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Throughout T is a countable, complete theory with infinite models.

Kueker’s conjecture

If every uncountable model of T is ℵ0-saturated then T is
categorical in some infinite power.

Kueker’s conjecture is true for

(Buechler) T superstable.

(Hrushovski) T stable.

(Hrushovski) T interpreting a linear order.

(Hrushovski) T with built-in Skolem functions.
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T is a Kueker theory if every uncountable model of T is
ℵ0-saturated and T is not ℵ0-categorical.

Restated Kueker’s Conjecture

Every Kueker theory is ℵ1-categorical.
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Theorem

If T is a Kueker theory and dcl(∅) is infinite then T does not have
the strict order property.

Combining with the stable case we obtain:

Corollary

Kueker’s conjecture is true for NIP theories with infinite dcl(∅).
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Plan of the proof of the conjecture:

Assuming that T is a Kueker theory:

(A) Find a strongly minimal formula φ(x).

(B) Prove that T has neither SOP nor IP .

Assuming that |dcl(∅)| = ℵ0 we prove:

Theorem

(A)’ Strongly minimal types are dense (every non-algebraic formula
is contained in a strongly minimal type).

(B)’ T is NSOP.
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Hrushovski

Let T be a Kueker theory.

T is small (|S(∅)| ≤ ℵ0).

T cannot have an uncountable model which is atomic over a
finite subset

The prime model over a finite set is minimal (If the prime
model was not minimal then we could find an uncountable
atomic model.)

Almost minimal formulas are dense in any model prime over a
finite set.
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Definition

φ(x , ā) is almost minimal over A ⊇ ā if there are infinitely
many algebraic types and a unique non-algebraic complete
type over A containing it;

A complete type is almost minimal if it is non-algebraic
and contains an almost minimal formula.

Theorem (A)’

If T is a Kueker theory and if dcl(∅) is infinite then any almost
minimal formula has Morley rang 1.
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A first-order structure is almost minimal if it has infinitely
many algebraic and a unique non-algebraic 1-type; in
particular, acl(∅) = M.

Equivalently, x = x is almost minimal over ∅.

There are two types of almost minimal structures and
according to the multiplicity of the unique non-algebraic
1-type p ∈ S1(∅):

Case 1. mult(p) < ℵ0

If mult(p) = 1 then M is minimal (any definable with
parameters subset is either finite or co-finite).

M is the union of mult(p)-many (domains of) minimal
structures (after naming a bit of acl(∅)).
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Case 2. mult(p) = 2ℵ0

Confirmation of the following would complete part (A) of the Plan.

Conjecture 1. This case does not happen in Kueker theories.
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Conjecture 2.

(T any small theory) Suppose that (C, ...) is an almost minimal
structure of the second type. Then exactly one of the following
two options holds:

(I) Every non-algebraic p ∈ S1(C) is definable and its unique
global heir is generically stable.

(II) There is a proper definable (with parameters) partial order on
elements of M.
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Assume that T is a Kueker theory and that C = dcl(∅) is infinite.
We prove that any almost minimal formula has Morley rank 1.

Proof ingredients

1. Prove that every type over a finite domain has finite
multiplicity, so every almost minimal formula is a finite union of
minimals.

2. Apply the Dichotomy theorem for minimal structures
(formulas).

3. Eliminate the asymmetric case.

4. Using ’regularity’ properties of symmetric minimal structures
derive strong minimality.
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By a C-type over A we mean a complete, non-algebraic type
over A which is finitely satisfiable in C (every formula from the
type is satisfied by a tuple of elements of C).

{āi | i < α} is a C-sequence over A if tp(āi/A ∪ {āj | j < i})
is a C-type for all i < α.

B is almost atomic over A if for all b̄ ∈ B there is a finite
A0 ⊂ A such that tp(b̄/A′) is isolated for all finite
A0 ⊂ A′ ⊂ A.

In any small theory almost atomic models over countable sets
exist.
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If p(x) = tp(ā/A) ∈ S(A) is a C-type and q = tp(b̄/A) ∈ S(A) is
isolated then

p w⊥ q (i.e. p(x̄) ∪ q(ȳ) determines a complete type).

