sequence over A and M ⊃ AI \ {a₀} is almost atomic over AI \ {a₀} then tp(a₀/a₁) is not realized in M.
- There are no types directed by constants in a Kueker theory.
- Any almost minimal formula in a Kueker theory is a finite union of minimal formulas of symmetric type.

Assume: \mathcal{T} is a Kueker theory, $\operatorname{acl}(\emptyset)$ is absorbed into the language, $\phi(x)$ is minimal over \emptyset and $\mathcal{C} = \operatorname{dcl}(\emptyset \cap \phi(\mathcal{M}))$.

- (C,...) with the induced structure is symmetric: every
 C-sequence (over Ø) is totally indiscernible and (p(M), Sem_p) is a pregeometry.
- Let *I* ⊂ φ(*M*) be an indiscernible *C*-sequence of size ℵ₁ and let *M* ⊃ *I* be almost atomic over *I*.
- It suffices to prove that φ(M) cannot be definably split into two infinite subsets.

→ 御 → → 注 → → 注 →

Suppose that $p \in S(\emptyset)$ is strongly minimal, non-isolated and that I is a countably infinite Morley sequence in p.

Corollary

 T_I is small and the prime model is an \aleph_0 -saturated model of T.

The positive answer to the following would prove (B).

Question

Does any unstable non-algebraic formula isolating a type over \emptyset have such an extension over any finite domain?

▲同 ▶ ▲ 臣 ▶

The positive answer to the following would prove (B).

Question

Does any unstable non-algebraic formula isolating a type over \emptyset have such an extension over any finite domain?

- If T is a Kueker theory and \leq is 0-definable (on elements).
- (1) There is an isolated type whose locus is not an antichain.

(2) A type from (1) has such an extension over any finite super-domain.

(3) T has uncountable model atomic over a finite set.