Lemma

Suppose that I = {ai | i < α} is a C-sequence.

(a) If α ≤ ω1 then there is M ⊃ I which is almost atomic over I .

(b) If α = ω then there is a prime model M over I , and if I is
indiscernible then M is ℵ0-saturated.

Every isolated type has finite multiplicity; otherwise, there is
an uncountable model atomic over a finite set.

Every type over a finite domain has finite multiplicity.
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Predrag Tanović Kueker’s conjecture



Basic analysis Basic analysis Almost minimal structures Almost minimal structures Proof of Theorem (A)’ Minimal structures Strong minimality in Kueker theories Part (B) Part (B)

Semi-isolation

In this section we do not assume that T is a Kueker theory!

Let p be a type. For a ∈ p(M) and A ⊆ p(M) define
a ∈ Semp(A), or a is semi-isolated over A, iff:

there is φ(x) ∈ tp(a/A) such that φ(x) ` p(x).

This defines Semp as an operation on the power set of p(M).
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Dichotomy theorem for minimal structures

Let (C, ...) be a minimal first-order structure, let M be its
saturated elementary extension and let p ∈ S1(C) be the unique
non-algebraic 1-type. Then exactly one of the following two
options holds:

(I) Every C-sequence over C is symmetric (totally indiscernible).
In this case (p(M), Semp) is a pregeometry; p is definable, its
unique global heir p̂ is generically stable and (p̂, x = x) is strongly
regular.

(II) There exists a C-sequence which is not symmetric. In this case
there is an infinite C0 ⊆ C directing a type (defined later) over
some finite E ⊂M .
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We say that C ⊂ dcl(A) directs a type over A if there is an
A-definable partial order ≤ such that:

(D1) {x ∈ C | c ≤ x} is a co-finite subset of C for all c ∈ C;

(D2) C is an initial part or M: c ∈ C and a ≤ c imply
a ∈ C.

In this case we say that the partial type

p(x) = {φ(x) |φ(x) is over A and φ(C) is co-finite in C} .

is C-directed over A, or (C,≤)-directed over A.

A type is directed by constants if it is (C,≤)-directed over A
for some ≤ and some C ⊂ dcl(A).
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Suppose that C directs a type. B ⊂ M is C-independent if any
finite subset can be arranged into a C-sequence.

Theorem

Suppose that T is small. Then there is C0 ⊂ C and a finite A such
that:

B ⊂ M is C0-independent over A iff it is pairwise C0-independent
over A.

If I = {ai | i < ω1} is a C0-sequence over A and
M ⊃ AI \ {a0} is almost atomic over AI \ {a0} then tp(a0/a1)
is not realized in M.

There are no types directed by constants in a Kueker theory.

Any almost minimal formula in a Kueker theory is a finite
union of minimal formulas of symmetric type.
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Assume: T is a Kueker theory, acl(∅) is absorbed into the
language, φ(x) is minimal over ∅ and C = dcl(∅ ∩ φ(M)).

(C , ...) with the induced structure is symmetric: every
C-sequence (over ∅) is totally indiscernible and (p(M), Semp)
is a pregeometry.

Let I ⊂ φ(M) be an indiscernible C-sequence of size ℵ1 and
let M ⊃ I be almost atomic over I .

It suffices to prove that φ(M) cannot be definably split into
two infinite subsets.
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Suppose that p ∈ S(∅) is strongly minimal, non-isolated and that I
is a countably infinite Morley sequence in p.

Corollary

TI is small and the prime model is an ℵ0-saturated model of T .
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The positive answer to the following would prove (B).

Question

Does any unstable non-algebraic formula isolating a type over ∅
have such an extension over any finite domain?

If T is a Kueker theory and ≤ is 0-definable (on elements).

(1) There is an isolated type whose locus is not an antichain.

(2) A type from (1) has such an extension over any finite
super-domain.

(3) T has uncountable model atomic over a finite set.
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